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Wave pulses in two-dimensional randomly stratified

elastic media

Z.. KOTULSKI (WARSZAWA)

IN THE PAPER the propagation of the planar wave pulses in a two-dimensional randomly stratified
elastic medium is considered. Two cases: the plane and anti-plane deformations are studicd. The
problem is described by means of the transition matrix method. In both the cases the transition
matrices are obtained and the equations for the wave ficlds reflected from and transmitted through
the randomly stratificd elastic slab are derived. Finally, the law of large numbers for the product
of random matrices is applied to obtain the effective material constants necded for the description
of the elastic wave pulse in the homogenized medium.

1. Introduction

ELASTIC WAVE propagation in stratified media has been widely studied in the
literature [4, 10, 11] in the context of mechanical and geotechnical applications.
Also some elements of structures are segmented in such a way, that they can
be considered as stratified waveguides (see e.g. [5]). Among various methods of
the analysis of the waves in the stratified media, the transition matrix method
is one of the most effective ones. The method, introduced for the investigation
of the harmonic surface waves in deterministic stratified media [17, 21, 24] has
been applied in the cases of planar volume harmonic waves in elastic media [6,
71, harmonic elastic waves generated by space-distributed sources [8] and waves
in stochastic stratified media [2, 25]. The transition matrix method has been also
adopted for the investigation of the propagation of wave pulses in segmented
elements of structures, both deterministic [1, 18] and stochastic [15, 16].

In this paper we consider the wave pulses in a two-dimensional elastic stratified
medium. The results obtained are a generalization of the results obtained in paper
[15], where a one-dimensional medium was considered. On the other hand, this

paper extends the model of two-dimensional harmonic waves, considered in [12,
13, 14], on the non-stationary phenomenon of wave pulses.

The schedule of the paper is the following. In Sec. 2 the fundamental equations
and notation used through the paper are introduced. In the following sections we
give the elastic wave equation for the planar elastic wave pulse and derive the ex-
pressions for the transition matrices for the anti-plane (Sec. 3) and plane (Sec. 4)
state of deformation. Section 5 contains the wave equation in a layered medium
written in the transfer matrix language. The main result of the paper 1s contained
in Sec. 6, where, by applying the law of large numbers for the product of random
matrices, we obtain the effective material parameters for the homogenized elastic
medium. Section 7 summarizes the results ot the paper.




126 /. WOTULSKI

2. The governing equations in homogeneous medium

Consider a non-harmonic linear elastic wave propagating in the homogeneous
isotropic medium. In such a case the equations of motion of the medium consti-
tute the following system of partial differential equations (ct. [19]):

(2.1) 0ot = Tijj s
: = 1,2,3, where o;; 1s the stress tensor, defined as
(22) O, — (ui,j + ‘U,j,i) + /\uk,k.éz—j

(double indices denote summation from 1 to 3). In the above equations A and
are the elastic Lamé constants and p 1s density of the medium.

Let us assume that the elastic medium has a discontinuity surface (plane). We
introduce such a system of independent variables that this plane 1s perpendicular
to the z-axis (z;-axis) of coordinates. At the discontinuity plane (being the In-
terface between two homogeneous and isotropic materials) the wave field must
satisfy two following continuity conditions (see [9]): continuity of the displacement
vector u and continuity of the traction vector t.

3. The anti-plane state of deformation

Consider the simplest two-dimensional problem of elastic wave propagation
of the transversal, horizontally polarized plane wave. We assume that the dis-
placement of the medium has the following form:

(3.1) u= (O, 0, u(zq, x, t))T ,

that is, it is perpendicular to the plane z, z;. In such a case the elements of the
stress tensor are:

g11 = 012 = 091 = 093 = 033 = U,
Ju
(3.2) o13 = 03] = M——-—axl ,
Ju
023 = 032 = L3
0:1,‘2

Substituting these particular stress tensor components mnto the system of equa-
tions (2.1) we obtain a single non-trivial governing equation:

0%y 0% u 0%y

3.3 U 4 uZl =28
-5) foat Tl T g
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Using the given form of the stress tensor (3.2), we obtain the coordinates of the
traction vector in the following form:

(34) 71 = 7'2=0,

(3.5) T =T3=013F M

From the formulae (3.2) and (3.5) we can obtain the system ot equations for two
mechanical fields v and 7, remaining continuous at a discontinuity plane:

Ju 1
(36) 5‘;‘; —_ ;T,

_ )2 12
(3.7) il = O + pf-;(-)--%- ...

