
ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

Security of mobile agents: a new concept of the integrity protection

Aneta Zwierko1, Zbigniew Kotulski1,2

1Instytut Telekomunikacji, WEiTI, Politechnika Warszawska
2Instytut Podstawowych Problemów Techniki, PAN

azwierko@tele.pw.edu.pl, zkotulsk@ippt.gov.pl, zkotulsk@tele.pw.edu.pl

Abstract
The recent developments in the mobile technology (mobile phones, middleware) created a need for new methods
of protecting the code transmitted through the network. The proposed mechanisms not only secure the compiled
program, but also the data, that can be gathered during its “journey”. The oldest and the simplest methods are
more concentrated on integrity of the code itself and on the detection of unauthorized manipulation. Other, more
advanced proposals protect not only the code but also the execution state and the collected data. The paper is
divided into two parts. The first one is mostly devoted to different methods of securing the code and protecting
its integrity; starting from watermarking and fingerprinting, up to methods designed specially for mobile agent
systems: encrypted function, cryptographic traces, time limited black-box security, chained-MAC protocol,
publicly-verifiable chained digital signatures The second part presents new concept for providing mobile agents
with integrity protection, based on a zero-knowledge proof system.

1. Introduction

The mobile agent systems offer new possibilities for the e-commerce applications: creating new types
of electronic ventures from e-shops, e-auctions to virtual enterprises and e-marketplaces. Utilizing the agent
system helps to automate many electronic commerce tasks. Beyond simple information gathering tasks, mobile
agents can take over all tasks of commercial transactions, namely price negotiation, contract signing and delivery
of (electronic) goods and services. Such systems are developed for diverse business areas, e.g., contract
negotiations, service brokering, stock trading and many others ([4], [11], and [10]).

Mobile agent systems have many advantages over traditional (static) distributed computing environments:
 require less network bandwidth,
 increase asynchrony among clients and servers,
 dynamically update server interfaces,
 introduce concurency.

The benefits from utilizing the mobile agents in various business areas are great. However, this technology
brings some serious security risks: one of the most important is the possibility of a tampering an agent. In the
mobile agent systems the agent's code and internal data autonomously migrate between hosts and could be easy
changed during the transmission or at a malicious host site. An agent cannot itself prevent this, but different
countermeasures can be utilized in order to detect any manipulation made by an unauthorized party. They can be
integrated directly into the agent system, or only into the design of an agent to extend the capabilities of the
underlying agent system.

Several degrees of agent's mobility exist, corresponding to the existing possibilities of relocating code and state
information, including the values of instance variables, the program counter, execution stack, etc. The mobile
technologies can be divided in to two groups:

 weakly mobile: only the code is migrating no execution state is sent along with an agent program
 strong mobile: a running program is moving to another execution environment (along with its particular

state).
In this paper we discuss the agent system mobile in the strong sense.

Organization of this paper. First we present basic definitions and notions, which are later used in the
description of different methods. Then, we briefly survey the known techniques for protecting agent's integrity.
In the Section 5 we present new concept for preventing agent's tampering based on a zero-knowledge proof
system. Finally, we present the conclusions and future research areas.

2. Definitions and notions

This section presents basic notions concerning agent's integrity that will be later used in description of
various solutions (most of the definitions come from [6]).

mailto:azwierko@tele.pw.edu.pl
mailto:zkotulsk@ippt.gov.pl

ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

The integrity of an agent means that neither its code nor execution state can be changed by an unauthorized party
or such changes should be detectable (by an owner, a host or an agent platform which wants to interact with the
agent).

The authorized changes occur only when the agent have to migrate from one host to another. Below is a more
formal definition:
Definition 1 (integrity of an agent): An agent’s integrity is not compromised if any unauthorized modification
can be detected by the agent’s owner.

The concept of forward integrity is also used in evaluation of many methods. This notion is used in a system
where agent's data can be represented as a chain of partial results (a sequence of static pieces of data). Forward
integrity can be divided into the two types, which differ in their possibility to resist cooperating malicious hosts.
The general goal is to protect the results within the chain of partial results from being modified. Given a
sequence of partial results , then forward integrity is defined as follows: 10 ,..., −nmm

Definition 2 (weak forward integrity): If in is the first malicious agent place on the itinerary, the integrity of each
partial result is provided. 10 ,..., −nmm

Weak forward integrity is conceptually not resistant to cooperating malicious hosts and agent places that are
visited twice. To really protect the integrity of partial result we need a definition without constraints.

