
Authentication with controlled anonymity in P2P systems

Adam Wierzbicki
Polish-Japanese Institute

of Information Technology
Warsaw, Poland

adamw@pjwstk.edu.pl

Aneta Zwierko1
1Warsaw University

of Technology, Institute
of Telecommunication

Warsaw, Poland
azwierko@tele.pw.edu.pl

Zbigniew Kotulski1,2

2Polish Academy of Sciences
Institute of Fundamental
Technological Research

Warsaw, Poland
zkotulsk@ippt.gov.pl

Abstract

This paper describes a new protocol for authentication
in Peer-to-Peer systems. The protocol has been designed to
meet specialized requirements of P2P systems, such as lack
of direct communication between peers or requirements for
controlled anonymity. At the same time, a P2P authentica-
tion protocol must be resistant to spoofing, eavesdropping
and playback, and man-in-the-middle attacks. The proto-
col is studied for a model P2P storage system that needs to
implement file access rights.

1 Introduction

The requirement of peer authentication has been recog-
nized by many designers of P2P systems. As new appli-
cations of the P2P model become available (such as P2P
games or P2P auctions), the need for authentication be-
comes even more pressing. Many P2P applications rely on
reputation systems that cannot operate without a form of
authentication.

At the same time, P2P systems are more vulnerable to a
number of well-known threats, such as identity theft (spoof-
ing), violation of privacy, and the man-in-the-middle attack.
The Sybil attack (identity cloning [3]) has become a concern
in P2P systems that require reliable storage, use reputations
or voting. All these threats are difficult to counter in an en-
vironment where membership is dynamic and the presence
of central directories cannot be assumed.

In addition, many P2P systems have special anonymi-
ty requirements that cannot be easily reconciled with some
forms of authentication known today. On the other hand,
service providers that are bound by legal regulations have to
be able to trace the actions of certain peers. Finding a rea-
sonable trade-off between these two requirements is rather
hard. In this paper, we use the termcontrolled anonymity

for a system in which a peer cannot be identified to the out-
side world, but a trusted authority (superpeer) is provided
with the possibility to identity actions performed by each
peer.

These considerations lead to the conclusion that P2P sys-
tems can benefit from new, specialized methods of authenti-
cation. In this article, we combine two cryptographic tech-
niques - Merkle’s puzzles and zero-knowledge proofs - to
develop a protocol for authentication in P2P systems. This
protocol is resistant to man-in-the-middle and eavesdrop-
ping attacks and prevents identity theft. However, the proto-
col allows for controlled anonymity of peers and is adapted
to the dynamic and decentralized nature of P2P systems.

We study the protocol for a model P2P storage system
that needs to implement access rights to files. However, the
applications of an authentication protocol in P2P systems
can be wide, and our authentication protocol can be adapted
to many other applications.

Organization of paper. In the next section, we review
current state of art for anonymity and p2p networks. In sec-
tion 4.1, we present and explain the cryptographic primi-
tives used in our protocol. Section 4.2 presents the protocol,
and concludes with an analysis of the protocol’s security
and efficiency. Section 5 concludes and discusses further
work.

2 Related work

General P2P security architectures almost exclusively
use public key cryptography (PKI or the Web of trust) [6].
These systems provide authentication without anonymity,
and will be discussed in more details below.

FreeHaven uses a system described in [2] that allows for
accountability. The approach is based on micropayments
that utilize the concept of client puzzles. The puzzles used
base on hash function and time-lock puzzles. In our work,
we extend the mechanism of puzzles by combining it with



zero-knowledge protocols. In such a way, we achieve a
novel authentication method.

Most systems that provide anonymity are not interested
in allowing to trace the user under any circumstances.
Chaum mixing networks, proxy servers, have not been de-
signed to provide accountability. For P2P systems, ap-
proaches exists that provide unconditional anonymity, again
without any accountability [10, 11].

Crowds ([9]) is a system that provides anonymity for
Web browsing. This system hides the action of one user
in actions of other users. All users are calledthe crowd,
and a proxy server issues requests on behalf of its users.
The content servers cannot determine which user requested
which content. This system does not offer any authentica-
tion mechanism.

