Arch. Mcech_, 45, 5, pp. 537-562, Warszawa 1993

Random walk with finite speed as a model
of poliution transport in turbulent atmosphere

Z. KOTULSKI (WARSZAWA)

IN THE PAPER we apply the model of random walk with fintte speed to the description
ol the pollution transport in the atmosphere. We consider one, two and three-dimensional
models. We obtain the systems of equations for t(he conditional probability distribution

funcions ol particle’s locations 1n space and time. They are convenient to describe
the evolution of the probability distribution of the range of the polluiant emitted from

the source, 1ts distribution over the earth surface and its spatial distribution. The

sedimentation (absorption of the particles on earth’s surface) is taken into account In
the models.

1. Introduction

THE PROBLEM of the pollution transport and its modeling 1s, at present, one
of the most mportant tasks of the physics of atmosphere. This phenomenon
1s a very complicated physical process, depending on a number of factors,
not always comletely 1dentified [8] These factors can be of very different
nature. First of all, the final distribution of the pollutant depends of the kind
of its source (temporal or permanent, concentrated or distributed, more or
less intensive). Secondly, the properties of the motion of air transporting the
pollutant particles (both large-scale, laminar and local, turbulent) have a strong
cflect on their concentration in space and time. Also physical and chemical
properties of the pollutant particles, such as their possible coagulation, absorption
by vapors or rains, sedimentation facility or chemical reactions, can aflect the
transport process. Finally, the properties of the carth surface have an influence
on the sedimentation of the particles and should be taken into accaunt. Studying
the transport process in turbulent atmospherc we must realize all these facts,
in spite of our Iimited abilities of including them 1nto the mathematical models.

Considering the process of the pollution transport in the atmosphere, we are
interested in obtaining some equations describing the mass transfer on a large scale.
[Towever, to obtain such global equations we must start the considerations from the
small-scale behavior of the particles. Unfortunately, we are not able to take into
account all really existing physical phenomena that take place in interparticle
influences. Therefore we must treat the problem 1n a statistical way, assuming certain
rcactions of particles with some probability and, eventually, identifying particular
probabilities 1n the model and comparing the resulting equations of the mass transfer
with experimental results.
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The description ot the ncutral particle flowing through and interacting with some
cnvironmental materials needs, at any time 1, the knowledge of sixvariables: three
position vartables and three momentum variables. In the statistical model we should
know the probability distributions of these variables (see [ 7]). Sometimes it is more
convenient to replace the momentum variable with three equivalent variables: kinetic
energy of the particle and two angular variables specifying the velocity direction
vector. Such a description implicitly permits the particles to have different masses and
velocities and freely change the travel direction.

One of the possible small-scale methods of description of particle motion is
a random-walk concept (see [9]). In the literaturc many different random-walk
models have been proposed to describe the dispersion of particles in inhomogeneous
or unsteady turbulence. In most of them 1t 1s assumed that the flowing particles have
cqual masses. Moreover, some restrictive conditions on their possible velocities and
the movement directions are assumed. For such simplified models the position
variables are sufficient to describe the transport process.

Among the proposed random walk models there are more or less suitable ones o
describe the process of transport of the pollutant particles. Selecting one of them we
need some a prior criteria to distinguish good models from the bad ones.

Several authors apply such criteria to verify their models of random walk. These
quality measures are often very intuitive and sound quite different, but in
mathematical formulation they give the same results (cf. [10]). Choosing the random
walk model we postulate its good large-scale and small-scale behavior. In the large
scale we require the well-mixing condition; that is, if the particles are initially well
mixed, they will remain well-mixed during the diffusion process. In small scale, we
postulate that random walk should reduce to a diffusion-equation model as the
Lagrangian time scale tends to zero.

In many problems the diffusion equation is sufficient to describe the polution
transport process (e.g. the global mass transport or large-scale changes of the
pollutant concentration — see e.g. [ 5, 6]). However, in some problems we must know
the instant of time at which the pollutant reaches a certain area; in such a case the
widely used diffusion equation 1s not suflicient — one needs models where the velocity
of particles 1s taken into account. The random walk processes make 1t possible to
consider also this parameter in the global transport equation.

Let us remark that, in modeling of the real physical phenomena, the final
correctness criterion 1s the compliance of the results deduced from the mathematical
model with experimental observations.

Modeling the process of pollution transport we know that it takes place In
a three-dimensional physical space. Nevertheless, we often use one- or two-dimensional
models to describe such a phenomenon. Applied to real transport process, such
simplified models need some interpretation: the one-dimensional model can describe
a distance of the pollutant particle from the source, and the two-dimensional model
— the distribution of the particles around the source. Only three-dimensional models
can give real traces of the particles and their actual location in space.
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In this paper we consider all these models: one, two and three-dimensional. All of
them are based on the model of random walk process proposed by GG. 1. Taylor and S.
Goldstein where the possibility of sedimentation of the particle (its death) has been
included. Identifying the probabilities of jumps in any direction or imprisoning the
particle at a given point, we can describe the transport process by means of the models
proposed.

2. The model of one-dimensional random walk with finite speed

Our considerations are a generalization of the one-dimensional model of random
walk proposed by G. 1. Taylor and S. Goldstein and presented 1n a transparent way 1n
KAC'S lecture notes [2]. In this section we introduce the problem following thetr
reasoning.