Definition 2 (strong forward integrity): None of the encapsulated messages , with k < n, can be modified. km

In this paper we will refer to forward integrity as to strong forward integrity (when applicable). To make notion
of forward integrity more useful, we will define also publicly verifiable forward integrity, which enables any
host to detect compromised agents:

Definition 2 (publicly verifiable forward integrity): Any host in can verify that the chain of partial results

 has not been compromised.)(),...,(10 −nimim

The other important notion concerning agent's integrity is a concept of black-box security ([12], [7]). Its main
idea is to generate executable code from a given agent's specification that cannot be attacked by read (disclosure)
or modification attacks. An agent is considered to be black-box if at any time the agent code cannot be attacked
in the above sense, and if only its input and output can be observed by the attacker.

3. Related work

There are two main concepts for protecting mobile agent's integrity:
 detection or prevention of tampering,
 providing trusted environment for agent's execution.

The second group of methods is more concentrated on the whole agent system than on an agent in particular.
These seem to be easier to design and implement but, as presented in [12], mostly leads to some problems. The
idea that agent works only with a group of trusted hosts makes the agent less mobile than it was previously
assumed. Also an agent may need different levels of trust (some information should be revealed to host but in
another situation should be kept secret). Sometimes, it is not always clear in advance that current host is trusted.

Another way to provide such an environment is special tamper-resistant hardware, but the cost of such a solution
is still very high.

In this paper will concentrate on the "built-in" solutions because they enable agent to stay mobile in a strong
sense (as presented in the Section 2) and still provide the agent with mechanisms to detect or prevent tampering.

Detection implies that the technique is aimed at discovering unauthorized modification of the code or the state
information. Prevention implies that the technique is aimed at keeping the code and the state information from
being changed in any way. To be effective, detection techniques are more likely than prevention techniques to
depend on a legal or other social framework. The distinction between detection and prevention can be arbitrary
sometimes, since prevention often involves detection ([9]).

ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

3.1 Encrypted Functions

The Encrypted Functions (EF) is one step forward in implementing the perfect black-box security. It
has been proposed initially in [14]. Since then other similar solutions were introduced ([1], [2], [3], [15]) and the
method is believed to be a one of canonical solutions for preserving agent's integrity ([9], [12]).

The goal of Encrypted Functions [9] is to determine a method which will enable the mobile code to safely
compute cryptographic primitives, such as the digital signature, even though the code is executed in non-trusted
computing environments and operates autonomously without interactions with the home platform. The approach
is to enable the agent platform to execute a program assimilating an encrypted function without being able to
extract the original form. This approach requires differentiation between a function and a program that
implements the function.

The EF system is described as follows ([12]):
 A has an algorithm to compute function f. B has an input x and is willing to compute for A, but A
wants B to learn nothing substantial about f. Moreover, B should not need to interact with A during the
computation of .

)(xf

)(xf

To implement the system defined above, we must assume that the function f can be encrypted into some other
function E(f). Then, the scheme can be constructed as follows:

 A encrypts f and obtains ,)(fE
 A creates program (that implements ,))((fEP)(fE
 A sends to B,))((fEP
 B executes on x,))((fEP
 B sends the results of program to A,))))((((xfEP
 A decrypts the received results and obtains .)(xf

The function f can be, e.g., a signature algorithm with an embedded key or an encryption algorithm containing
the one. This would enable the agent to sign or encrypt data at the host without revealing its secret key.

Although the idea is straightforward, it is hard to find the appropriate encryption schemes that can transform
arbitrary functions as showed. The techniques to encrypt rationale functions and polynomials were proposed.
Also the solution based on a RSA cryptosystem was described ([3]).

3.2 Time Limited Black-box Security and Obfuscated Code

In the previous section we introduced a notion of a black-box security. Since it is not possible to
implement it today, the relaxation of this notion was introduced ([12]): it is not assumed that the black-box
protection holds forever, but only for a certain known time. According to this definition, an agent has the time-
limited black-box property if for a certain known time it cannot be attacked in the above-mentioned sense.

The central idea of this approach is to generate an executable agent from a given agent specification which
cannot be attacked by read or manipulation attacks ([6]). The time limited black-box fulfills two black-box
properties for this limited time:

 code and data of the agent specification cannot be read
 code and data of the agent specification cannot be modified

This scheme will not protect any data that is added later, although the variables that exist will be changeable.