A Chaum mixing network, mentioned earlier, is a col-
lection of special hosts (mixing nodes) that route user mes-
sages. Each node simply forwards an incoming messages to
other nodes in the mixing network. The path (sequence of
nodes) is chosen by the sender, and the message is put into
envelopes (based on PKI infrastructure), one for each node
on the path.

3 Discussed P2P model

Consider a storage system that uses the Peer-to-Peer
model. The system makes it possible for peers to execute
two operations: STORE(k, f) and RETRIEV E(k).
The first operation stores a file,f , on one of the peers in the
network, associating the stored file with a key,k. The sec-
ond operation retrieves the file that has been associated with
the given key. Note that a peer that executes the STORE
operation need not to know which peer stores the file in the
network.

Figure 1. Routing of a STORErequest in a P2P
storage system

The described system is visualized on figure 1. The
STORE andRETRIEV E requests are routed by the net-
work using theROUTE operation. On the figure, the
STORE request is routed from peerPI to peerPS by the

peersP1, P2, andP3. The described P2P network is suffi-
ciently general to model any structure P2P network (or Dis-
tributed Hash Table). We shall also assume that the key,
k, is available to all peers in the system after theSTORE

operation. This can be achieved using a superpeer that is
notified by the storing peer that a new key is used in the
system. However, this may not be necessary if the storage
system uses keys that are universally known.

Consider now that the system wishes to enforce write
permissions. For example, only the peer that has stored the
file is authorized to modify the file. Everyone else has read
permissions. In order to enforce the permissions, some form
of authentication is required.

The first question is whether the peer identifier (ID) in
the P2P network is sufficient for authentication. Is it pos-
sible for a malicious peer,PM , to assume theID of an in-
nocent peer,PI? Let us assume thatPI stores a file using
his ownID as authentication information. TheSTORE

operation takes the form ofSTORE(k, f, ID). However,
PM runs a DoS attack againstPI , forcing PI to leave the
network. AfterPI has left,PM joins the network assum-
ing the ID of PI . Next, PM can execute the operation
STORE(k, f ′, ID).

What is needed to implement file access permissions?
An authentication mechanism that allows the storing peer
to authenticate the owner, does not use centralized con-
trol during authentication, provides controlled anonymity,
is safe against playback attack, eavesdropping and man-in-
the-middle attack.

4 Proposal

In this paper, we describe a new protocol for authenti-
cation for P2P storage systems. The protocol allows a peer
to securely store a file on another peer and to change it (as
described in section 3).

First, utilized cryptographic primitives are briefly intro-
duced: the concept of zero-knowledge proofs and Merkle’s
puzzles. Then, we present the authentication protocol.

4.1 Cryptographic primitives

Our scheme involves two cryptographic primitives:
Merkle’s puzzles and zero-knowledge proofs. We describe
them shortly below.

Merkle’s puzzles.Ralph Merkle introduced his concept
of cryptographic puzzles in [7]. The goal of this method was
to enable secure communication between two parties: A and
B, over an insecure channel. The assumptions were that
the communication channel can be eavesdropped (by any
third party, called E). Assume that A selected an encryption
function (F ). F is kept by A in secret. A and B agree
on a second encryption function, calledGwhich is publicly



known. A will now createM puzzles (denoted assi, 0 ≤
i ≤ M )in the following fashion:

si = G((K,Xi, F (Xi)), Ri)