Assume that we have one particle moving to the left and to the rnight along

a straight line. It starts at time ¢ = 0 and goes from point x = 0 in a fixed direction. In
time At it covers the distance Ax,

(2.1) Ax = v,

where parameter v plays the role of finite velocity of the particle. After the jump,
the particle changes its direction to the opposite one with probability aAdt or
continues its motion 1n the same direction with probability 1 — aAt. The location
on the line, of the particle starting from 0, after n steps (that is after the time nA4t), is
S,

To describe this model mathematically we must introduce a specific notation. Let
p{(x) be an arbitrary function. We are interested 1n the evolution of the function

<p(x+ §,)> 1n time (symbol <> denotes the mathematical expectation of
a random variable).

Define the random vanable ¢ in the following way:

1 with probability 1 — adt,
(2.2) & = , .
—1 with probability aAt.

Consider the following sequence of independent random variables with identical
distributions, defined above:

(2.3) Ey, €9y Eqy oy &

n--1-

Assume that the particle starts from point x in the positive direction. Then the change
of location of the particle after n steps 1s

(2.4) ST =vAt(1 + &, 4+ &6+ .. +E,_ 16, 5 -, E26¢)-
If the particle starts in negative direction, the analogous variable is
(2.5) S,= —vdAt(l + &, + 681+ ... + & 16n_ay oy §8) = —8§ ).

We investigate two following functions:
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(2.6) Fh.(x) = <olx + §} >

and

(2.7) Fo.x)=<@(x—5,)>.

Writing explicitly, F(x) 1s

(2.8) Frx)= <@(x +vAt(l + & 4+ 6261 + ... 4 &, 1€n_2y ooy E281)) >
or

(2.9) Fox) = <@x +vAt + vAt(1 + &3 + .. + €4 185 25 oy £2) §;>.

We calculate the conditional expectation of the formula (2.9) with respect to ¢;:
(2.10) Fl(x) =adt <@(x + vAt —vAt(1 + &, + ... + &, 16,25 oy &) >

+ (1 —adt) <@ (x + vAt + vAt(1 + &, + .. + €, 16, 35 -y £3))>

>

Or, In a recurrent way,
(2.11) Fr(x)=adtF, (x 4+ v4t)+ (1 — adt) F _,(x + v4y).

Making the analogous operation for the particle starting in the negative direction we
obtain:

(2.12) Fo(x)=adtF ", _(x —vdt)+ (1 —adt) F,_|(x — vAL),

what, together with the relationship (2.11), gives the system of difference equations for
F*(x) and F (x).
From Eq. (2.11) we obtain
FA00) — Flu (0 _ v(Fiyi(x + vdn) — F'(x)

( ) At v At

+ aF ", _(x + vd4t) — aF",_(x + vA4t)

and, going to the limit for n — oo, At — 0, t = ndt = const, the following differential
equation:
oF* oF ™"
(2.14) —— =V -+ aF - —aF".
ot 0x

Analogously, for F~ we have from Eq. (2.12)
F(x) — F_;::_lﬂ(ic_) _V(E_'E:—l(x + ?Af) — F-, (x))

2.15 AL .ﬁ .- o
( ) At — v At
+ aF ", _(x — vAt) — aF 5,_(x — vAt)
and
oF ~ )~
(2.16) = v 4 aFt - aF -

Ot Ox
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We introduce new functions F and G, defined by
1 1
(2.17) in(F+ + F ), G-:E(F*—F“)-

Function F can represent the probability density function that particle at time ¢ 1s

located at point x provided that it started from point x = 0 in the positive or the
negative directions with the same probability equal to 1/2.

Adding Eqgs. (2.14) and (2.16) results in the following equation:

oF 3G

219 oo

analogously, subtraction of Eq. (2.14) from Eq. {(2.16) gives a supplementary partial
differential equation

2.19) oG _or 2aG
2 ot ox O
By eliminating G from Eqgs. (2.18) and (2.19) we obtain
2.20) 1 0*F B O*'F  2a0F
| var o axt v at

— the telegrapher’s equation (or, the string equation with damping); this i1s the equation
for the probability density function which describes the distribution of the particles

starting from point x = O at time t = 0 1n a symmetric way and travelling along the line
with the finite speed v changing the direction in the manner defined 1n Eq. (2.2).

To solve the problem of particles diffusion on the line, we must complete equation
(2.20) with the i1nitial conditions

OF
(2.21) F(x, 0) = ¢(x), [L] = 0,
ot t=10
describing the initial location of diffusing particles.

To consider the limiting case in Eq. (2.20), we assume: a — o0, v — c0, but 2a/v?
remains constant (the particle makes more and more small, quick jumps):

2.22) 2a 1
: i<

In the limit we obtain the well-known parabolic diffusion equation:

LOF 0°F

Dat  0x*

(2.23)

This means that the random walk with finite speed defined in this section satisfies one

of the required correctness conditions, and the present random walk process can be
regarded as a good model of the transport process of pollutant particles.
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3. The one-dimensional model of the transport with sedimentation

To make the description of the particles diffusion more realistic, let us assume that
after some travel time the particle 1s absorbed by the environment and stops the
diftusion. In the model of random walk this fact can also be taken into account. Let us
assume that the particle starts from point x = 0, as in the previous section, goes in
a fixed direction (to the right or to the left) or remains at that point never leaving it. At
time At 1t has covered the distance Ax. where

(3.1) Ax = vAt.