In order to achieve the black-box property, several conversion algorithms were proposed. They are also called
obfuscating or mess-up algorithms. These algorithms generate a new agent out of an original agent which differs
in code but produce the same results.

The code obfuscation methods make it more complicated to obtain the meaning from the code. To change a
program code into a less easy "readable" form they have to work in an automatic and parametric manner. The
additional parameters should make possible that the same original program is transformed into different
obfuscated programs. The difficulty is to transform a program in a way that the original (or a similar easily
understandable) program cannot be re-engineered automatically. Another problem is that it is quite difficult to
measure the quality of obfuscation, as this not only depends on the used algorithm but on the ability of the re-
engineer as well.

ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

Since an agent can become invalid before completing its computation, obfuscated code is suitable for
applications that do not convey information intended for long-lived concealment. Also it is still possible for an
attacker to read and manipulate data and code but as the role of these elements cannot be determined, the results
of this attack are random and have no meaning for the attacker.

3.3 Cryptographic Traces

Giovanni Vigna introduced cryptographic traces (also called execution traces) to provide a way to
verify the correctness of the execution of an agent ([17], [16]). The method is based on traces of the execution of
an agent, which can be requested by the originator after the agent’s termination and used as a basis for execution
verification. The technique requires each platform involved to create and retain a non-repudiation log or trace of
the operations performed by the agent while resident there, and to submit a cryptographic hash of the trace upon
conclusion as a trace summary or fingerprint. A trace is composed of a sequence of statement identifiers and
platform signature information. The signature of the platform is needed only for those instructions that depend
on interactions with the computational environment maintained by the platform. For instructions that rely only
on the values of internal variables, a signature is not required and, therefore, is omitted.

This mechanism allows detecting attacks against code; state and control flow of mobile agents. This way, in a
case of tampering, the agent's owner can prove that the claimed operations could never been performed by the
agent.

The technique also defines a secure protocol to convey agents and associated security related information among
the various parties involved, which may include a trusted third party to retain the sequence of trace summaries
for the agent's entire itinerary. If any suspicious results occur, the appropriate traces and trace summaries can be
obtained and verified, and a malicious host identified.

The approach has a number of drawbacks, the most obvious being the size and number of logs to be retained,
and the fact that the detection process is triggered sporadically, based on suspicious results' observations or other
factors. Other more subtle problems identified include the lack of accommodating multi-threaded agents and
dynamic optimization techniques. While the goal of the technique is to protect an agent, the technique does
afford some protection for the agent platform, providing that the platform can also obtain the relevant trace
summaries and traces from the various parties involved.

3.4 Chained MAC protocol

Different versions of chained MAC protocol exist ([6]). Some of them require existence of public key
infrastructure, other are based on a single key. This protocol enables an agent to achieve full forward integrity.
To utilize this protocol only the public key of the originator has to be known by all agent places. This can be
imagined in a scenario where the originator is a rather big company that is known by its smaller suppliers.

Assume that is a random number that is generated by each host. This value will be used as a secret key in a
Message Authentication Code. The partial result (single piece of data, generated on n

nr

nm th host, and see Section
2), the random seed rn and the identity of the next host are encrypted with the public key of the originator ,
forming the encapsulated message :

)(0iK

nM

{ }
0

1)(,
innnn KiidmrM +=

A chaining relation is defined as follows (H denotes here a hash-function):

{ }
0

000)(,
in Kiidmrh =

())(,,, 11 +−= nnnnn iidorhHh .

When an agent is migrating from host in to in+1:

{ } nknn hnkMii ,0|:1 ≤≤→ + .

Similar schemes are also called Partial Results Encapsulation methods ([9]).

3.5 Watermarking

ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

Watermarking is mainly used to protect the copyrights for digital contents. A distributor or owner of the
content embeds a mark into a digital object, so its ownership can be proved. This mark is usually secret. Most
methods exploit information redundancy. Some of them can also be used to protect the mobile agent data and
code.

One of methods of watermarking is proposed in [5]. A mark is embedded into the mobile agent by using
software watermarking techniques. This mark is transferred to the agent’s results during the execution. For the
executing hosts the mark is a normal part of results, is “invisible”. If the owner of agent detects that mark has
been changed (it is different from expected) than he has a proof that the malicious host was manipulating the
agent data or code.