K is simply a publicly known constant term, which remains
the same for all messages. TheXi are selected by A at ran-
dom. TheRi are the ”puzzle” part, and are also selected at
random from the range(M · (i − 1),M · i). B must guess
Ri. For each message, there areN possible values ofRi.
If B tries all of them, he is bound to chance upon the right
key. This will allow B to recover the message within the
puzzle: the triple(K,Xi, F (Xi)). B will know that he has
correctly decoded the message because the constant part, K,
provides enough redundancy to insure that all messages are
not equally likely. Without this provision, B would have
no way of knowing which decoded version was correct, for
they would all be random bit strings. Once B has decoded
the puzzle, he can transmitXi in the clear.F (Xi) can then
be used as the encryption key in further communications. B
knowsF (Xi) because it is in the message. A knowsF (Xi)
because A knowsXi, which B transmitted in the clear, and
also knows F, and so can computeF (Xi). E cannot deter-
mineF (Xi) because E does not know F, and so the value
of Xi tells E nothing. E’s only recourse is to solve all the
N puzzles until he encounters the 1 puzzle that B solved.
So for B it easy to solve one chosen puzzle, but for E is
computationally hard to solve allN puzzles.

Zero-knowledge proofs. A zero knowledge proof sys-
tem ([8], [4], [1]) is a protocol that enables one party to
provethe possession or knowledge of a ”secret” to another
party, without revealing anything about the secret, in the in-
formation theoretical sense. These protocols are also known
as minimum disclosure proofs. Zero knowledge proofs in-
volve two parties: the prover who possesses a secret and
wishes to convince the verifier, that he indeed has the se-
cret. As mentioned before, the proof is conducted via an
interaction between the parties. At the end of the protocol
the verifier should be convinced only if the prover knows
the secret. If, however, the prover does not know it, the
verifier will be sure of it with an overwhelming probability.

4.2 The authentication protocol

The proposed protocol offers an authentication method
for the model P2P storage system. The peer that wishes to
store a file is equipped with a zero-knowledge value. After
storage, this value will enable only the right peer to mod-
ify the previously stored file. Using the proposed protocol,
the authentication information cannot be used by a peer that
routes the message for its own purpose. A short overview
is presented in this section and a detailed description in the
next.

The proposed protocol has three phases. Initial, when a
superpeer or bootstrap creates necessary values for authen-
tication. 2nd, storage of the file: the file is initially stored
with additional zero-knowledge values that will enable the
owner (and no one else) to modify the file and3rd, modifi-
cation of the file: the owner uses a zero-knowledge proof
and Merkle’s puzzles to authenticate itself and to safely
store the modified file.

The peer that owns the file is denoted asPI , the storing
peer asPS and peers that route the message asP1, P2, . . .,
the file asf ′ (first version) andf ′′, f ′′′, . . . (next versions).
A is the authentication data.

In this basic scenario we assume that routing peers do not
modify the data, just forward it correctly. Attacks: scenarios
where these peers can modify or eavesdrop information are
described in section 4.3.

Phase 1 - initial. This proposal is not directly based
on zero-knowledge protocols, but on an identification sys-
tem based on a zero-knowledge proof. We choose the GQ
scheme ([5]) as the most convenient for our purposes. In
this scheme, the superpeer or bootstrap has a pair of RSA-
like keys: a publicKP and a private onekp. The superpeer
also computes public modulusN = p · q, wherep, q are
RSA-like primes. The following equation has to be true:

KP × kp ≡ 1(mod(p − 1) · (q − 1)).

The pair (KP , N ) is made public. The keys can be used for
different purposes, not only for our system.

The superpeer computes a set of so-called identities, de-
noted byID, and their equivalencies, denoted byJ . It does
not matter howJ is obtained if it is obvious for all partic-
ipants how to obtainJ from ID. The pairs(ID, J) are
generated for every peer that requests them. The identity is
used to authenticatePI during an attempt to modify the file.
The superpeer also computes a secret value for eachID:

σ ≡ J−kp(modN).

The secretσ is used byPI to compute correct values for
the GQ authentication scheme.PI obtains the following
information in the initial phase:ID (public) andσ (secret).

To preserve anonymity, peerPI should request at least a
few different pairs(ID, σ) or, if possible, obtain a new pair
for each stored file (key).

Phase 2 - storage of the file.The purpose of this phase
is to associate a properID with the file. Different methods
may be used for that purpose, depending on the security and
performance requirements of the system.

Here are some possibilities:

1. The peerPI can simply send theID with the filef in
open text. In that situation, the peerPI has to trust all
other peers that they do not change neither file norID.