After the jump the particle changes its direction to the opposite one with probability
a At, sediments at its new location with probability b 4t or continues the motion in the
previous direction with probability 1 — (a + b) At.

Similarly to the previous section, to describe this model mathematically we
introduce the following notation. Let S, be the location of the particle after n steps
(that 1s after the time nAt). Let ¢(x) be an arbitrary function. We are interested in the
evolution of the averaged function ¢, <@(x + S )>. It {x)is the Dirac delta function,
then <@(x + §,)> represents the probability density function of location of the
diffusing particle.

Define the random variable ¢ in the following way:

1 with probability 1 - (a + b)4t,
(3.2) e=<\ —1 with probability  adrt,
0  with probability b4t

To describe the walk of the particle let us consider the sequence of independent,
identically distributed random variables with the distribution defined in Eq. (3.2),

(3.3) Ers £y s e 1.

Assume that the particle starts from point x in the positive direction. Then the
change of location of the particle after n steps is

(34) S",.i; = VAt(l + & + £81 + ... + En 180 2, --- ,8281).
When the particle starts into the negative direction, the analogous variable is

(3‘5) S; — —'VAt(l + 61 + EZEI + _I_ En— lgnv—}: 56281) — *S—:

The last possible solution, the particle remains in the starting point, gives the variable
describing its location 1n the following form:

(3.6) §¢ =0

Substituting the three expressions for the location of the particle, we obtain the
following versions of < ¢@(x + S,)>:
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(3.7) Flix)= <eplx+ S, )>,

(3.8) Fo(x)= <opx+ 85,)> = <px —8!)>,
(3.9) Fo(x) = <p(x + SH> = <p(x)>.
Explicitly, F(x) 1S

(3.10) Flx) = <p(x + vAt{l -+ &, 4 680+ .+ &, 18, 95 n £26,)) >,
or

(3.11) Flix)= <@x +vAt + vAL{l + &5 + ..+ &, 18, 25 oy £9)E)) >

Calculating the conditional expectation of the formula (3.11) for F (x) with respect to
£, we obtain

(3.12)  F(x) = adt <@(x +vAt — vAt(]l b e+ 4 6, 16, 79 o £3))>
+ (1 — (a4 b)A) <plx+vAt + vAt{l +e,4+ .. +&, &, .7 . E3))>

+ bAt <o(x + vAat)>,
Or, 1n a recurrent way,

(3.13) Fl{x)=dadtF | (x +vA) + {1l —(a + b)A) F ', (x + vAi)
+ bAt Fo(x + vAt).

Performing this operauon for the particle starting 1n the negative direction we obtain
the recurrent equation for F ,(x),

(3.14) F (x) = adtF", _(x — v4t) + (1 —{a + b)A) F , (x —vA4t)
+ b4t Fo(x — vAt).

Analogously, the recurrent equation for the function F(x) describing the behavior of
the sedimented particle 1s

(3.15) Fo(x) = F_\(x)

These three formulae constitute the system of difference ecquations and give a complete
characteristics of the diflusion process (random walk).

Analogously to the considerations of the previous section, we can consider the
continuous version of the equations for F !(x), F ,(x) and F)(x) (the conditional
probability density functions). From Eq. (3.13) we obtain

Fi(x)y—F,_ F7, (. Aty — F
a6 o) i x) _ ,E.,(_,_ﬁ____;(x:?&)__ﬂ_____d____ D L aF (x4 A
V

e

—(a+ b)F ! _(x + vAt) + bF)(x + vAt).

Going to the limit for n— oo, 4t - 0, t = ndt = const, we obtain the following
differential equation:
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JF 1 oF * ) .
(3.17) - = Y +aF  —(a+ b)F™ 4+ bF".
ot 00X

Repeating the procedure for F~ we obtain from Eq. (3.14)

F o) = F, y(x)  —v(F, (x—vdt)—F,
(.18 “)A[mgﬁjz?ﬁﬂfzh),.ﬁﬂf+mpzixmvﬁﬂ
_‘]

—(a+ b)F , _\(x — vAt) + bF(x — vAt)

and, in the limit,

oF ~ oF

(3.19) e = e Y +alft —(a+ b)F~ + bF".
ot 0X

The supplementary equation for F° obtained from the difference equation (3.15) takes
the following form:

IF?
(3.20) C o
o1

To obtain the equation for probability density tunction F of the location of the
particle (under the condition that it left the point x = 0 equiprobably in both
directions), we introduce new variables:

| i
(3.21) F=_(F'" 4+ F"), G = (IF'" - F")
2 2
Adding Eqgs. (3.17) and (3.19) we obtain
0F G
(3.22) R N 1 + hFO
Jt X
subtraction of Eq. (3.19) from Eq. (3.17) gives
G F
(3.23) v Qa4 hG.
Ol (X

Eliminating G from Eqgs. (3.22) and (3.23) we obtain the equation for the probability
density function F,

\PF_ F das DOFQathb L (2athb L,
v Ot 0X Y O V v

(3.24)

where Eq. (3.20) has been also taken into account.

