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On the moment stability of vibratory systems
with random i1mpulsive parametric excitation

Z. KOTULSKI and K. SOBCZYK (WARSZAWA)

IN THE PAPER the mean and the mean square stability of the elastic column under an excitation
of the form of random telegraph process is considered. Making use of the Shapiro-Loginov
separation formula, a closed form of the moment equations is obtained both for systems go-
verned by ordinary and partial differential equations. Application to the problem of stability
1s presented along with the comparison with the criterions known for a white noise and sinu-
sotdal excitations. Analytical results are itlustrated bv numerical examples.

W pracy badana jest Srednia 1 sredniokwadratowa stabilnos$é sprezystej kolumny poddane;
dzialaniu wymuszenia w postaci losowego procesu telegraficznego. Przy uzyciu formuly roz-
dzielania Szapiro-Loginowa otrzymano zamknieta posta¢ rownan dla momentow, zaréwno
dla ukladow opisanych zwyczajnymt, jak i czastkowymi rownaniami rozniczkowymi. Nastepnie
przedstawiono zastosowanie tych rownan do badania stabilnosci kolumny: uzyskane wyniki
poréwnano z rezultatami znanymi dla wymuszenia biatoszumowego 1 sinusoidainego. Wyniki
analityczne zilustrowano numerycznie dla realnvch danych liczbowvch.

B padore uccriejiyercsi CpeiHAsa M Cpe/THEKBaApaTHUeckasi CradHILHOCTD VIIPVIOl KOJIOMHBI,
IIOJABEPTHYTOM JICHCTBUIO BOSMYIHEHHH B BHIC CiayuailHoro rtelerpadguoro npouecca. Ilpu
MCIOJIb30BaHuyM (popmysibl pasgesienusi [Hanupo—JlornsoBa nonyuen 3amMKHYTbIL BHI ypaB-
HCHHH IS MOMCHTOB, TaK QJIA CUCTEM ONHCAHHBLIX ODBLIKHOBCHHLIMH YPaBHEHUAMH, Kak
1 gudpdepeHilUanbibIMKA YPABHEHUAMU B YaCTHHIX TPOU3BOAHLIX. 3aTem IIPeACTABIIEHO TIPH-
MEHEHHNE ITHUX YPABHEHUH UUIA HUCCIEOBAHIA CTA0HABHOCTH KOJIOHHLI; MNOJVUEHHLIE Pe3yIlb-
TATbI CPABHCHLI C H3BECTIILIMU PE3Y.ibTATAMM /LU OCJIONIYMHOTO H CHHVCOMAAIIBHOTO BO3MV-
THEHMH . BO3MYVINEHHA ANATTATHUECCKHUE PE3VILTAThl WJUIIOCTPHPOBAHLI UNCIACHHO LISl PEAibe

HbIN YHCITIOBLIX JIAHHbIX.

1. Introduction

THE DYNAMIC stability of engineering systems under deterministic parametric excitation
was extensively studied in the past. An investigation of the stability of various physical
systems under stochastic excitation has also been performed using different definitions
of the stochastic stability and different approaches (cf. [2, 4. 7, 10]). The existing results
are, however, concerned mainly with excitations which vary randomly and continuously
in time. To the best of our knowledge only a few papers have appeared in which the para-
metric excitation in the form of randomly arriving impulses have been considered (cf.
[3. 5, 6, 8.

It scems that the paper [8] by SAMUELS was the first one to discuss the dynamics of
lincar systems with coeflicients forming a sequence of random impulses. The analysis
presented in [8] adopts the idea of Foldy used in the multiple scattering of waves by ran-
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—

domly distributed point scatterers. The technique presented (under some restricting hy-
potheses) was applied to the problem of stability of circular shall under randomly arriv-
ing end thrusts. Paper [3] deals with the harmonic oscillator with the frequency being
a two-valued Markov process, i.e. w?(t) = wg[l +em(t)], where ¢ is a positive constant
and m(t) is a dichotomic Markov process with equiprobable values | and — 1. The authors
derived the expression for the mean square of stationary response and then, the mean
square stability criterion. KLIATSKIN in his book [6] presents some averaging procedures
for linear systems with randomly varying parameters. including parameters in the form
of the random telegraph process and its generalization. However, the stability questions
are not explicitly treated.

