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Abstract

In the paper we concentrate on one aspect of the experimental design: how the

information coming from an experiment can be utilised for identification of a specific

mathematical model. To express the consistency of the data and the model we need some

quality measure, allowing to transform our intuition to numbers. As the mathematical tool we

propose a version of the statistical procedure of cross-validation of the data. Then we verify

the efficiency of the suggested method on the example of the Virkler experimental data of

stochastic crack growth and the mathematical model of Paris-Erdogan of the fatigue crack

growth.

1. Introduction

Experimental data constitute a basis of the mathematical modelling of physical

phenomena. Trying to identify the model’s parameters we always ask the question if the data

are sufficiently reliable for the applied mathematical procedure. Development of mathematical

statistics achieved in recent years made it possible to perform methodologically consistent

reasoning to decide whether the obtained experimental results are useful for the proposed

model and inversely - whether the model is adequate for the experimental data.

The purpose of the paper is to propose a method of verification of the quality of

experimental data coming from some physical phenomenon for identification of a certain

mathematical model of this phenomenon. (The same purpose can be written in an inverse

way: what is the quality of a certain mathematical model for description of a physical

phenomenon generating the observed set of numerical data). After general remarks on

collecting the empirical data, we concentrate on a particular model of stochastic crack growth.
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We make an attempt to verify if the Virkler experimental curves of crack growth can be used

for identification of the Paris-Erdogan model of the stochastic crack propagation [10]. The

method applied for this purpose is the cross-validation method of verification of predictability

of the measured data, widely applied in mathematical statistics (see [1], [5], [11], [12]). At the

beginning we present the general (non-linear) formulation of the cross-validation technique.

Next we formulate the problem in a linear case and present the formulae for estimation of the

linear model parameters when some measurements are missing. Finally we apply the proposed

procedure to verification of the Virkler data being the source of knowledge for the simplified

Paris-Erdogan model of the stochastic crack growth.

2. Experiment's design and reliability of experimental data

Researchers using experimental data for verification of the mathematical models of

physical phenomena have always a dilemma: to make their own experiment or to apply

experimental data available in the literature. In both cases they encounter several

methodological and technical problems.

Constructing our own experiment, we can do this according to all the rules known as

the design of experiment in a way optimal for the specific mathematical model considered [6].

To plan the experiment, one should:

•  select the model variables that must be identified;

•  select the set of treatments (different factors whose effects are being compared) effecting

on the measured quantities;

•  specify the experimental material to which the treatments are to be applied;

•  construct or select the rules according to which the measured data are connected with the

model parameters;

•  manipulate the treatments (increase the number of samples, modify the range of controlled

experiment parameters, etc.) in such a way that finally, the identified model is possibly

complete.

We realise that, in spite of the fact that there is a temptation to manipulate the results

of the experiment to improve the quality of identification and validation of the mathematical

model (interesting remarks on possible tricks and methods of detecting such manipulations

can be found in [9]), one can also really modify the experiment to improve its results.

However, sometimes the objective reasons (high cost of experiment, difficulties in keeping
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constant experiment’s condition, unexpected noises during measurements, etc.) make that the

collected data are not satisfactory and one feels to be obliged to verify their validity.

Applying in the modelling procedure the experimental data taken from literature,

researchers meet quite different problems. First of all, they never know all the conditions of

the experiment. However, even if the description of the experiment itself and of the presented

data is sufficient for the modelling purpose, they reach a fundamental barrier: the number of

data samples is fixed and cannot be increased by continuation of the experiment. Then they

should always answer questions like: Is the set of the experimental data sufficiently large?

What would be the effect of estimation if we had more data from the experiment? In other

words, one must answer the question if the available experimental data set is sufficiently

representative for identification of the proposed mathematical model.

The heuristic idea of verification of experimental data as the basis of identification of

the selected mathematical model (the estimation of its parameters) can be formulated in a

mathematical way. An example of such a procedure is presented in the following sections.