8.’131 ¢ Otz 0:};2

To solve the system of Egs. (3.6)—(3.7) in a non-stationary case, we calculate its
Fourier transform with respect to time ¢ and spatial variable z, (the correspond-
ing transformation variables are w and £, respectively). We obtain the system

of equations for the transformed functions u and 7 In the following form (we
replaced z; with z):

du 1
3. — = —T
(3:8) dz 1L "
dr _ R
(3.9) o = (/,L/Cz — sz) u.
In the matrix form the system of Egs. (3.8)-(3.9) can be written as
d
. —i=Ma
(3.10) - u u,
where, by definition,
A 0 1
(3.11) i= |- and M = M(w) = I
T
1h® — pw?® 0

To solve the wave problem described by Eq. (3.10), we complete it with the fol-
lowing boundary condition:

ok, w
(3.12) u(0,k,w) =uyp(h,w) = ZO( ) :
| To(k,W)

representing jointly the incident wave pulse reaching the plane * = 0 and the
pulse reflected from it. Then the value at z = L of the solution of the wave
equation (3.10), satisfying boundary condition (3.12), can be represented as

(3.13) u(l, k,w) = T(L)tg(k.w),




128 Z,. INOTUT,SKI

where
(3.14) T(L) = exp{M(w)L}

1s the transition matrix through the layer of thickness I, for the elastic wave in
anti-plane state of deformation. Construction of the transition matrix requires
the knowledge of the eigenvalues of the system matrix M of the wave equation
(3.10). Solving the characteristic equation

1
(3.15) det {M — pld} = det I = - (/cz — sz/,u) = 0,

;L/\.Iz — sz —P

we obtain the following eigenvalues of the system matrix:

(3.16) P1r =P =\ ke — ow?/p, pr = —p = —\/k%— o/ .

According to the following Lagrange interpolation formula (see [23]):

(M — poId _ M — pId
L= 2l ey + 220D 1,
P1— P2 P72 — P1
we obtain the explicit expression for the transition matrix exp{M(w)L} in the
following form:

(3.17) exp{ML} =

hol sh pL

n

(3.18) T(L) = exp{ML} = / iwp |,
upshpl chpl

where ch and sh are, respectively, the hyperbolic cosine and sine functions.

4. The plane state of deformation
In the second possible form of planar wave the displacement vector is

1
(4.1) u = (ul(:lrl, xp,t), uz(xy,9,1), O) .

Then the stress tensor has the following elements:

(4.2) 013 = 023 = 031 = 033 = ),
Oy )ty
4.3 = () + 21)— + \—=
( ) 71l ( /{)0.7)'1 0:1:2
Juy  Jus
4.4 = = | —+ —,
(4.4) 012 = 021 = | (01:2 (‘):1:1>
Ju p) Ju 1
(45) 022 = (’\ + 2/1’)'"“" + A —,
()sz ().[1:1
0u1 0“2)
( ) v33 (011 0:1?2 ’
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and the traction vector has the following coordinates:

011,-1 ({)’l.[f.z
(4-7) == /1)0:1:1 Jxy
B B Juq Ofu,z>

(4.8) Ty = 021 = I (8:1:2 + 9z, )
(49) T3 = 0.
In this particular case, the non-trivial governing equations (2.1) can be written
dsS.