A systematic study of scalar differential equation of the form: X, = A(X)+1,g(X,).
where X(¢) is an unknown process, # and g are given, sufficiently smooth functions, and /,
is a random telegraph signal, has been provided in the book [5S]. The authors have derived
the Kolmogorov equation for the two-dimensional Markov process [X,, /,], and then the
equation for the probability density of the proces X(¢) alone, which takes the form of an
integro-differential equation. The analogous equations have also been constructed — by
different reasoning — in the book [6].

In the present paper we investigate the mean and mean-square stability of the response
of linear systems with random telegraph process as a parametric excitation. Making use
of the formula derived in [9], a closed form of moment equations is presented for systems
governed by both the ordinary and partial differential equations. Afterwords., application
to the problem of stability of an elastic column subjected to random telegraph type axial
force is presented. The analytical results are illustrated numerically for real data.

2. General formulation

Let us consider a system of linear equations

dY

- AY+BP(1 Y
(2.1) dt +BP(, MY,

Y(0) = Y,.
where Y(7) = [V (7). .... Y()]" is an unown n-dimensional process, A and B are nxn
deterministic matrix operators, Y, is a (deterministic) vector of initial conditions and
P(t, v) is a random telegraph process (y € I, where /' is the space of elementary events).
It is assumed that P(r, ¥) is a scalar process.
According to its definition, process P(t,y) 1s characterized as

(2.2) P(t,y) = a(—1YO,  PO,y) =a, P}ty)=a,

where a is a constant and N(¢) is a homogeneous Poisson process with intensity ». It can
be shown that the following reccurent relations hold

(23) mn(rl 9 s ’n) - <P(rl Y '}') P(rna }’)>
e <P(t1 " '}’)P(fza 7”')>H1n-—2(r3'& . In)'r (Il ,}--— 'r.?: } ;?“' rﬂ>0)?

where ¢ - ) denotes the probabilistic averaging (the average with respect to probability
measure). Two moments of P(t,y) of the lowest order are

(2.4) (P(t, p)) = ae™",  (P(t;, y)P(ty, p)) == a’e” *'|t; — 1.
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Let R,[P(7)] be a functional depending on the values of P(t) for 7 < 7. It has been
shown n [9] (cf. also [6]) that

d o d '-
2.5) @i PORIPD = P(O) 4o RIPI —2CP() RIPD).

The above formula for splitting correlations allows to obtain a closed system of equations
for {Y(1)). Indeed, taking the average of both sides of equation (2.1) we have

:':; dy
Lt

1II.

(2.6) ACY D +BP(, )Y ).

To find the equation for {P(r. y)Y> use is made of formula (2.5); it should be noticed that

Y (7). as a solution of (2.1), depends on the values of P(t.y) only for v < 1. Differentia-
tion with respect to 7 results in

d : : dY

i PUNY> = CPUNY 2Py, ¥ T
Substituting Y for the expression taken from the governing equation (2.1) gives a closed

equation for (Z(1)) = {(P(1, y)Y(¢)>. Thus we have the following system of equations for
the mean solution

CY) == ACYD +BLZ),
(2.7) /
;f (Z) = (A=2IKZ>+a?B( YD
(/ 1s n>xn umt matrix).
The imtial conditions associated with system (2.7) are

(2-8) Y(O) Yy, Z(O) = (P (0.} '}’)Y(OD o aAY,.
Formula (2.5) makes it also possible to obtain a closed system of equations for the
second order moments {YY”>. This system has the form (¢ = P(r,n)YYT"):

@ YYD AT LCYA LB 4 (OB,

(2.9)

d . 3 n - , . . -
gy 0 AL HDAT =20 +a®BLYY Ty a2 (Y Y B!,

where superscript 7' denotes the transposition of the matrix concerned.