3. Cross-validation method and estimation

The cross-validation is a method of verifying the consistency of experimental data. In

this method we choose two different subsamples from the data sample. One subsample is

applied for estimation of the system parameters, the other is used as a reference set to control

the quality of estimation. This procedure lets us to test two facts: the integrity of the

experimental data (the data sample is in some sense homogeneous if both subsamples of it

give similar estimation results), and correctness of the estimation procedure (the algorithm

gives similar results for two different subsamples of data taken from the same population).

The standard cross-validation procedure can be modified for any particular problem

and any expected purpose of it. Now we present a version of this method useful for

verification of the measurements obtained from an experiment.

Consider the following two-dimensional time series:

( )y x i ni i, , , ,..., ,                 = 1 2 (3.1)

where the elements of the sequence represent, respectively:

  xi - the observed data points,

  yi- the values of the process being estimated.
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Assume that we know some number of the data pairs ( )y x i ni i, , , ,..., =1 2 ; we call

them the observation history S. Assume also that for the given observation history we can

construct the estimator ( ), ,y x Sαααα  of the random variable y based on the observation x (the

value of the process corresponding to the observation x). In this estimator, the parameter

αααα ∈ A  ( αααα is some scalar, vector or matrix parameter taking its values from a certain set of

parameters A) describes the dependence of the values of the process yi  on the data points xi ,

for i=1,2,...,n, and it depends on the history S. Parameter αααα  should be also estimated during

(or before) the estimation of y. Using the constructed estimator we make an attempt to verify

the quality of experimental data using the following cross-validation type procedure.

Consider n observation data points. Assume that a subsample of n-1 data points is used

for the estimation of the parameter αααα . We estimate this parameter n times, every time

omitting another point. We are interested, how much the omitted data points influence on the

quality of estimation of αααα  and, consequently, of the process y. To answer this question we

define the following scheme of reasoning.

The cross-validation algorithm

I. Estimate the parameter αααα  using n-1 samples, minimising the following functional:

( ) ( )[ ]L n L y y x Sj j i
j i i n

αααα αααα= − = − +
∑1

1 1 2 1 1
, , , /

, ,... , ,...,
, (3.2)

where L[ , ] is some loss function and S i/  is the observation history of n-1 pairs, where the

pair ( )y xi i, is omitted.

II. Apply the procedure of point I   n times for i=1,2,...,n. For each step, fix the estimated

value of the parameter αααα  as:

( )~ ~ , ,2,...,/αααα αααα= =S i ni    1 . (3.3)

III. Estimate the states of the observed process y according to the assumed estimation

formula, where the parameter is taken as ( )~ ~
/αααα αααα= S i , that is calculate the values

( )( ), ~ ,/ /y x S Si i iαααα , i=1,2,...,n, minimising the expression:
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( )( )[ ]C S n L y y x S Si i i i
i

n

( ) , , ~ ,/ /=
=
∑1

1
αααα . (3.4)

The value of C(S) calculated in (3.4) for the obtained values of the estimators gives us the

quality measure of the estimation procedure.

IV. Estimate the reference values of the process using all the history S. We obtain them by

minimising the following functional:

( )( )[ ]C S n L y y x S Sref i i
i

n

( ) , , ,=
=
∑1

1
αααα . (3.5)

Let us remark that in some cases the procedure (3.5) using the complete history S, can give the

exact estimated values of the process y, that is ( )( ), ,y x S S yi iαααα =  and, consequently,

C Sref ( ) = 0 . However, for some specific estimators this can not be satisfied, and then we

should compare the measures (3.4) and (3.5).

The cross-validation procedure enables us to verify the integrity of the experimental

data. It detects, how much information about a single measurement is contained in the rest of

the measurements of the observation history. If in the data population there are some

outstanding results, they will contribute a significant income to the quality measure (3.4).

When the observation history contains a lot of such data points, the value of C(S) becomes

much greater than C Sref ( )  and we can expect that any increase of the number of data points in

the identification procedure can effect in a significant change of the model parameters being

estimated.

Let us remark that the procedure of cross-validation is performed for a finite number

of data points n. The number n growing to infinity in the validation procedure does not

guarantee the convergence of the quality measure C(S).

In the above procedure we have assumed as a reference set, the one-point subsamples.