To consider the lmmit (diffusion) case let us transform Eg. (3.24) to a more
convenient form:
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1 ?*F 0*F [2a 2b10F [2ab 2b*
(3.25) =

— B e — 4+ — ||F — F°].

v o Ox? *1v2+v2 6t+ ER vz}[ |

Similarly to Sec. 2, consider such a limiting case of Eq. (3.25), where a —» oo, v — oo but
2a/v’ remains constant:

2a 1

3.26 o=
(3.26) =

moreover, the constant b 1s assumed to be a finite number. Then Eq. (3.25) takes the form

10F O0*F b . |
32N L — 4 {F - F"
( ) D ¢t Ox? i D[ ]

It 1s seen that the resulting equation 1s the diffusion equation with ann:hilation terms.
Also in this case the limiting equation 1s of a diffusive character, so the preliminary

condition of correctness of the random walk model as a description of the transport
process 1s satisfied.

4. The case of two-dimensional models

The one-dimensional model makes 1t possible to describe the pollution transport
phenomenon only in a Iimited way. To take into account the spatial distribution of
the particles around the source, we should consider a two-dimensional model. For this
purpose we can apply the models of random walk being a certain generalization of the
random walk defined in Sec. 2 and the random walk with absorption defined 1n Sec.3.

4.1. The random walk without sedimentation

Consider the motion of a particle in the plane, analogous to the one presented in
Sec.2. The particle staying at an instant of time ¢, at point x = (x,, x,) covers during the
time period At the distance Ax = vAt, possibly changing its direction. The trajectores
of the particle lie piecewise on the straight lines parallel to the axes of the coordinate
system x;, x,. Moving, the particle can choose one of the lour possible directions
(follow the previous one, turn to the left or right or go back). This process can be
written mathematically similarly to the previous case with application of the
matrix-vector notation.

Assume that the particle goes to the left with probability aA4t, goes back with
probability bAt, goes to the right with probability cAt and continues its way 1n the
previous direction with probability 1 — (a + b + ¢) At. This means that the particle
moves from the initial point along one of the vectors:

0 1 0] 1
(4-1) a - |: ], b - [ }? C B [ " d B |: ilj
1 0 1| 0
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with some probability, dependent on the previous direction of particle’s motion.

We can introduce the matrix of rotation of the particle’s velocity vector, which is
random and takes the values according to our assumptions concerning the model.
The matrix of rotation E(w) takes the following values:

[ Q —11

1a2) E(w) = A = 1 OJ with probability adt,
-1 0 |
(4.3) Ew) =B = [ N 1:' with probability b4t,
0 1 _
(4.4) Elw)=C = [ , 0] with probability cAt,
1 O _ ‘
(4.5) E(w) =D = [ 0 1:' with probability 1 — (a + b + ¢) 4t.

The rotation matrices act on the direction vectors on the following way:

(4.6) Ad = a, Bd = b, Cd = ¢, Dd = d,
(4.7) Aa = b, Ba = c, Ca =d, Da = a,
(4.8) Ab = c, Bb = d, Chb = a, Db = b,
(4.9) Ac = d, Be = a, Cec = b, Dc =c.

The change of location of the particle in n steps is

(4.10) S,=vdt(ld + E, + EE, + .. +E, \E, ,, .. E,E)r,

where r 1s the initial direction of particle’s motion and takes one of four values: r — a
r=b,r=c orr=d.

Consider an arbitrary real-valued function on 32, @(x), and the function being its
average value:

(4.11) Fax) = <o(x + SH>.
Written down in an explicit form, function FX(x) is
(412) F;(X) = < (P(x "" VAt l'+ VAI( El +E2E1 + e +En ]-En- Yy ea- ,EzE]) l') >

Like in the one-dimensional model, we can calculate the conditional mean value of
this expression with respect to the random transition matrix E,. We obtain

(4.13)  Fi(x)=adtF 7 ((x +vAtr) + bAtF® _ (x + vdtr)
+ cAtFS (x +vAtr) + (1 —(a+ b+ c)A)FP_(x + vAtr),

or, since Dr =r,
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(4.14) Fi(x)=adtFA (x + vAtr) + bAtF % _ (x + vAtr)
+ cAtFS ({x +vAtr) + {1 —{a+b+)At)FE_{x + vAtr).

The difference equations (4.14) for r = a, b, ¢, d can be written in the following form:

arsy FHOO—Fia() _vFix+vatn — Fi ()
At vAt

+ aFA (X +vdt )+ bFP (x4 vdtr)

+ cF ((x+vdatn)+@+b+)F'_(x+ vdir).

Passing to the limit (4f — 0) we obtain the system of partial differential equations for
the conditional probability density functions F*, r = a, b, c, d:

r

(4.16) oF = vrVF'(X) + aF *(x) + bF ™(x) + cF “(x) — {a + b + ¢) F "(x).

ot
Taking successively r = a, b, ¢, d, we obtain the system of equations in an explicit form:
0 0 o0
F*® ax2 F A
0
p Fb 0 — 3 0 0 Fb
(4.17) = v i .
F d 0 0 a 5}:2 0 F ¢
%
O O (
O0X,
—{(a+ b+ 0) a h C
F A
c —(a+ b+ o) d b Fb
— F°
b C —(a + b + ¢ a Fd
a b ( —(a+ b + ¢)

Introducing new unknown functions P, R, Q, T, defined by
(4.18) P=F*+ F°® O=F*-F°"
(4.19) R=F"4+F" T=F"_-F?¢
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we obtain the new system of equations