2. The peerPI can ask the superpeer to store the files’ key
(k) and aID value. After initial storage,PS contacts
the superpeer and obtains the properID.

3. A more secure way is to use the superpeer’s keys for
a different purpose, not only for the zero-knowledge
protocol. After creation of anID for peerPI in the
initial phase, the superpeer can sign theID with his
private key. In this case, theID can be sent securely
over multiple peers. After receiving the file,PS can
check the validity of the superpeer’s signature and ac-
cept only a validID. To provide file integrity, the su-
perpeer would have to sign a hash of the file (h(f)),
as well. Another possibility is that the superpeer signs

pairs of(IDi, kj): differentIDs and different keys for
files. Then, whenPI stores a file using keykj , he will
useIDj as an identifier and send the signed pair to
prevent modification byPM .

Phase 3 - modification of the file.

1. The peer PI creates a set of puzzles:S =
{s1, . . . , sn}. Each puzzle has a zero-knowledge chal-
lenge. This challenge is a number computed basing on
a random valuer, r ∈ {1, . . . , N − 1}. It is computed
as following:u = rKP (modN).

Creating a set of puzzles. Each puzzle used
in the proposed scheme has a following form:
G(K,Xi, F (Xi), u), Ri), whereK, Xi, Ri andF , are
described in section 4.1 and it can contain a differentu

value (computed fromr), which gives additional secu-
rity.

2. The peerPI sends the whole set of puzzles toPS .

3. PS solves a chosen puzzle and chooses a random value
b ∈ {1, . . . , N}. PS sends the puzzle’s number (Xi)
andb to PI .

4. ThePI computes the next value in theGQ scheme,v.
This values is based on the numberb received fromPS

and on the secret valueσ of PI : v ≡ r × σb (modN).

5. PI sendsv and new version of the file (encrypted, us-
ing information from the puzzle). Some possible meth-
ods of securing the file are described below. The se-
cured file has the form:L(f ′, F (Xi)).

6. PS uses information extracted from the puzzle,ID,
to obtainJ and verify if v is the right value. To vali-
date the response fromPI , PS checks ifJb × vKP ≡
u (modN). If the equation is satisfied, then the new
version of file is accepted.

Securing the new version of file.The valueF (Xi) is
a secret known only toPS andPI . Thus, it can be used
to establish a secure channel for the new version of the
file. This can be used to provide either encryption -
the file could be encrypted usingF (Xi) as a key for
a symmetric cipher or integrity - the hash of the file
could be encrypted using a symmetric cipher with key
F (Xi).

4.3 Security of proposed scheme

In this section, we are going to discuss only the security
of phase 3 of the protocol, since the protocol offers several
distinct possibilities in phase 2, each one with a different
level of security.

Modyfing the file by an unauthorized user. Assume
that one of the routing peers (PM ) wishes to modify the
new version of the file or store its own version.PM cannot
store its own version (or masquerade asPI ), becausePM

does not have theσ value to obtain the correctv for the au-
thentication phase of the protocol. The valuesu, b or ID do
not contain any information that would be useful in cheat-
ing PS . This property is assured by the zero-knowledge
protocol.

The file itself is secured by methods described in sec 6,
using theF (Xi) value. For any eavesdropper it is computa-
tionally infeasible to solve all puzzles to find the puzzle the
with properXi (the one used byPS) if the number of puz-
zles is large enough. E.g. if the functionG would beDES,
andRi would be a key for a cipher with fixed 24 bits (so
efficiently 32 bits long), then the number of computations



required to solve one puzzle is about231. Now it is easy to
estimate how many puzzles should be created byPI .

Eavesdropping. An eavesdropping peer,PM , can ob-
serve all values of the zero-knowledge protocol:u, b andr.
This knowledge does not reveal anything about the secret
σ and sinceu andb are random and change in every iter-
ation of the protocol, that does not enablePM to interfere
and gain any important information. Also, if the number of
puzzles is sufficiently large, solving all puzzles is infeasible
in reasonable time and finding the puzzle that was used to
secure the file is hard.