In general one can do this by estimating the model parameter αααα ∈ A  and omitting several data

points, and then in the verification step using the entire experiment history S. In Section 8 we

apply such a method at a practical example.
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4. Linear estimation for non-complete set of experimental data

In this section we consider the known linear estimation procedure. It proves to be very

useful for the cross-validation technique in the case when the  process is linearly dependent on

the model parameters.

Assume that we have the following set of observations:

x i ni, , ,...,      =1 2 . (4.1)

The process to estimate is denoted by:

( )y i ni αααα , , ,...,       = 1 2 , (4.2)

where αααα  is the (vector) parameter to be fixed during the estimation procedure.

Since the model is assumed to be linear, the process y can be represented as:

y A i ni ij j
j

p

= =
=

∑ α
1

1 2, , ,...,        . (4.3)

The values of the observations x and the process y are connected by the following observation

equation:

x y e i ni i i= + =, , ,..., ,      1 2 (4.4)

or

x A e i ni ij j
j

p

i= + =
=

∑ α
1

1 2, , ,..., ,      (4.5)

where Aij , i=1,2,...,n, j=1,...,p are the elements of the system matrix, and ei  i=1,2,...,n are the

elements of the random disturbance (noise) vector.

The formulation of the estimation problem

We  assume that our observation process (set of n observations) can be written down

in the following matrix form [6]:

x A e= +αααα  (4.6)

where

( )x = x x xn
T

1 2, ,...,  (4.7)
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is the observation vector,

A =

















A A

A A

p

n np

11 1

1

(4.8)

is the system matrix,

( )αααα = α α1 ,..., p

T
(4.9)

 is the vector of parameters to estimate,

( )e = e en1 ,..., (4.10)

is the noise (random disturbance or error) vector.

For the efficiency of the model it is assumed that

•  Aij , the elements of the system matrix, are some known constants;

•  x i, the elements of the observation vector, are normally distributed;

•  x i are independent;

•  all the variables x i have identical variance σ2.

From the above conditions we can deduce that the elements ei  of the noise vector are

Gaussian, independent random variables (we assume: with a zero mean) and with identical

variance σ2.

To complete the vector formulation of the problem we rewrite equation (4.3) in the

form

y A= αααα . (4.11)

Then the estimated value the process is

y A= αααα , (4.12)

where αααα  is the estimated value of the control parameter αααα .

If the rank of the coefficient (system) matrix A is p, then the matrix A AT  is non-

singular and the mean-square linear estimator αααα  can be expressed as:

( )αααα ====
−−−−

A A A xT T1
. (4.13)
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Having introduced the basic definitions and facts, we are ready to present the linear

version of the scheme of cross-validation analogous to the one presented in the previous

section. However, in the linear case we assume the reference subsample as a certain k-element

subset of the observation history.

Consider the observations x x x n1 2, ,..., . Assume that the observations x x x n k1 2, ,..., −

are used for the estimation of the model parameter αααα , and that x xn k n− +1,...,  are omitted in

this procedure. Then the matrices and vectors in the state equation (4.6) can be reduced to the

following form:

x
x
x

=










1

2

,    A
A
A

=










1

2

,     e
e
e

=










1

2

, (4.14)

where

( )x1 1= −x xn k
T,..., , (4.15)

( )x2 1= − +x xn k n
T,..., . (4.16)

The other matrices and vectors are uniquely defined by this division of the observation vector.

By assumption (last k observations are missing) we find the mean-square estimator of

the parameter αααα  from the following state equation:

x A e1 1 1= +αααα , (4.17)

that is αααα  is the solution of the following normal equation:

A A A x1 1 1 1
T Tαααα ==== . (4.18)

If αααα  is the calculated value of the estimator, then we assume

x A2 2= αααα , (4.19)

as a substitute for the missing observations. Since the normal equation for the complete

system is

A A A A A x A x1 1 2 2 1 1 2 2
T T T Tαααα ++++ αααα ==== + , (4.20)

we assume the observed process in the form
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y
y A

1

2 2=








~αααα

, (4.21)

and now αααα  is also the solution of the normal equation.