4.20 0 0

( ) P=v_  Q=—(a@a+c)P+(a+ )R,
ot 0x;

(4.21) aQ K P=—(a+2b T,
5 vax2 = —~@+2b+c)Q+(a—c)T,
3 V8x1 = ﬂ+£) +(a+ C) >

4.23 J 0

(4.23) T4+v. R=—(a+2b+)T—(a~ 0.
Ot 0x,

To obtain the equation for the unconditional probability density function, let us
introduce two new functions:

(4.24) U=P+R=F*4+F“4+F"+ F14
(4.25) S=P-R=F*+Fc<—F"_F14

Now, the function F, defined as
(4.26) F= U,

represents the probability density function of the event that the pollutant particle
reaches a certain area, independently of its initial direction. The above substitution
and differentiation with respect to spatial variables transforms the equations to the
following form:

3 3
.. pP— _ J
(4.27) o vasz (a + ¢) S,
o 0 0 0 _ 3 0
4.28 - P=—(a+2b+c) —o' T
(4.28) dx, 0t 0 v@xl 0x, @+ 2b + ] Jx, 0+ (a ()ax,
(4.29 “Riv . T—(a+os
) ot Tox, O
g 0 o 3 ;.
4.30 T+v. | R=—(a+2b T— (a — |
@30 o T Y ax, ox, @+2b+c, T-la—q, 0

Addition and subtraction of the pairs of the equations gives the following system of
partial differential equations for four functions U, S, T, O:

43y ‘v-v?o0+v? T=0
. — V I = U,
ot~ ox, dx;
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> > &
(4.32) Otox, e+ dtdx, I=v dx,0x, v
— _(a42b+ c)[éz; 0 +ai2 T} +(a— c)[éi: T ai,_ Q:I,
(4.33) ;S-ug‘ingb% T= —2(a+ ¢S,
(434 agxl ¢ 65’;2 =y a:;xz >

0 0 0 0
— 2 - 2

(X, 0x

The system of equations obtained can be used for the calculation of the probability
density U describing the unconditional location of the particle. Elimination of the
functions §, 7, Q from Egs. (4.31) — (4.34) 1s too complicated and, moreover, it would

change the class of the function sought; therefore, we leave this system of equations in
its present form.

4.2. Random walk with sedimentation

Modeling the two-dimensional diffusion process we can also take into account the
possibility of the sedimentation of the particles in the environment. Then, analogously
to Sec. 3, the particle can either move in one of the four possible directions:

0 —1 0 1
(4.35) a = : b = , C = ,. d = ,
1 0 — 1 0

with probability dependent on the previous direction of the particle’s motion, or

remain at the point of its present location, what can be represented by a zero vector of
motion

4.36 _
(4.36) g 0

We can also introduce the matrix of rotation (or annihilation) of the particle’s
velocity vector, which 1s random and takes the values according to our assumptions
concerning the model. The matrix of rotation E(w) takes the following values:

0 —1
(4.37) E(w) = A = Cg with probability aAt,
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(4.38) E(w) =

(4.39) E(w)=C =

-1 0
with probability bAt,

0 —1
:I with probability cA4t,

0 1
-1 0

-

with probability gArt,

-

-

(4.41) E(w) =

(4.40) E(w) = G — [ g

l:l with probability 1 — (@ + b + ¢ + g)4t.

The rotation matrices defined above act on the velocity direction vectors in the
following way:

(4.42) Ad = a, Bd = b, Cd = d, Dd = d, Gd =g,
(4.43) Aa = b, Ba = c, Ca = a, Da = a, Ga =g,
(4.44) Ab = c, Bb = d, Cb = a, Db = b, Gb =g,
(4.45) Ac = d, B¢ = a, Cc = b, Dc = ¢, Gec =g,
(4.46) Ag=g Bg=g Cg=g Dg=g Gg=g

The change of location of the particle in n steps (under the condition that the particle
has really left the starting point) is

(4.47) St =vdAt(ld + E, + EE, + . + E, |E, , .. EE)r,

where r is the initial direction of particle’s motion, thatisr=a,r=b,r=c¢,orr = d;
in the case of not leaving the point, the motion vector can be written as

(4.48) St—g

Consider an arbitrary real-valued function ¢(x) defined on 3%, and its conditional
average values (under the conditions of all possible initial directions of the walking
particle) <o(x + §))>,r = a, b, ¢, d, g. Performing the reasoning analogous to the one
made 1n the non-sedimentation case, we obtain the system of equations for the
conditional probability density functions F'. r =a, b, ¢, d, g:

'

%, :
(4.49) o = VF'(x) + aF *(x) + bF ®(x) + ¢F “(x)

—f(a+ b+ c+ g)F'(x)+ gF ¥x),
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forr=a,b, ¢, d and

OF ®

(4.50) == {),
Ot

The system of equations (4.49) can be written in the vector form

%
S O O 0 0
0x,
F* %, ke
0O — O 0 O
Fb (')xl Fl:
%, %,
(4.51) 3 Fel—v] O O -~ 0 OJ|F°©
2 0x, )
F A F
P 0 O 0 ox, 0 Fe