87’1 82u1 87’2

4.1 —_— = —_
(+.10) gz, © OF
(4.11) 0ty 0%y A ?_:L 4u(X + 1) 0%uy
o Ox; Yy (A +2u) dzy (N +2p) Jas

From Egs.(4.7), (4.8) for the traction vector we obtain the pair of equations
connecting stresses and displacements,

O’IL1 1 A a'uz
dr1  (A+20) ' (N 2p) Dy
aUZ 1 Ju |

Jzy  p Jxy

(4.12)

(4.13)

|
|
N
|

Equations (4.10)—(4.13) describe completely the wave pulse in elastic media 1n
the plane state of deformation.
After the Fourier transformation with respect to time ¢ and spatial variable z,

the system of equations (4.10)-(4.13) becomes the following system ot ordinary
differential equations (also in this case z1 = z):

di 1 A

(4.14) — = oz T R

(4.15) %%3 = -3;%“2 — ik,

(4.16) fg = —wplly — ik,

(4.17) -‘% = ——z’k-(--j\-—:{—_)-\—-:z—}—;j-?] + (kz%é%—%ﬁ% - wzg> iy .

It is seen that the wave process depends on the following five material parameters
(similarly to the stationary harmonic case — see [14]):

A

(4.18) a = m :
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410(A + p)
4.19 = T
( ) ﬂ (/\ + 2/1) ’
1
1

and density p.
Using the above symbols, we can rewrite the system (4.14)—(4.17) in the ab-
stract matrix form analogous to (3.10) where, by definition,

0F 0 — ko K U
~ | up | =k 0 0

(4.22) U — ?1 9 M T ___w?.g 0 O _ ?A
T2 0 4k%3 —w?o —ika 0O

To find the transition operator (matrix) for the system of equations we must
know the eigenvalues of the matrix M. Solving the characteristic equation:

(423) det(M — [)Id) == p4 + ])2 (uJZQ(HJ + I}) + 21&'2((} — 2/3!}))

+w4h:7702 — w2k2Q (azfr] + 4/3Kkn + f{i) + &1 (az + 4;’35‘:) = U

and substituting the definitions of the parameters, we obtain

(4.24)

where the parameters Ay, Ay and A3 are defined by

(4.25) Ay = 20— a =1,
A+ 3
4.26 Ay = .+ - N
A+ 1
4.27 s =0o(k—1n)=0——"77—.
(4.27) Az = o(k — 1) 0T 20
In an explicit form, the eigenvalues are
k% — w?p

T

(4.28) P1.2

Y
(4.29) U [R2(A + 2p1) — w20
| #3.4 A+ 2k
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The transition matrix for the wave in the plane state of deformation can be
calculated according to the Lagrange interpolation formula, analogous to (3.17),
(see [23]). The elements of the transition matrix have the following form:

_ 211k? 21k? _
(430) Tll(L) — wzg ch 1 L + (1 — wzg ) ch '])3[_«,
(4.31) Tia(L) 1(w?o — 21k2)k shpy L 2f\/ A —wro/(A + 2u) pkshpsl
. 12 . T e e ’

\ﬁcz — w2/ ptw?p w0
L26h 1. [ 22— wio/(N+ 2u)shpsL

432) Ty = O+ 21)shisl,

ke — wip/pw?o it

k
(433)  Tu(l) = - —— (chpiL = chps L),

\/kz — W Q/,u ;LL sh p L
(4.34) To (L) =

N mz(w H — ;,/1/ z)k Sh 13 1

/Az —wio /(A + ) weo

Y

2k me
(435) T22(L) — (1 — . ) ch J22! L+ & —ch ])3L

W ujzg
Lk
(4.36) T23(L) — . (Ch 1 L — ch 13 L)
\/ 162 —w?o/pshpr L k?sh ps .
(437) T24(L) == —---—--—-—-———-—-—-i——————--—-———--—-—-m -+ :;_________]3_:}__________________ ’
0 JRE—wio /(A + 21)weo

. 4\/ ke —w?o/ szQSh Py L (w 0 — 2Lk 2)25h 131

(4.38) T6W(l)=——7"5—"- —_—
i \//2 20 /(N + 2p)wep
21k?