The deterministic systems (2.7) and (2.9) form the base for deriving the conditions of
mean and mean-square stability. It should be noticed that equations (2.7), (2.9) hold for
the general case when matrix operators A and B depend on time. In the specific problem
considered below these matrices are assumed to be constant in time.

The application of formula (2.5) can be extended to the systems of partial differential
cquations. Let the system of equations have the form

ou;(x, t)

(2.10) o

K h
— _}_‘ AU(X)NJ-—I-P(I, }/) ‘L Bf,j('r)uj:r

where x e R", 1€ [0, 0), = |.2. ... k, and A;;(x), B;;(x) arc differential operators with
respect to x; i,j= 1,2, ... k

10+
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The closed system of equations for the mean solution s as follows (Z; = P(¢, y)u(x.1)):

A k
% \" | \"
L Af- X))+ ij X ZJ>
210 ‘ .
2<Zy NI =20 KZD+ 3 B (KZ)

o jos

k

+a® B, (x){u;’ [ 1,2 k
———d FJ\ _I/)" B ety e e -
joed

Let us denote

Q.x. v ) luxc )y, 1)),

R, (x, 1. t) = (P, Y u(x. Du;(v. 1)),
The equations for the second order moments arc

. k A
¢ \ , LY _ |
g Q;i(x, . 1) - :_‘ A (0O (x. y )+ _}_J A (O, v 1)
! - [~
A &
Sj | \“"‘1’
— 2VQI'£(.X-. V. Ir)‘}" s B”(.)C) RII(T" 3, f)+ -_‘ B.H(»F) RH(K—., 13 t)..,
(2.12) = =
.. A A
] , K \ | .
Py Rif{x.v.t) _: Ai(X) Ry i(x, v, 1)+ _Z A(v)Ry(x, v 1)
| {1 {1
A A
) A~ 2 \1 ’ PR 2 ‘ﬂ! *
o HT’RII(‘\-, l - f) + (! — Blf('r)()l'l(‘\‘* *I .. f)+(1 L.J B”(}’)Q”(X, 1 . !).,
! =1 {1

i j= 1,2, ... k.

The above systems of cquations can be used to estimate the domains of mean-square

stability of continuous structural systems governed by partial differential equations with
parameters fluctuating according to random telegraph signal.

3. Column under random telegraph axial excitation

3.1. Stability of the fundamental mode

Let us consider an uniform pin-ended column of length £ subjected to a stream of
pulses which act axially and randomly in time in accordance to the random telegraph
nrocess p(r. v). The small transverse motion of the column is governed by the equation

(cf. [1])

Lt ZaT, d°u O
3.1 El f,y -0 5 o
(-1 ox* Fpl.y) cx? o at - Rk 't

with the boundary conditions:

‘.2 -
PARaY
" - == () at xy o 0.1,

7
X"
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In Eq. (3.1) w(x,r) 1s transverse deflection of a column. £f—its flexural rigidity,
o —- mass per unit length, 5 —- coeflicient of viscous damping per unit length.

Using the model approach and looking for the transverse motion in the first (funda-
mental) mode. that is

| T . ¥
f!(_:\:_, I) T ‘l?(f)blrl [ .

A

the deflection of the mid-section 1(r) satisfies the equation

. p . x°

(3.2) y+ ) ¥+ L2 (Pe—p(t,v))y = 0,

n“El . ] _
where P = T the Euler load. Let the axial force p(r. y)
have the form
(3.3) [)(f, j/) - Pu(l +a(}(m l_).)\;“’:l}? PU < PE'
Equation (3.2) takes now the form
(3.4) Y+ 204 wg (1 —P(. y))_p == (),
where
2 < ﬂ 2 "FT’Z | - N .
(:9) o 20" Mo (1.2 (Pr—=Po), P, v) - a(— 1Y
and

g - Py ag
Py P,

A system of the first order equations corresponding to (3.4) 1s (let y(r) = i (1)):

() (1),

va(t) =20 (ty—wd v (1) — Pt y) ().