“(a+b+c+g) a b C g
C —(a+b+c+g) a b g llF»
Fh
= b ¢ -~ f{a4+b+c+g) a g
Ft
a b c —{a+b+c+g) g F¢
FE
O 0 0 0 O

Similarly to the model without sedimentation, assuming that the probabilities of
the 1nitial directions of the pollutant particles are equal, we can obtain the system of
equations where the probability density function of the actual location of the particle
is one of the functions sought for. Repeating the calculations in the way analogous to

the previous case of non-sedimenting particles, we can obtain the system of equations
for the following sets of functions

(452) P=F*4+ F° Q:FI_FC,
(4.53) R=F"+ F¢4, T=F"—F* and F ¥

or alternatively,

|

(4.54) U=F*+F<+ F"+F¢ Q=F*—F¢
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(4.55) S=F*+F°— F"_F% T=Fb_Fd4 and Fe

In the first case the system of equations is

(4.56) %, %,
P—v. Q=—(@@+c+gP+@+c)R+ 2gF5,

ot 0X-
(4.57) % %

0 — P = — 2b 4 ¢ —

azQ vaxz @+2b+c+g)0+(@a—0c)T,
(4.58) 6R+ 0 T (a+c+g)R P+ 2gF*

b v _ . : :

5 o, a+c+g)R+(@+c)P + 2gFF¥,
(4.59) 0 T+ 0 R (a + 2b + VT

V = — (a -+ - —(a — ¢
F %
4.60 = (}
(4.60) 3 :
while 1n the second case we obtain
% %, 0
461 U — T— — glU TR
e Y ML R P gU +4g ',
0° 0* ia

(4.62) 0 T—v_ ' U

-+ vV
otox, Jotdx, 0x,0x,

i 0 O G
:—(a+2bw+g)[ 0+ . T}-f'(d-—{f)l: T -
;

(4.63) aS ¢ 4, ‘ T 0a+ ¢)S S
. — — = — NS — g
ot dx, dx, R

4.64 - i T - S

(3.64) atf)le Jtox, v("}'xlﬁxz
% J %

= —(a+ 2b+ ¢ + g) 0 — T|+(a—c T+
Jx, 0x, 0x,
OF F
(4.65) — ()

Ot
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5. The model of pollution transport with sedimentation in three-dimensional space

Modeling the pollution transport in three-dimensional space, we can aiso
use the random walk process. In such a case we can describe the flow of particles
in a much more realistic way than in the one- or two-dimensional cases. At
present the phenomenon of sedimentation of the particles doesn’t require to
introduce the probability of annihtlation of the particle. In order to describe
it, we can simply assume that the particle reaches a certain surface (ground
surface) which 1s an absorbing boundary, characterized by an appropriate boundary
condition for the probability density function (see [11]). We can alternatively
assume that the boundary reflects the particle, what 1s expressed mathematically
by vanishing of the particles flux on the surface (expressed in terms of the
probability density function), see [11]. Obviously, the boundary can also partially
reflect and partially absorb the particles. In such a situation the boundary condition
1s a certain combination of the conditions for the reflecting and absorbing boundary.

Let us consider a random walk 1n a three-dimensional space. We define the source

point X, and the sedimentation plane 27 (x — y), described in the three-dimensional
Euclidean space coordinates in such a way that

4 [x] 1
(5.1) X, = | 0 and Z(x—y)=|x=1|y xeR, yeR |

?

2

L _

The particle starting from the source point can walk 1n one of the six possible
directions, parallel to the coordinate axes of the space; staying at any point at a given
instant of time, it also can continue its walk in one of six possible directions with

probability dependent on the direction of its previous step. The direction vectors of
possible particle’s steps 1n a three-dimenstonal space are:

0 ll] o] K [0] 0]
(52) a=|1]. b=| 1| ec=|—1] d=|o| e=|0| f=| of
L [ o o [OJ KU

where a, b, ¢, d, represent the possible directions of transport, e — the direction of
convection and f — the direction of sedimentation. Reaching the sedimentation plane
(x =(x,y,0)", x, yel?} the particle stops and is excluded from the balance of mass
of the iravelling particles.

Change of direction 1s governed by some rotation matrix A, depending on the
initial direction (direction of the previous step). To define the random walk we assume
the probabilities of changes of the direction of particle’s motion and, consequently, the
probability that the rotation matrix A takes a given value.
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To model the transport process we assume that the rotation matrix takes its value
depending not only on the rotation angle but also on the initial and final direction of
particle’s velocity.

In the transport plane x — y transformations of the velocity vector are the
rotations around the axis e, and they are described by the following matrices:

@® turning to the left (a=b, b=¢c, c=d, d= a)

0 —1 O
(5.3) A=|1 0 0 with probability «,4t;
O 0 1

® reflecting (a=c,b=d,c=4a,d=Db)

-1 0 O
(5.4) A = 1 —1 O with probability BAt;
0O 0 1

@® turning to the right (a=>d, b=a, ¢c=b, d=¢)

0 1 O-I
(5.5) A={—1 0 O with probability a,A4t.
0O O |

1

The matrices describing changes from the transport process in plane x — y to the
convection (that is the walk with the velocity vector e) have the following form:

for the transformation a= e

1 0 O
(5.6) A= 0 0 —1
0 1 O

for the transformation b= e

0 0 1
(5.7) A=| 0 1 of
-1 0 ©

for the transformation c=e
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I 0 O
(5.8) A=|0 0 1}
0 —1 O
for the transformation d = e
0 0 —1
(5.9) A=[0 1 O}
| 0O O
all with the probability xkA4t, and
for the transformation f= ¢
i1 0 O
(5.10) A=|0 1 0 with probability s At.
0 0 —1