Play-back attack. Using our protocol,PS chooses a
random valueb and thenPI has to compute thev value,
which is later utilized byPS to check if the authentication is
successful. Therefore, previously usedv, r (u) andb values
are useless. OnlyPI is able to create the properv value for
a randomb.

Man-in-the-middle attack. The goal of this attack is to
either change the new version of the file or to gain some
information aboutσ by one of the intermediate peers (PM ).
A property of zero-knowledge proofs used in our protocol
is that gaining any information aboutu, b andv values does
not reveal anything about theσ. Changing the file is also not
possible since it is protected with the secret valueF (Xi),
known only toPI andPS .

5 Conclusions

We have developed an authentication method that is se-
cured against eavesdropping, man-in-the-middle, and play-
back attacks in a P2P system, but does not require di-
rect communication. The proposed method does not in-
troduce significant computational or communication over-
heads. Also, the proposed method provides controlled
anonymity that is not available whenPKI is used.

The proposed system of authentication with controlled
anonymity gives quite new possibilities for security solu-
tions in p2p networks. First, it provides anonymity of the
operating peer against other peers and any external users,
except for the superpeer. Additionally, the system makes it
possible to identify a peer’s actions when cooperating with
the superpeer. If practically implemented, the system can be
controlled against a malicious peers trying violate the rules
of a P2P application. The applications of this control can
range from fairness in P2P games to the protection against
the use of P2P storage systems by terrorists or criminals.

Future work. The form of anonymous authentication
and controlled anonymous authentication should perhaps
depend on the particular P2P application. Thus, the first
possible extension of the results presented here is a precise
analysis of requirements of chosen P2P applications. This
problem will be the subject of future research.

Another extension of the presented results is to offer new

security services. The first natural proposition is mutual
authentication of peers, then non-repudiation of operations
and finally combinations of all common security services
applied to peers and the content of transferred files.

References

[1] Brandt J., Damgard I., Landrock P., Pedersen T.:
Zero-Knowledge Authentication Scheme with Se-
cret Key Exchange.Journal of Cryptology 11 (3),
1998.

[2] DingledineR., Freedman M. J., Molnar D.: Ac-
countability, Peer-to-Peer:Harnessing the Power
of Disruptive Technologies, O’Reilly, 2001.

[3] Douceur, The Sybil Attack. InProc. of the
IPTPS02 Workshop, Cambridge, MA (USA),
March 2002

[4] Goldreich O.:Foundations of Modern Cryptogra-
phy, 2001-2004, Cambridge University Press.

[5] Guillou L.C., Quisquater J-J.: A practical zero-
knowledge protocol fitted to security microproces-
sor minimizing both transmission and memory.
Lecture Notes in Computer Science on Advances in
Cryptology-EUROCRYPT’88, 1988. ISBN:0-387-
50251-3.

[6] Kim W., Graupner S., and Sahai A.: A secure plat-
form for peer-to-peer computing in the internet. In
35th Annual Hawaii International Conference on
System Sciences, January 2002.

[7] Merkle R.: Secure Communications over Inse-
cure Channels.Communications of the ACM, April
1978 (pp. 294-299).

[8] Pieprzyk J., Hardjono T., Seberry J.:Fundamen-
tals of Computer Security, Springer, Berlin 2003.

[9] Reiter M. K., Rubin A. D.: Crowds: Anonymity
for Web Transactions.ACM Transactions on Infor-
mation and System Security, Vol. 1, No. 1, Novem-
ber 1998, pp. 66-92.

[10] Scarlata V., Levine B., Shields C.: Respon-
der Anonymity and Anonymous Peer-to-Peer File
Sharing.Proc. IEEE Intl. Conference on Network
Protocols (ICNP), November 2001.

[11] Sirer E., Polte M., Robson M.: CliqueNet: A Self-
Organizing, Scalable, Peer-to-Peer Anonymous
Communication Substrate, White Paper, Cornell
University, 2001.


