|
Pracownia Systemów Inteligentnych
Tematy prac badawczych
|
Mobile robots:
To be able to act in an unknown environment mobile robots have to know
where they are, i.e. they have to locate themselves, using some map.
Then, they have to plan the their further path, avoiding collisions
with stationary or moving obstacles. All this is summarized under the term
Mobile Robot Navigation.
The research in the division concerns:
- 2D and 3D map building - based on sensor (laser and omnicamera) readings,
the map of an environment is built. The hybrid grid-based and object-based
representations are used.
- Localization - robots determine their position using particle filters approach.
- Path plannig - in order to plan collision free paths, Cellular Neural Networks (CNN)
are used. CNN allows combining advantages of potential field methods
and the diffusion methods.
- Coordinating the motion of a team of robots - the path for a team of robots
is planned using CNN.
Researchers engaged:
Knowledge-based design:
Conventional CAD-tools allow the user to produce technical drawings, to visualize
the designed object in 3D-space and to perform geometrical transformations of such object.
The next generation of these tools should enable the designer to look for innovative
solutions at the conceptual phase of design, to generate efficiently the detailed
design after the principal decisions have been made, to check whether this design
fulfills all requirements stated by the Code of Practice and by the investor,
and to investigate alternative solutions.
In order to achieve such functionality, new software tools should act as expert
systems possessing certain domain knowledge and able to perform automatic reasoning.
The development of such software, usually referred to as KBD-tools (Knowledge-Based
Design tools), is on the agenda of many research teams nowadays.
The DIS takes part in this effort confining itself to the specific sub-area,
namely, to the linguistic approach to design. Treating primitives as letters
we can compose words that correspond to certain parts of the designed object
and incorporating those words into phrases we accomplish the synthesis
of the whole artifact. Introducing a grammar we can force our generative system
to produce designs that follow certain rules. On the other hand, allowing
the crossover and random mutation in the grammar rules, we can generate
innovative solutions.
Researchers engaged:
Uczenie maszynowe:
Dziedzina uczenia maszynowego dotyczy projektowania algorytmów
pozwalających na automatyczne uczenie się programów na podstawie eksperymantów. W
szczególności, koncentrujemy się na automatycznym uczeniu się sieci
Bayesowskich na podstawie otrzymanych danych. Sieci Bayesowskie, znane również jako sieci
probabilistyczne, umożliwiają reprezentację łącznego rozkładu
prawdopodobieństwa w zwarty sposób i stały się popularne w dziedzinie
Sztucznej Inteligencji. Szczególnie wymagający jest problem uczenia się
sieci Bayesowskich z ukrytymi zmiennymi (to jest, zmiennymi które nie są
zaobserwowane w danych). Nasze ostatnie pracy dotyczą uczenia się ukrytych
modeli klas (również znanych jako na?ve Bayes modeli), z ukrytą zmienną
klasy, które należą do najprostszych typów sieci Bayesowskich z ukrytymi zmiennymi
dla kategorycznych danych.
Także badamy możliwości zastosowania takich modeli w robotyce.
Researchers engaged:
Diagrammatics:
Diagrammatics,
or, as some still prefer to say, diagrammatic representation and reasoning,
concerns the use of diagrams in information processing and communication by humans
and computers. Diagrammatic representation uses diagrams to represent
data and knowledge, while diagrammatic reasoning uses
direct manipulation and inspection of a diagram as the primary
means of inference. Diagrams are a visual kind
of analogical knowledge representation mechanism
that is characterized by a direct (though not necessarily isomorphic)
correspondence between the structure of the representation
and the structure of the represented. For more, see for example:
The research in the division concerns:
- Problems of errors in diagrammatic reasoning and how to avoid them
(Z. Kulpa: Self-consistency, imprecision, and impossible cases
in diagrammatic representation.
Machine GRAPHICS & VISION 12(1): 147-160, 2003).
- Development and applications of a diagrammatic representational system for
interval analysis
and computation (see especially the book: Z. Kulpa.
Diagrammatic Interval
Analysis with Applications. IPPT PAN Reports 1/2006, xvi+232 pp., Warsaw 2006.
- Application of diagrams in mathematics (Z. Kulpa. On diagrammatic representation of mathematical knowledge. In: Mathematical Knowledge Management. LNCS 3119,
Springer, Berlin 2004, 190-204), especially:
- Problems of formalization of diagrammatic reasoning (work in progress).
Researchers engaged:
For other publications in this area see the sections on
diagrammatics
and on intervals in Z. Kulpa's list of publications.
Instytut
Zakład Technologii Inteligentnych
Strona główne
Zarządzający stroną Michal Gnatowski
Projektant strony Zenon Kulpa
Ostatnia aktualizacja 4 styczeń, 2008
|