Simitlarly, the change from the transport to sedimentation (the walk with velocity f)
is described by the following matrices:

tor the transformation a==1f

| 0O O
(5.11) A=10 0 1
0 —1 O
for the transformation b=1f
1 0 —1
(5.12) A =10 1 Of
| 0 O
for the transformation ¢=1f
1 0 O
(5.13) A=|0 1 —1¢
0 1 O

for the transformation d=>f{
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0 0 1
(5.14) A = 0 1 04
—1 0 O
all with probability yAt, and
for the transformation e=f
1 0 O
(5.15) A= 0 1 0 with probability eA4t.
0 0 —1

The last possible changes of the direction of the particle velocity are the changes
from convection to transport:

for the transtormation e= a

1 0 ©
(5.16) A= 0 0 1|
0 -1 ©

for the transformation e=>b
0O 0 —
(5.17) A= 0 1

1 }
0 &
0
for the transformation e=¢

1 0 O
(5.18) A= 0 0 —1 [

0O 1 O
|
01,
0}

for the transformation e=d
0 0
(5.19) A = 0 1
—1 0

all with probability 04¢, and from sedimentation to transport:

for the transformation f=a

1 0 O
(5.20) A=l0 0 -1 |
0 1 0
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for the transformation f=>b

0 O 1
(5.21) A = 0 1 O
—1 0O O
for the transformation f=c¢
| 0 0
(5.22) A= 0 O 1 |
0 —1 O
for the transformation f=d
0O 0 —1
(5.23) A=1] 0 1 0 |
| 0 O

with probability @A4t.

To derive the equations for the probability of the location of the walking particle
we repeat the procedure applied in the two-dimensional model. Let us assume that
w is the initial velocity vector of the particle (taking the value a, b, ¢, d, e or ), while
x = (x,, X,, X;) 1S the starting point (at initial time ¢t = 0). Then the change of location of
the particle after n time steps 1s

(5.24) S"=vAt[w+ AW+ AAW+ . +A A, ., AW
We consider the function of the actual location of the particle defined as

(5.25) Fiux)= <®[x + S7]|>.

Writing S % explicitly we obtain
(5.26) FT(x)= <d5|:x + vAt|w+AWHAAW+ .+ A A, Alw]]>.

The conditional expectation of the function F}(x)with respect to matrix A; (under the
condition that w is equal, respectively, to a, b, ¢, d, e, and f) is the following:

(5.27) F?*(x)=adtF® ,(x + v4ra) + 0,4tF % ,(x + vAta)
+ BAtF & (x + vAta) + kAtF ¢, (x + vAta) + yAtF ,_,(x + vA4t a)

+ (1 —(a; +a, + B+ Kk + 9y A)F5_(x + vdta),
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(528)  Fo(x)=o,4tF5 (x + vAth) + 0, AtF* | (x + vAtb)
+ BALF 5 (x + vAtb) + kAtF (X + vAtb) + yAtF ! (x + vAt b)
+(l — (o, +o,+ 4+ K+ y)A0FE (x + vAtb),

(5.29)  Fo(x)=aAtF; |(x + vdtc) + ,AtFY | (x + vAte)
+ PALF L (X + vAtc) + kAtF{ | (x + vAte) + yAtF ! (x + vAtc)
+ (I —(+ow+ 8+ Kk+9)A)F5_ ((x + vdte),

(5:30)  Fo(x) = o dtF % | (x + vAtd) + 0,4tF ¢ (x + vAtd)
+ BALF 5 (x + vAtd) + kAtF S (x + vAtd) + yAtF!_ | (x + vAt d)
+ (I —{ay+%+ B+ Kk +9)4DF 8 (x + vAL d),

(531)  Fa(x)=04t|F, (x +vAtel+ F® (x + vdre)

+ FL o (x +vdte)+ F§_ (x + vAte)]

+ eAtF, (x4 vAte) + (1 — (46 + £) A)F S | (x + vAte),
(532) Fi(x)=o@At|F* (x +vAtHh+ F*  (x + vAt f)

+ Fo o (x +vAtf+ F3_ (x + vAth)]

Passing to the limit in the difference equations (5.27)—(5.32), as in the previous cases,
we obtain the following system of partial differential equations for the conditional
probability density functions:

(5.33) QF;(;’X)- = o, F"(t,x) + o, F %1,x) + BF “t,x) + kF (t,x) + yF (£,x)

— (2 + o, + B+ 1+ y)FYt,x) + va-V F*t,x),
(5.34) aF{;(;’X) = o, F “(£,X) + o, F *(t,x) + BF %(t,x) + xF *(t,x) + yF {(¢.x)

— (o, +a, + f+ xk+ ) FYt,x) + vbV F*(¢.x),
(5.35) aF;(;’x) = o, F °(t,x) + o,F *(t,x) + BF (t,x) + xF (t,x) + yF (¢,x)

= + & + B + K+ ) F (t.x) + ver VF §(£,x),
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(5.36) aF;(tt’x) = o, F *(t,X) + o, F (t,x) + BF *(t.x) + nF (t,x) + yF '(t,x)
—(o; + 0y + B+~ + ) Ft,x) + vd-V F4(t,x),
(5.37) oF ;(:’x) — S[F*(tx) + F*1.x) + Ft,x) + F4t,x)] + eF (£.x)
— (45 + &) F(tx) + ve* V F¥(1,x),
(5.38) aF;(tt’X) = Y[ FYt,x) + F*t,x) + F(t,x) + FYt,x)] + ¢ F (£,x)

— {4 + l,l/)F‘(t,x) + vl V F{(t,x),

where symbol “” denotes the inner product of vectors and V 1s the symbol of
gradient.