According to the notations used in Sect. 2, Y = [p,.v,]" and Z = [z,,2,]T =
= [P(r. y)yy. P(r,9)v,]". System (2.7) for the mean solution takes the form

of
PRIIERCY

(3.6)

d
At 2y =200 — 5> — w3z .
(3.7)
(f
dt 2o = =2z +{z,),
74 1 j
g UKD = 2Ky = ey — R
System (3.7) 1s of the form i n = &1, where
0 I 0 0
(38) of - “f'}ﬁ —2h — (.US §
) | {} () -—- 2-1! l

oty 0 —wi —2h-2p
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The use of the Ruth-Hurwitz criterion yields the conditions for the mean stability. The
characteristic equation 1s

(3.9) det(of/ — 41y A*+ o3 A% Fa, A +a, A+o, - O,
where

o,  oplosg(l—a®)+4dv(h+r)],

o, = dh+v)2hv+wy),

A, = 25 +4(h* +3hv +v?).

ay = 4(h+v).

The roots of equation (3.9) have negative real parts if and only if, simultaneously,

(3.10)

2 4y > 0-; W| R A = 01, Wz == 0 Uy — Ol Oy = 0-. W3 - W2 (3(3"'“01'% > 0.

It can be easily verified that the first condition gives

dv? + 4hy + wg
w§
whereas the remaining conditions are fulfilled automatically. Therefore, the conclusion

is: the column is stable in the mean if Eq. (3.11) holds. This gives the following condition
for the intensity of the Poisson stream of pulses
4oL* 2L

2
. 1}2 _l_ _2_ Y —
J- 7T

(3.11) a’ <

Y

Pods~(Pp—Po)’
PE“"PO
A graphical illustraction of the above condition will be given in the next section.

The equations governing the second moments (yi>, (¥yy.), {¥yi). {5 = {(PyD),
(L) = {Py,y20. {3 = {Py3> are as follows

(3.12) > 0.

of N |
g V0 = 2y,
d , . j
f{t <*’vl rV2> s <y2> T 2!1()11 )‘13> - ﬂ)ﬁ()}'l> —(I}G<CI> .

d ¥ b "}
» (i = —4hys) =205y, y20—2mw5{L5),
(3.13)

ey — ey 12

dt

/ | ._.
<G = = 2D+ — RS — mha* v,

d f 5
dt (C3) = =2Qh+v)L3> — 252> — 2w a’y  v2).

The characteristic equation associated with system (3.13) is

A+ 05 AP+ 0, A%+ 0,43 +6,A2+6,A+0, =0,
where

65 — 6(2h +1")3
5y — 4Qwd + 1 Svh+ 13k +32),




(ON THE MOMENT STABILITY OF VIBRATORY SYSTEMS 471

Oy = 320527+ ) +8(12A° + 12021 4+ 2617y +33)
0, = 16[wo(l —a?)+ ws(10h2 + 3v2 + 12hv) + h(4h> + 1 5hv? + 1842y + 313)),

et

0, - 32[weh+v)(1 —a®) +wi(4h> + 10h%r + 6/v? +v3) 4+ 2h%v(2h* +1* + 3hv)),

Application of the Ruth-Hurwitz criterion gives the following conditions for the mean —
square stability:

0 >0, 0, >0, M, = 0,6,—80, >0,

(3.14) My = O,M3—05[0- M5~ 0,(0, 04— 55)] > 0,

Ms == OsM,— 0 M+ 0,(0sM,—67) > 0.
The graphical illustration of the above conditions obtained from the numerical calcula-
tions will be given in the next section.