The paper presents three ways of embedding the mark into the agent:

 marking the code,
 marking the input data,
 marking the obfuscated code.

The mark or marks are validated after the agent returns to its originator.

Possible attacks against this method include:

 eavesdropping: if the data is not protected in any way (e.g. not encrypted) it can be read by every host
 manipulation: the malicious host can try to manipulate either the agent’s code or data to change the

results and still keep the proper mark.
 collusion: a group of malicious hosts can cooperate to discover the mark by comparing the obtained

results.

3.6 Fingerprinting
 Software fingerprinting uses software watermarking techniques in order to embed a different mark for
each user. Software fingerprinting shares the same weaknesses than these of software watermarking: marks must
resilient to manipulation and “invisible” for observers.

The method for fingerprinting was proposed in [5]. Contrary to the watermarking methods, presented
previously, here the embedded mark is different for each host. When the agent returns to the owner, all results
are validate. So the malicious host is directly traced.

In the mobile agent fingerprinting approach, the embedded mark is different for each host. The way that marks
are embedded in the mobile agent watermarking approach can also be used in the mobile agent fingerprinting.

The difference between mobile agent watermarking and fingerprinting is the fact that it is possible to detect
collusion attacks performed by a group of dishonest hosts.

The paper presents three ways of embedding the mark into the agent:

 marking the code: in this case, malicious hosts have the possibility of comparing their different codes in
order to locate their marks.

 marking the input data: the data are usually different for each host, so it is harder to identify the mark.

The procedure is similar to the mobile agent watermarking approach. However, the origin host must know what
each mark for each host and their location. One of possibilities of reconstructing the marks can be catching the
information of the previously chosen places in the results.

Possible attacks against this method include:

 eavesdropping: if the data is not protected in any way (e.g. not encrypted) it can be read by every host
 manipulation: the malicious host can try to manipulate either the agent’s code or data to change the

results and still keep the proper mark.
 collusion: colluding hosts comparing their data or results cannot extract any information about the

mark, because all hosts have a different input data and a different embedded mark.

ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

3.7 Other protocols

Publicly Verifiable Chained Digital Signatures

This protocol allows verification of the agent’s chain of partial results not only by the originator, but
also by every agent place. However, it is still vulnerable to interleaving attacks. This protocol makes it possible
that every agent place that receives an agent can verify that it has not been compromised. This saves computing
power in the case an agent has indeed been compromised because the agent place reasonably can refuse to
execute a compromised agent.

Environmental Key Generation

This scheme allows an agent to take predefined action when some environmental condition is true. The
approach centers on constructing agents in such a way that upon encountering an environmental condition (e.g.,
via a matched search string), a key is generated, which is used to unlock some executable code
cryptographically. The environmental condition is hidden through either a one-way hash or public key
encryption of the environmental trigger. The technique ensures that a platform or an observer of the agent cannot
uncover the triggering message or response action by directly reading the agent’s code.

Itinerary Recording with Replication and Voting

A faulty agent platform can behave similarly to a malicious one. Therefore, applying fault tolerant
capabilities to this environment should help counter the effects of malicious platforms. One technique of such a
kind for ensuring that a mobile agent arrives safely at its destination is through the use of replication and voting.
The idea is that rather than using a single copy of an agent to perform a computation, multiple copies are used.
Although a malicious platform may corrupt a few copies of the agent, enough replicas avoid the encounter to
successfully complete the computation.

4. Cryptographic primitives

We utilized two cryptographic primitives in the proposed scheme:
 a zero-knowledge proof (in a form of an identification protocol)
 a secure secret sharing scheme.

Below is a short description of the protocols utilized.

4.1 Zero-knowledge proofs

Zero knowledge proof system ([13]) is a protocol which enables one party to prove the possession or
knowledge of a "secret" to the other party, without revealing anything about it, in the information theoretical
sense. These protocols are also known as minimum disclosure proofs. Zero knowledge proofs involve two
parties: the prover who possesses a secret and wishes to convince the verifier (the second party), that he indeed
has a secret. The protocol is realized as an interaction between the parties. At the end of the protocol, the verifier
should be convinced only if the prover knows the secret. If, however, the prover does not know it, the verifier
will be sure of it with an overwhelming probability.