In the matrix form the system of equations takes the form

F* — £ o, b a, K yi| F*
F* o, —£2 « o} K v || FP
F° o, —£2 o K v F°€
(5.39) _ p 2 _1 Y
ot| F*° a B o, —£ K y || F?°
Fe O O 0 o — (40 + &) el F°©
F' ® ¢ ¢ ¢ Y~ (4o + ) LF'
0
0 0 0 O 0
0x,
%
O — - 0 0O O O
axl Fl
%, F®
0 0O — 0 O 0
0x, Fe
._I._.v a
0 O 0 0 0 Fit)
0x,
; v
0 O 0 0 O
00X+ Ff
%,
0 0 0 0O 0 — -
0X4

where Q@ = (ot; + o, + f + Kk + 7).
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To complete the mathematical description of the transport phenomenon we must
assume the initial and boundary conditions for the probability density (or in another
interpretation: the pollutant concentration density) functions sought for. As we have
assumed, the plane {x = (x, y, 0), x, yel3} is the absorbing boundary. This causes the
vanishing of all the conditional probability density functions (see [11]):

(5.40) F*t,x,y,0) = F¥t,x,y.0) = F “(t,x,9,0) = F %(1,x,y,0)
= F(tx,y,0) = FYt,x,y,0) =0

In our interpretation of the functions F¥, w = a, b, ¢, d, e, f, the initial condition
represents the initial location of the fractions of the pollutant particles initiating their
walk 1n a given direction. Since we have assumed the point source of the particles, the

initial tunctions are three-dimensional Dirac delta-functions concentrated at point

(O: 03 ZG)T;

(5.41) F*0,%,v,2) = ayd(x) 5(y) 8z — z).
(5.42) F*0,x,y.2) = hu(‘i{x)é (V) oz — z4),
(5.43) FH0,x,p,2) = ¢pofx) d(y) oz — zq),
(5.44) F %0,x,y,2) = dod(x) 8(y) &z — zo),
(5.45) F0,x,y,z) = esd{x) d(y) o(z — zy),
(5.46) F0,x,.2) = fi0(x) 8(y) 6(z — z,).

where the sum of all intensities equals one,
(5.47) dy + by + ¢ + do + ey + fy = L.

Certainly, one can consider some more general problem in which the boundary
absorbing condition is given on a more complicated surface, or the initial condition is
distributed over the space in a diflerent manner.

6. Concluding remarks

In this paper we have proposed several models of the random walk process
occurring with a finite speed, useful for the description of transport of the particles.
The models are not very restrictive. They can be easily adopted to describe the
transport process 1n many physical environments: turbulent atmosphere, soil or
water, depending on the selection of the parameters.

In our considerations, starting from the law of motion of the particle, we have
derived the global transport equations for the probability density functions of particle
location (or the equations for the poliutant concentration). The obtained equations
constitute the system of linear partial differential equations with constant cocflicients.
The problem of existence and uniqueness of the solutions to such equations has been
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already solved. Since we assume that the solutions of the equations are probability
density functions, we are looking for the solutions in the class of functions integrable
with some polynomial weights (functions with finite moments). It 1s proved (see [1])
that if the initial conditions and possible excitations (sources) have this property, then
the solution will exist, will be unique and also (locally) integrable with a polynomial
weight.

The equations obtained can be used for a quantitative analysis of the modeled
transport processes. The simplest way of doing this is based on their numercal
solution. This is quite natural since they are obtained as the limit of the difference
cquations, directly applicable for computational analysis. Some conclusions
concerning the transport process can be also drawn analytically. Since the transport
equations are hyperbolic, we can estimate the effective velocity of the pollutant front
from the source.

The proposed random walk process can be studied not only giobally, by the
analysis of the transport equation. Another possible approach is the investigation of
the trajectory equation (2.4) and its multi-dimensional generalizations. It necessitates
the application of the random matrix methods (see [4]); 1n such a manner we can
obtain another kind of information concerning the diffusion parucles — the areas of
concentration, eventual attraction curves, etc.

Application of the proposed modecls for the description of real transport problems
requires identification of the paramecters characterizing the probability intensities of
the velocity direction jumps, as well as the absolute values of the velocity.

Studying the pollutant particles structure we can try to estimate the probability
intensities (e.g. large particle rather sediments than convects, etc.), but complete
identification of the model needs some well-prepared experimental data to estimate
the parameters of the model. The measurements in the experiment must be pertormed
in a specific way to make them useful for the identification of our model (see [3]).
Design of such an experiment and estimation of the parameters 1s a very important
task to solve in modeling of the pollution transport in turbulent atmosphere with the
use of random walk process.
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