3.2. Complete transverse response; the moment equations

A more satistactory approach to the analysis of stability of continuous structural
systems deals with the solution of the appropriate partial differential equation (without
representing 1t in the form of a modal equation). In the case of a column subjected to
random telegraph axial force the moment stability can, in principle, be derived from gen-
eral equations (2.11) and (2.12). Indeed, representing the governing equation (3.1) in the
form of the system (let u(x, ) = u,(x, 1))

ou,
T 7 X , t ;
at 2( )
(3.15) ) | ,
au, El 0%u, P, 0J<u, P, P.(1.7) d%u, f
- e g T ; e I ,
't o dx* 0 0x? o ! RIS 0
where

Pi(t,y) = ao(=1)""7,

cquations (2.11) and (2.12) for the mean and the mean-square, respectively, may be applied.
In the case of a column, operators A;; and B;; are

El ¢* P, 0°
All(x) = U, AIZ(x) = 1, A?.l(x.) — '""‘C_;‘ ax4 — 9{1 _31’,‘2 .

D 9]
(3.16) Ajzy(x) = — .

P, &2

B x p— B X)) = 0, B | e e
11( ) 12( ) :::1(-13) 0 52

Bzz(x - 0.

Therefore, the equations for the mean are the following:

— Uy,

e — P mm—— =,
-
. —_— JREp—

D s
ot " o  Ox* 0 dx? 0 dx*

EI 0%u) Py Xuy Py 0XZ,) B
0
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—_— .. .

o

e . i
(317 LZ o =22 HLZa),

[cont,}
El 0%Z,> P, &XZ)> a*Py 2y
0 ox* 0 dx* 0 ox?

| ]
( LZ,D - r 4 2*1*) (Z,>.
Ot o

Analogously, one can write the system of eight equations for the second-order moments.
The systems of partial differential equations for the first and second order moments (in
the case considered) are rather complicated and the stability regions — if necessary —
can be estimated numerically.

3.3. Relation to white noise excitation

The correlation time of a random telegraph process, what 1s seen from (2.4), 1s 1/2»
and tends to zero as the intensity » in the Poisson stream of pulses tends to infinity. This
is a heuristic explanation of the fact that process P(¢, ) tends to a white noise (as » — o
but «/v remains finite). Therefore, one could expect that for very large » the range of
stochastic stability for random telegraph excitation should be close to that corresponding
to white noise excitation with the “equivalent” intensity 7 = a?/r.

Let us assume that the process P(7, ) in (3.4) is replaced by a white noise with inten-
sity / = a?/v. As it was shown in paper [l], the mean stability takes place for all possible
valucs of parameters involved. The condition of the mean square stability is

a’ 2BL*~
(3.18) S A2PZ (Pe— Po),
and it is much simpler than the analogous condition for the excitation of the telegraph

type. After substitution of the parameter « into (3.18) we obtain the stability condition
in the final form:

i 2017
] P,.— P.)>.
p < * Py af (P = Po)

A graphical comparison of these two conditions will be given in the next section.

3.4. Relation to sinusoidal excitation

We can imagine the telegraph symmetric stochastic process as a process which in
randomly occuring instants of time jumps between its two states. Such a situation is quite
similar to a sinusoidal excitation (with some, possibly random, frequency w).

The conditions of stability of the column under axial sinusoidal excitation has been
investigated in the literature. If the force in (3.1) is deterministic with frequency o, that s,
if 1t 1s of the form

(3.19) p(t) =: Py(l+a,sinwt),
then the conditions of stability of the fundamental mode has the form (see {10]):
2
m < — fo(l +G()
0a [ﬁ_,erz(] rx)z]
(3.20) 07

2.2

{u( Oqi} o3 X0 4. o LN IAL < ] ol < ]
2ox(l+2)2 28  2Px(l +a)? T 421 + )2 , o ,
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—an v, mr——— =