Let us remark that the quality measure used in calculation of αααα  is:

( )C S n k x A Ai i ip p
i

n k

( ) ...= − − − −
=

−

∑1
1 1

2

1
α α . (4.22)

It is seen that the above formulae (after the appropriate permutation of the variables) can be

used for calculations in the cross-validation method presented in Section 3 in the linear case.

Let us remark that the procedure of linear estimation of parameters is (under quite

general assumptions) asymptotically convergent, that is, if in (4.13) we take into account a

sufficiently great number of observations, we obtain as a result the almost exact value of the

expectation of the parameter αααα . However, in our considerations we deal with a finite number

of observations and, moreover, apply this estimator at the algorithm of cross-validation which

is not convergent itself (see previous Section 3). Therefore the cross-validation procedure

gives us only qualitative information about the experimental data.

5. Mathematical model of crack growth

In the literature, various models of stochastic crack growth are used [10]. For the

purpose of presentation of the cross-validation method we adopt one of the classical models.

Consider the following randomised Paris-Erdogan equation for the fatigue crack growth under

homogeneous cyclic stressing [2], [3]:

( ) ( )∆ ∆a X C K m= γ , (5.1)

with

∆ ∆K F
a
b

a= 



σ π , (5.2)

F
a
b a

b

a
b





 = <

1
0 7

cos
, .

π
    for   , (5.3)

where:

  a  is the crack length,
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  b  is the specimen width,

  ∆a  is the increment of crack length caused by a single stress cycle,

  ∆K  is the range of the stress intensity at the crack tip,

  C m,  are constants depending on the specimen material,

  ∆σ  is the stress range,

  X  is a random variable changing independently from one crack increment to another, and

satisfying the following conditions:

{ } ( ){ }E X E X= − =1 1 2,       δ . (5.4)

The process of the stochastic crack growth modelled by the discrete randomised Paris-

Erdogan equation (5.1)-(5.2) can be equivalently described by the following continuous

stochastic differential equation [2], [3]:

( ) ( )( )da

F
a
b

a
C t dtm

m













= +
π

σ ξ∆ 1 . (5.5)

Equation (5.5) has been obtained from (5.1) under the following essential assumption on the

random variable X :

( )X t= +1 ξ , (5.6)

where ( )ξ t  is a white noise with a zero mean and the intensity δ. The time parameter t is

considered to be the number of cycles of the external excitation of the material sample.

The equation (5.5) can be integrated at time intervals N Ni i, +1  and the corresponding

crack length intervals a ai i, +1  for the whole specimen life-time (i=1,2...,n):

( ) ( )[ ]F x
b

x dx C t dt
a

a m
m

N

N

Ni

Ni

i

i











= +
+ +

∫ ∫
−

π σ ξ
1 1

1∆ . (5.7)

Then we can write down the above equation in the following form:

( )[ ] ( ) ( ) ( )Φ ∆σa a a a C N NN N

m

N N
m

i i i ii i i i+ +
+ − = −

−

+ +1 1 1 1η , , (5.8)

where ηi i, +1 is a Gaussian random variable with
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{ } { }E Var N Ni i i i
i i

η η
δ

, ,,+ +
+

= = −1 1
1

1        , (5.9)

and

( )Φ a a F
a a

b
a a

N N
N N N N

i i

i i i i

+

+ ++ =
+








+
1

1 1

2 2
π . (5.10)

Calculating the natural logarithm (logarithm to base e) of the integrated crack growth equation

(5.8), we obtain the following:

( ) ( ) ( )[ ]ln ln ln ln ,a a N N a a m CN N i i N N i ii i i i+ +
− − − = + + ++ +1 11 1Φ ∆σ ζ . (5.11)

Now, using the experimental measurements ( )a NN ii
, , i=1,2,...,n, we want to estimate

the model parameters m and ln C . Since the model is linear with respect to these parameters,

we must adopt the method of linear estimation presented in Section 4 for equation (5.11). We

identify the terms in equation (5.11) as:

( ) ( )x a a N Ni N N i ii i
= − − −

+ +ln ln
1 1 , (5.12)

( )[ ]A i N Na a
i i, ln1 1

= +
+

Φ ∆σ , (5.13)

A i,2 1= , (5.14)