The zero-knowledge proof systems are ideal for constructing identification schemes. A direct use of a zero-
knowledge proof system allows unilateral authentication of P (Peggy) by V (Victor) and require a large number
of iterations, so that verifier knows with an initially assumed probability that prover knows the secret (or has the
claimed identity). This can be translated into the requirement that the probability of false acceptance be 2-t where
t is the number of iterations. A zero knowledge identification protocol reveals no information about the secret
held by the prover, under some reasonable computational assumptions.

4.2 Secure secret sharing scheme

A (t, n) threshold secret sharing scheme ([13]) distributes a secret among n participants in such a way
that any t of them can recreate the secret. But any 1−t or fewer members gain no information about it. The
piece held by a single participant is called a share or shadow of the secret. Secret sharing schemes are set up by a
trusted authority - called a dealer who computes all shares and distributes them to participants via secure
channels. The participants hold their shares until some of them decide to combine their shares and recreate the
secret. The recovery of the secret is done by the so-called combiner who on behalf of the co-operating group
computes the secret. The combiner is successful only if the reconstruction group has at least t members.

Definition 5: Assume that secret belongs to the set K and shares are from the set S. A threshold scheme is
a collection of two algorithms.

),(nt

ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

The first algorithm called the dealer,

nSSSKD ×××→ ...: 21
assigns shares to the participants for a random secret Kk ∈ . The participant gets his/her share .
If all share sets are equal we simply say that . The second algorithm (the combiner)

PPi ∈ ii Ss ∈

iS Ssi ∈

KSSSC
jiii →××× ...:

21

takes shares and computes the secret. The combiner recovers the secret only if the number j of different shares is
equal to or bigger than t (). It fails if the number j of shares is smaller than t (j < t). tj ≥

5. New concept of the integrity protection

In the proposed system we assume that there exist at least three parties:
 a manager,
 an agent,
 a host.

The manager can be an originator of an agent. It plays a role of a verification instance in the scheme and creates
initial countermeasures for the agent. The manager also plays a role of a Trusted Third Party.

5.1 Basic idea

The zero-knowledge proof systems enable verifier to check validity of the assumption that the prover
knows a secret. In our system the verifiers would be the manager or owner of agents and, obviously, agents
would be the provers. In the initial phase, manager computes set of secrets. The secrets are then composed into
the agent, so that if manager asks an agent to make some computations (denote them as a function f), the result of
this would be a valid secret. This function should have the following property:

 if we have and than it is computationally infeasible to find such that . 1x)(1xf 2x)()(12 xfxf =

If the secret is kept within an agent, than also the host can use zero-knowledge protocol to verify it. Every
authorized change of agent's state results in such a change of the secret that it remains valid. On the other hand,
every unauthorized change leads to loosing the secret - so in the moment of verification by host or manager, the
agent is not able to prove possession of a valid secret. In our system the host can tamper an agent and try to make
such changes that he will be still able to obtain a proper secret, but the characteristics of function f will not allow
doing this. A possible candidate for the function f can be a hash function. Our approach is a detection rather than
prevention.

6. The protocol

Our protocol is not directly based on the complete zero-knowledge proof, but on the particular
identification system based on zero-knowledge proof. We choose the Guillou-Quisquater (GQ) scheme ([8]) as
the most convenient for our purposes. In this scheme the manager has a pair of RSA-like keys: a public and
a private one . The manager also computes the public modulus

PK

pk qpN ⋅= , where p, q are RSA-like primes.
The following equation has to be true:

)(mod1 NkK pP ϕ≡⋅ ,

where is the value of Euler function of N. The pair)(Nϕ),(NK P is made public.

6.1 The initial phase

The initial phase has three steps:
1. The manager computes set of so-called identities, denoted as and their equivalences denoted as

. It does not matter how is obtained if it is obvious for all participants how to obtain from

. The pairs (,) are public and can be distributed among hosts. The manager computes a

secret value for each :

pID

pJ pJ pJ

pID pID pJ

pID

NJ kp
pp mod−=σ

The σp is a secret that will be "hidden" in an agent.

ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

2. The σp should be “composed” or “built” into an agent. To do this we utilize the Asmuth and Bloom
secure secret sharing scheme ([13]). The manager randomly chooses m prime or co-prime numbers
(called public modulus):

mjj pppmjp <<<<=,,...,2,1, 0 .
They are publicly known. Then the manager (playing a role of a dealer in the secret sharing scheme)
instead of selecting at random an integer s, such as

∏
=

<
t

j
jps

1

he computes it, preserving following conditions:

pps σ≡0mod
and

∏
=

<<
t

j
jm psp

1

After computing s the manager creates also appropriate shares:

ii pss mod= .
Then, the shares are composed into agent and the rest is distributed among the hosts via a secure
channel.