(along with the obvious conditions: § > 0. P, > P,), where

3
= ; L2 [PoPol. 2 P?—P;“ |

To compare the regions of stability for the sinusoidal and telegraphic excitations we
should choose some criterions of equivalence of the processes. A possible criterion could
be that both processes should spend (in the mean) the same time above the axis during one
cycle. Since for the Poisson process N(7.y) in (3.3) the average time between jumps is
[ /r and half of the period of the sinus function is zt/m, the Irequency of the “equivalent”
sinusoidal excitation should be:

(3.21) = Ty

A suplementary criterion needed for comparison of the effects of random telegraph and
sinusordal excitations is the reqiurement that the impulses of the exciting forces during
one period are equal,

Fiv

l a,sin{mr1)dr = a,/r,

O

what results n

of A
(322) d, =— 2'!?0.

Since the first of the conditions (3.20) 1s valid only for negative frequencies, in order
to obtain the corresponding relationships for the equivalent intensity (which is always
positive), we should put in (3.20) —zv instead of . The resulting inequalities are

> 2{?}%(' _Ex)z -,
OTT X [ :f; + 32 (1 — 3{)2]
(3.23) )
( N N " 5 . ) b
20x%(1 — a)? 20 20x(1 + ) 4821+ %)? T

o < 1,
where ¢ 15 the same as in (3.20), and

Ao Pom
2(PF,'_PU) '

Region of stability described by conditions (3.23) will be compared with the stability
condition for telegraphic excitation graphically in the next section.

4. Numerical calculations; conclusions

The formulae describing the conditions of stability are rather complicated. To compare
the regions of stability for the excitation processes considered above and to present them
graphically, let us present the numerical examples.
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Consider a column of circular cross-section made of steel. The material constants are

Youngs modulus E =2x10"" kG/m?,
material density d = 7880 kg/m*.

Dimensions of the sample structure are: length (L) is 10 meters and radius of the cross-
section is 0.1 m. Therefore the constant necessary for numerical calculations are:

flexural rigidity El = /2 x10° =~ 1.57 x 10° (kGm?),
mass per unit length 0o = 78.87 = 247.6 (kg/m).

The critical Fulerian load for such a column is

Pr = 1.5495 x 10° (kQG).

The remaining parameters describe external excitation (P,, ¢o,v) and properties of
the environment (B). Plotting the areas of stability in the »—f coordinate system we fix
the constants P, and a, in such a way (different in each case of stability criterion) that
the obtamed sets are nontrivial.

T
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Fi. 1. Stability in the mean (the first mode approximation). Random telegraphic excitation.
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FiG. 2 The mean square stability (the first mode approximation). Random telegraphic excitation.
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in Fig. I the values of » and f are shown for which the column is stable in the mean.
The parameters arc chosen P, = 15x10° A4 = 0.7. For such valucs P, and A the column
is always unstable in the mean square. For the above quantitics also the “equivalent”
white noise excitation makes the column mean square unstable.

If we assume Py, = 5x 110 . A = 0.7, then the column is always stable 1in the mean,
stable for white noise excitation except for § = 0 and » = 0: the regions of the mean
square stability under the telegraph excitation are shown in Fig. 2.

Figure 3 shows that the region of mean square stability for the white noise excitation
s quite similar to that in Fig. 2 for the telegraphic one; however, the range of the force
in Fig. 3 is five times greater and in such a case the telegraphic excitation destabilizes the
system.

The stability region for the corresponding sinusoidal excitation differs significantly
from the one in telegraphic or white noise case (see Fig. 4 and 5). However, we should
keep in mind that conditions (3.11), (3.14) and (3.18) arc necessery and sufhicient but
condition (3.23) s only sufficient.

As a conclusion of the above considerations we can say that i approximating one of
the studied types of excitation processes by another we must be very caretul. The veri-
fication if both of them are stable for the given parameters P,. A, p and » s always ne-
cessary.
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