α1 = m , (5.15)

α 2 = lnC . (5.16)

In the above we have assumed that random fluctuations of the crack length increments are

small in comparison with the crack length, and the coefficients Ai k,  can be considered as

deterministic constants. Moreover, for simplicity, we assume that the random variables

representing the growth disturbance (noise)

e i i i= +ζ , 1 , (5.17)

are Gaussian with a zero mean and with equal variances σ2. In the formulation of the model

in formula (5.9) we have assumed that the variances of the noises are of the form:
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{ }Var
N Ni i

i i

η
δ

, +
+

≈
−1

1

. (5.18)

We know that, under realistic values of the numbers of cycles Ni , these variances are small

and the denominators N Ni i+ −1  in (5.18) do not differ too much for all i. Therefore we can

assume that the variances of random variables  ζ ηi i i i, ,ln+ +=1 1  are for all i (approximately)

equal:

{ }Var i iζ σ, + ≈1
2  (5.19)

and, moreover, the distribution of ζ i i, +1  can be approximately considered to be Gaussian.

6. Experimental data and estimation of the model parameters

As it is seen from the previous section, the parameters to be estimated in our

simplified stochastic crack propagation model are m  and lnC . Now we must construct the

numerical procedure of the parameter identification. We know that m  and lnC  are random

variables and the algorithm must take this fact into account. Therefore we apply the statistical

method of conditioning [7] for this model. This means that our procedure of identification of

the statistical distribution of the pair ( )m C, ln  will be performed in the following two steps.

Step 1.

We consider the trajectory of the stochastic crack growth for the fixed elementary

event ω' ∈Ω . We assume, that this trajectory is governed by the Paris-Erdogan randomised

equation (5.1) with the parameters ( ) ( )( )m Cω ω' , ln ' . Using the crack growth model defined in

Section 5 and the parameters estimation schedule from Section 4, we calculate the numerical

values of the parameters ( ) ( )( )m Cω ω' , ln ' .

Step 2.

We repeat the procedure of Step 1 for all the trajectories collected at the experiment

(observed elementary events ωi ∈Ω ) obtaining the set of pairs ( ) ( )( )m Ci iω ω, ln ,  for ωi ∈Ω .

Using the estimated values of  the parameters ( ) ( )( )m Ci iω ω, ln ,  we identify the probabilistic

distribution of the two-dimensional random variable ( )m C, ln .
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Remark.

Let us remark that if the above procedure is applied for estimation of the value of the

parameter C( )ω  (or its mean value), then the proposed algorithm introduces some additional

error of estimation. It is connected with this fact that

( ) ( )E C measurements E C measurementsln ( )| ln ( )|ω ω≠ ,

what means that the distributions  (and, what it follows, the moments) of two random

variables: the estimated value of ln ( )C ω  and the random variable being the logarithm of the

estimated value of C( )ω  - are not equal. The difference of the above distributions is quite

small if the variance of the estimated parameter C( )ω  of the model is small. Finally let us

remark that in our method of validation of the experimental data we use only one of the

parameters ( ln ( )C ω , not C( )ω ), so we avoid a danger of inaccuracy caused by non-linear

transformation of distributions.

7. Modelling stochastic crack growth using experimental data

The experiment of measurement of the stochastic crack growth is very complicated. It

requires rigorous preparation of the material samples, exact repetition of excitations,

environmental conditions, etc. Therefore in the literature one can find only a few papers where

such data is presented. The examples of such results can be found in [4] and [13].

In our paper, as a material for the practical illustration of the above theoretical

considerations, we use the Virkler experimental data of stochastic crack growth under periodic

loading [13]. The results of this experiment are shown at Fig.1. The authors performed the

experiment for 68 samples of material, obtaining the trajectories of crack growth, each

containing 164 measurement points. The experiment has been performed for the 2024-T3

aluminium alloy. The dimensions of all the samples were: length a mmtot = 558 8. ( ) , width

b mm= 152 4. ( )  and  thickness d mm= 2 54. ( ) . The length of the fatigue crack was observed

in the interval 9 00 49 8. . ( )≤ ≤a mm ; the stress intensity during the experiment was

∆σ = 48 28. , and the sinusoidal excitation frequency was 20 Hz.
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Fig. 1. Trajectories of the stochastic crack growth

(results of the Virkler experiment).