(439) T32(L) = N (1 — ) A:[L(Ch P3 [, — Ch Pl L),

w?o

21k? | 210k
(4.40) Ts3(L) = P chpy L + (l _ o ) ch p3 1,

w?p w2
20 ]‘72 o wzg//“* l‘l‘?' sh ])1L l(u.) ) — 2/[A )/ sh 13 L.
(441)  Ty(l)= +—— G R
WP \/Izmu, 0/(N+ 2u)w?p
241k i ,
T41(L) = 21 (1 — ﬂé ) /i;‘;l(Ch D3 [, — ch 1 L),
Weo
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(wzgt-_—- 241 A‘z_)zsh 1 L

4+ /K% — W2p /(N + 2p0) 1P k%sh s L
(4.43) T42(L) = — =i = B e —— T —

V2
\//.:2 — w2/ ppwp “wr e

(¢ 2 ) — 2 k‘z ksh pq L 21 [uz — w2; A+ 2/[ [tlm Sh 2 L
(4.44) Tq3(L) = _WwTo = 2ukT)kshp L 2ty /( ) 3

—_— T
\k? —w?p/pw?p e

21k? 2(1h?
. = |1 — hp L
(4 45) T44(L) (1 wzg ) ciipyl + wzg

b,

chps L.

5. Elastic waves in layered media

The transition matrices obtained 1n Sec. 4 enable us to describe the transition
of the two-dimensional elastic wave through a multi-layered medium. In such a
case, knowing the transition matrices through individual layers, we can obtain
the transition matrix through the whole stratified medium as a product of the
matrices.

The transition matrix T(-) enables us to express the wave field u,

or u= | .“ |,

(5.1)

at any point x = L € B 7 in a homogeneous medium, provided the boundary
condition ug = u(0) at z = 0 1s known in the form (3.13).

Consider at the moment the multi-layered medium (slab) built of N layers of
elastic materials, with thicknesses A, 7 = 1,2,..., N. Assume that the stratified

medium 1s surrounded by the homogeneous elastic environment, at * < 0 and
N

¢ > L =) Aj. Since the wave field u must be continuous at the interfaces of
7=1

the layers 1n the stratified medium, we can express the wave, generated by some

boundary conditions ug at @ = 0, after it reaches the point L, in the form

(52) ﬁ(L) — TN(AN)TN-—-l(AN—l) . oa Tz(;_\z)Tl(Al)fl(),

or, In a more convex form, by

N
(5.3) u(r) = [ T,(1,)uo,

1=1

where ug is the vector describing the incident and reflected wave, u(L) is the
vector of the transmitted wave, T;(-) 1s the transition matrix through j-th layer,
for j = 1,2,..., N, depending on the material parameters of the layer.
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In the above equation all the material properties of the multi-layered medium
are completely described by the 4 x 4 matrix 7, being the product of the transi-
tion matrices through the individual layers and interpreted as a transition matrix
through the slab built of ¥V layers of homogeneous elastic materials,

N
(5.4) T =] T;(4)).

7=1

[et us remark that vector ug describes jointly the (Fourier transforms of)
incident wave pulse (going to the right), and all the reflected pulses leaving the
slab (going to the left), generated by all the reflections at the interfaces of the
layers, measured at the plane z = 0. Similarly, u(L) represents the transmitted
pulses, generated by all the reflections and transmissions at the internal interfaces
of the layers, measured at the plane » = L.

6. The limiting case — homogenization

Assume that the slab is built of 2/i" layers with thicknesses [{(v),[2(7), ...,
L (7), where [;(7), ¢ = 1,2,...,2K are random variables. In the above v € I
is an elementary event and ([, F,P) i1s the complete probabilistic space. As-
sume additionally that the material parameters of the layers and their thick-
NESSES (Q2j——*l(’7)v ’\Zj-—-l(‘yi)v /1’2]'—-1(7)3 l2j-—-—-1(7)v 92.}'(7)7 /\2j(ﬁ/)v /*’I2j(ﬁ7)t~ le(F}E))
are, as the vector random variables, independent and identically distributed for
7 =1,2,..., k. Moreover, we assume that the thicknesses of the layers have the

following particular property:
Lyj1(7) L2,(n )>

. 1. 1(~). 5. = _
(6.1) (l2j—1(7), 12,(7)) ( > 1 5 7

for ;j = 1,2,..., Ik, are independent, identically distributed two-dimensional ran-
dom variables with the given mean values:

(6.2) E{ly (MY =1L  E{ly()}=1%

In this particular case the periodically repeated segments of the bar are built
of the couples of the elements with lengths {2, _1(v),l2;(7), 7 = 1.2,..., k. For
such segments the transition matrices M, {7y) are the products of the pairs ot the
transition matrices through the individual layers,

(6.3) M;(7) = Toj—1(l2j-1(YN)T2;(l2;(7)), 1 =1.2,..., K,

and the Eq. (5.3) for the Fourier transform of the amplitudes takes the following
form (2K = N):

AN
(6.4) u(L) = [ M;(v)uo,

j=1
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T e, o e e . e e . - e P P e oo gyl 0o~ U Sl S oy

N
where L = L(y) = ) [;(7).
=1

To study the asymptotic behaviour of the randomized equation for the ampli-
tudes of the waves, we apply the law of large numbers tor the products of random
matrices obtained in [3]. This theorem can be written in the following form.

Consider the sequence of the products of real random matrices

h
(65) P (7) — H Mj,]\' (7)

s=1

It is assumed that for K tending to infinity the matrices M v can be represented by

1 .
(6.6) Mjr(v) = Id+ =Bk (7) + R;(h,7),

where B, () for 3 = 1,2,..., K are independent, identically distributed random
matrices, integrable with respect to probability measure P and |R;(K,7)| = o( K1)
for large K. Under these conditions, the law of large numbers holds true and

(6.7) lim Pr(y) = exp (LB, x(7)}).

I — o0

in the sense of convergence in distribution of all the vectors obtained by multiplication
of the random matrix by an arbitrary deterministic vector.

The presented method makes 1t possible to obtain the eflective transition
matrices in both cases of the anti-plane (Sec.3) and the plane (Sec.4) state of
deformation. Let us begin the considerations from the more complicated, second
example.

To analyze the limiting case of Eq. (6.4) when A tends to infinity, we expand, at
the beginning, the transition matrix defined in (4.30)-(4.45) under the assumption
(6.1) on the thickness of the layers, with respect to the powers of 1/ A":

1 0 0 O
L,\ |0100
(6.8) T, (7{') 10010
0 0 0 1
0 —tha; K 0
L. | —ik 0 0 I
+ I\ _wzgj 0 0 ] + 0 (7‘;:> .

O 4k2[3]~ — wzgj —iha; O

Multiplying the matrix T;(/ ), corresponding to the transition matrices with odd
indices by Tp(L;) — with even indices, we obtain, that the matrices B; required
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Ty Loy e .Y . el e P el e "W o0y . e e sy ey e e et

in formula (6.7) are defined as (we have changed the numeration of the random
variables being the material parameters and the thicknesses of the layers accord-
ing to the following rule: by;_1 = b}, by = b;’f for any parameter (b1s o, 3, K, 1,0
or L)and 3 = 1,2,..., i, so the parameters with i1dentical superscripts — 1 or 2
— have identical distributions):

Ll A1 7] 272
0 — 1k (QJ-LJ-+QJ-L]-)
—ik (L}+12) 0
(6.9) B, =
2 171 27172
—W (QJ-LJ- + QJ-L]-) 0
2 | 32172 2 1 71 27172
0 42 (BILY + 212) — w? (o} L) + 02 12)
A7 2772
0 Nt L+t
NS 2
—k (af} L} + afL?) 4,

The common average value of the matrices B; 1s

0 —ik (ol Ll +a%L?)
(6.10) E{Bj}= 2 - 5 o

0 42 EB L 4 2L D E (o L + 0212

E(riLY + k215 0

10171 2772

0 E(y; Ly + n7l7)
O — N F(L} + L%)

—ik (oL} + a2 L%) 0

where in the above formulae the parameters and the thicknesses are random
variables with distributions identical tor all couples of layers.