1−t

3. The manager now needs to compose the shares into an agent in a way that when the agent is in a proper
execution state, he is able to obtain from his code/state variables the correct shares. Since the agent is
still a computer program he can be described as a Finite State Machine. So the shares can be connected
to a certain state in which the agent currently is: the proper execution states will generate correct shares,
while others not. To create the shares, the hash function, maybe based on some internal variables can be
used. Alternatively, an encryption function with a manager's public key can be used.

Manager

ID, s4 ID, s1ID, s6ID, s5

Fig. 1 Distributing ID and shares to hosts

ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

6.2 The first scenario: a host validating an agent

The figure below shows general steps of situation that a host checks that just migrated agent is valid.

Fig. 2 The verification of an agent’s integrity

1. The host wanting to verify an agent's integrity sends him his share . hs
2. The agent creates the rest of the shares from his code and the execution state. He recreates the secret

(playing a role of a combiner for the Asmuth and Bloom secure secret sharing scheme) by solving the
following system of equations:

11
mod ii pss ≡

……

titi
pss mod≡

This system has a unique solution according to the Chinese Reminder Theorem. The agent computes the
secret σ and uses it for the rest of the scheme, which is a zero-knowledge proof based identification
protocol.

3. The agent sends the host a challenge: a number computed based on a random value r, { }1,...,1 −∈ Nr .
It is computed as following:

Nru PK mod≡

4. After receiving the challenge the host chooses a random value { }Nb ,...,1∈ and sends it to the agent.
5. The agent computes next value (v) basing on the number from the host and on agent's secret value σ:

Nrv b modσ⋅≡

6. The host uses information received from the manager, to obtain and verifies if v is a proper
value. To validate the response from the agent, the host checks if

pID pJ

NuvJ PKb
P mod≡⋅

If the equation is true than the agent proved that he knows the proper secret and neither his code nor
execution state were changed.

The manager can compute many identities, which may be used with different execution states. In that situation
the agent should first inform host which identity should be used, or host can try to validate the received value v
for all possible identities. This 2nd part of this protocol, starting from the agent sending a challenge to the host,
can be repeated to minimize the probability of not detecting any manipulation in the agent's code.

ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

6.3 The second scenario: securing the data obtained by an agent

A similar scenario can be used to provide integrity to the data obtained by the agent from different
hosts. A malicious host could try to manipulate the data delivered to agent by the previous hosts. To ensure that
this is not possible, the agent can use the zero-knowledge protocol to protect the data. For each stored data d,
agent can choose at random and compute { 1,...,1 −∈ Nr }

Nrv d modσ⋅≡

Then manager can verify by computing and comparing:
NuvJ PKd

P mod≡⋅ .

That way for every received data d the agent would have a unique "proof" that the data was not manipulated.

7. Security of the proposed scheme

The proposed scheme should be used with more that one identity (). This would make possible to
manipulate the code and the data very hard. The best approach is to use one secret for each host.

pID

We assume that the malicious host is able to read and manipulate an agent's data and code. He can try to obtain
from an agent's execution state the proper shares. He can also try to obtain a proper secret and manipulate the
agent's state and variables in a way that the obtained secret would stay the same. But he does not know other
secrets that are composed into the agents, also he does not know more shares to recreate those secrets, so, any
manipulation would be detected by the next host.

Also even when host is able to recreate the current secret, he is not able to manipulate the data that was obtained
by the agent earlier from other hosts. Since he cannot produce a valid secret σ for given data d, he is not able to
forge the v, the way that using a zero-knowledge proof would not reveal the changes. The proposed solution
fulfills the forward integrity definition: none of data and corresponding v values can be changed without a future
detection by the manager.

The protocol is not able to prevent any attacks that are aimed at destroying the agent's data or code, meaning that
a malicious host can "invalidate" any agent's data. But this is always a risk, since the host can simply delete an
agent.

8. Future work

One area for development is to find the most appropriate function for composing secrets into hosts: the
proposed solution seems to fulfill the requirements, but some evaluation should be done.

One of the possibilities for a future work would be to integrate the proposed solution to some agent security
architecture, possibly one that would also provide an agent with strong authentication methods and anonymity
([18]). Then, such a complex system could be evaluated and implemented.

9. Conclusions

This paper provides description of various protocols and methods for preserving the agent's integrity.
The basic definitions and notions were introduced. The most important mechanisms are overviewed and
discussed. We also propose a new concept for detection of a tempering an agent, based on a zero-knowledge
proof system. The proposed scheme secures both an agent's execution state and internal data. The system
requires some additional research and development work but it seems to be a promising solution to the problem
of providing agent with effective countermeasures against attacks on the integrity.

Bibliography
[1] Algesheimer J., Cachin Ch., Camenisch J., Karjoth G.: “Cryptographic Security for Mobile Code”, IBM
Security Research, 2000.
[2] Alves-Foss J., Scott Harrison S., Hyungjick L.: “The Use of Encrypted Functions for Mobile Agent
Security”, Proceedings of the 37th Hawaii International Conference on System Sciences, 2004.
[3] Burmester M., Chrissikopoulos V., Kotzanikolaou P.: “Secure Transactions with Mobile Agents in Hostile
Environments”, in E. Dawson, A. Clark, and C. Boyd, editors, Information Security and Privacy, Proceedings of
the 5th Australasian Conference ACISP 2000.
[4] Corradi A., Cremonini M., Montanari R., Stefanelli C.: “Mobile Agents Integrity for Electronic Commerce
Applications”, Information Systems Vol. 24, No. 6, pp. 519-533, 1999.

ENIGMA 2005 - IX Krajowa Konferencja Zastosowań Kryptografii, Warszawa, 30 maja - 2 czerwca 2005

[5] Esparza O., Fernandez M., Soriano M., Munoz J.L., Forne J.: “Mobile Agents Watermarking and
Fingerprinting: Tracing Malicious Hosts”, DEXA 2003, LNCS 2736, Springer-Verlag 2003.
[6] Fischer L.: “Protecting Integrity and Secrecy of Mobile Agents on Trusted and Non-Trusted Agent Places”,
2003.
[7] Hohl F.: „Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts”. In Mobile
Agents and Security, volume 1419 of LNCS. Springer-Verlag, 1998.
[8]. Guillou L.C., Quisquater J-J., "A practical zero-knowledge protocol fitted to security microprocessor
minimizing both transmission and memory", Lecture Notes in Computer Science on Advances in Cryptology-
EUROCRYPT'88, 1988. ISBN:0-387-50251-3.
[9] Jansen W.A.: “Countermeasures for Mobile Agent Security”, NIST publication.
[10] Jansen W.A., Karygiannis T.: “NIST Special Publication 800-19 - Mobile Agents Security”.
[11] Kulesza K., Kotulski Z., “Decision Systems in Distributed Environments: Mobile Agents and Their Role in
Modern E-Commerce”, w: A. Łapińska, [ed.] Informacja w społeczeństwie XXI wieku, Wydawnictwo
Uniwersytetu Warmińsko-Mazurskiego, Olsztyn 2003, ISBN 83-89112-60-4.
[12] Oppliger, R.: “Security technologies for the World Wide Web”, the Computer Security Series, Artech
House Publishers, 2000.
[13] Pieprzyk J., Hardjono T., Seberry J.: “Fundamentals of Computer Security”, Springer-Verlag, Berlin 2003.
[14] Sander T., Tschudin Ch. F.: “Towards Mobile Cryptography”, Proceedings of the IEEE Symposium on
Security and Privacy, 1998.
[15] Sander T., Tschudin Ch. F.: “Protecting mobile agents against malicious hosts”. In Mobile Agents and
Security, volume 1419 of LNCS. Springer-Verlag, 1998.
[16] Vigna G.: “Protecting Mobile Agents through Tracing”, Proceedings of the 3rd ECOOP Workshop on
Mobile Object Systems, Jyvälskylä, Finland, June 1997.
[17] Vigna G.: “Cryptographic traces for mobile agents”. In Mobile Agents and Security, volume 1419 of LNCS.
Springer-Verlag, 1998.
[18] Zwierko A., Kotulski Z.: “Mobile Agents: preserving privacy and anonymity”, Proc. Intern. Workshop on
Intelligent Media Communicative Intelligence, Warszawa, September 2004, Lecture Notes in Computer Science
3490, Springer, Heidelberg 2005.

ARTYKUŁ RECENZOWANY