The matrix e18:} is of the form analogous to (4.30)—(4.45) where, instead of
the parameters a(v), 3(7), k(7v), o(v), n(7), p1(7v), p3(7), being random variables,
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one has the effective constant parameters a¢ft geft et peft peff p?ﬁ, pgﬁ, defined
as

E{a' (LY (y) + a?(1)L2(7) }

11 efft _
(6.11) a -
E {51(7)[,1(7) + 52(7)L2(7)}
6.12 eff _ NPT
(6.12) 3 : |
E{R G)LIG) + 12()12()])
1 eff _ L N AR S
(6.13) ” , |
L {U](V)Ll(’?) + 7]2(7)[,2(7)}
.14 eff _ _ \ T AT T AR AT
(6.14) 7 ; |
2 {01(’7")[/1(7) + 02(7)[,2(7)}
6.15 eff _  \Z NPT ST
(6.15) 0 L |
where
/\1 /\2
6.16 - 7 T
( ) 0 (/\1 + 2[1,1) ? 8% (/\2 + 2}12) Y
(6.17) gl = 4t (AT + pt) 32 = 4115 (\* + 11?)
| (AV+2ut) (A2 + 242)
! 1
6.18 — 2 _
( ) 5 ()\1 + 2;1,1) ’ h (/\2 + 2152) 7
I 1
(6.19) 771 - ;L___l_ : 7]2 _ ;—2_ |
(6.20) L =1L"+17
and
(6.21)
with the parameters AS" and AS! which are defined as:
Aeft 4 3, cff
ft __  eft/ .eff ffx _ eff {
(622) A% — QC (h,e + ,,76 ) — Qe m |
(623) Agﬂ — Qeff(ﬁ;cff B 77cff _ chf Aeft /LCff

HCH(’\CH + Z[LCH) '

Similarly 1n the case of anti-plane deformation, the transition matrix through
the individual layer (3.18) can be written in the form (6.6),

1
o 1 (l) =[]+ L | o (L),
\ \ sz__ng 0 \
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The matrix B; is, in the case of the anti-plane wave pulses, of the form

0
(KLY )+ 12 E2()) k2= (' (DL (1) + 02 (1) L2 (7))
L'(v) |, L°G)

() pe(y)
0

(6.25) B, =

By averaging the matrix B, we can see that the eflective transition matrix depends
now on three parameters: kT and p°ft) defined in (6.14), (6.15), and on the
additional parameter ;¢f, defined as:

1} .

The transition matrix has the form analogous to (3.18) with suitable eflective
parameters, where

(6.27) peﬁ = \/k? — petly2/ett

As a conclusion of the above considerations we can say that the elastic homo-
genized medium (obtained by the homogenization procedure from a randomly
stratified medium) conducting wave pulses 1s completely described by six param-
eters; oft, geff peff peft cft and o defined in (6.11)—(6.15) and (6.26).

(6.26) 1

7. Closing remarks

In the paper we have considered the model of stratified medium, that 1s the
slab built of a number of isotropic, homogeneous elastic layers. Such a medium,
globally, is both anisotropic and nonhomogeneous. After the presented averaging
procedure, it becomes homogeneous but remains anisotropic (locally and globally
transversally isotropic). The elastic properties of such a medium are described by
a tensor, whose 5 elements are independent (see [22]). However, as we have seen
from the considerations of the previous sections, to describe the elastic waves
in the case of the plane state of deformation we need four elastic constants,
while in the anti-plane state only two elastic constants are necessary (one of
them — different than in the plane state). This statement remains valid both 1n
the dynamic nonstationary case, studied in this paper, and n the stationary one
(see [14]).

The above considerations were performed analytically. Solution of the equa-
tions, that is calculation of the resulting waves (reflected and transmitted) gener-
ated by some incident pulse needs numerical calculations. The most eflective way
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of doing this 1s calculating the inverse Fourier transform using the Fast Fourier
Transtorm algorithm (see [20]). Eftective results in this field require precise spec-
ification of the incident pulse (that 1s, its shape, caused by the form of the source
generating the disturbance).

Let us finally remark that the model of stratified medium considered in this
paper 1s an 1dealization of a real physical medium. Therefore it neglects many
eflects observed i1n nature (like dissipation of energy or dispersion of waves in
layered media) and needs some modifications. However, the improvement of the
model of two-dimensional stratified medium is connected with the growth of the
dimension of the system of the corresponding partial differential equations and
1Is connected with numerical difhculties.
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