The experimental trajectories are the fundamental basis for identification of the model
parameters. To perform the procedure, we apply the algorithm proposed in Section 6,
performed in two steps. In the first step we identify parameters ( )m C, ln  for each of the 68
trajectories of the stochastic crack growth. The estimated values of the parameter pairs are
presented at Fig.2.

2.2 2.4 2.6 2.8 3.0 3.2
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ln
 C   

Fig. 2. Parameters ( )m Ci i, ln  identified from the Virkler data.
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It is seen that the parameters mi  and ln Ci  are, with high accuracy, linearly dependent

on each other. This means that in the second step of identification of the model, it is sufficient

to consider only one parameter of the pair. Following the literature [3], we assume the normal

distribution of the random variables m( )ω  and ln ( )C ω . This means that, in order to know the

distributions, it is enough to calculate their mean values and variances. In the second step of

the conditioning procedure we estimate the moments of the parameter m according to the

maximum likelihood estimators:

{ } ( )E m
N

m i
i

N

=
=
∑1

1

ω , (7.1)

{ } ( ) { }( )Var m
N

m E mi
i

N

= −
=
∑1

1

2

ω . (7.2)

Since we have observed the linear dependence of the parameters m  and ln C :

ln C Am B= + , (7.3)

to complete the identification of the model we should calculate the coefficients A B,  , using

the formula (4.13) for the linear estimator, and the experimental data presented at Fig.2. The

obtained moments of the random variables m( )ω  and ln ( )C ω  and the values of the

parameters A and B are:

{ }E m = 2 874. , (7.4)

{ }Var m = 0 02736. , (7.5)

A = −5847. , (7.6)

B = −9 35, , (7.7)

{ } { }E C A E m Bln .= + = −26155 , (7.8)

{ } { }Var C A Var mln .= =2 0 939 . (7.9)
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8. Reliability of the experimental data and cross-validation.

The procedure used for the identification of the model parameters needs the

experimental data to obtain concrete numerical results. In our procedure we applied the data in

two steps. In every step we performed the identification under an implicit assumption that the

collected data are appropriate for our purpose. However, it is always a danger that this

assumption cannot be justified. The general ideas concerning this fact have been presented in

Section 1. Now we will show how the concrete example of estimation of the Paris-Erdogan

model parameters on the basis of Virkler data, demonstrates the general idea of the cross-

validation.

Let us discuss the results obtained in two steps of our conditioning procedure.

Step 1.

In this step we identify the sample parameters ( )m Ci i, ln  for all 68 trajectories

obtained in the experiment. For every trajectory we obtain a certain value of the parameters

( )m C, ln . To verify the validity of the estimated values, we try to reconstruct the Paris-

Erdogan (deterministic or averaged) trajectories. The result of the calculation is presented at

Fig.3. During reconstruction of the trajectories we failed at 9 cases of 68 (9 times the sample

paths with the identified parameters exploded before reaching the considered number of

cycles). To explain this fact let us remark that (as it is visible at Fig.1) some experimental

trajectories of stochastic cracks are of the shape which is non-similar to the exponential Paris-

Erdogan curve. Moreover, the length in time (number of cycles) is different for each

experimental curve. Therefore the life-time of the modelled crack growing in the sample

cannot be precisely determined. The discussion of analogous problems can be found in [8].
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Fig.3. Deterministic trajectories with parameters ( )m Ci i, ln  estimated from

the Virkler experimental data.

To study the effect of the trajectory length on the success of the procedure of the
model parameters identification, we make the following calculations. We omit some number
of  the measurement points at the end of every curve in the procedure of Step 1. The results of
such numerical experiment (the number of the identified pairs of the parameters for which the
reconstruction of the Paris-Erdogan trajectory was impossible) are presented in the following
table (the length of the trajectory is 164).

Number of omitted data

 points on trajectory

Number of unsuccessful

identifications

0 9

10 10

20 12

30 16

40 20

50 25

60 37

70 43

80 51



Archives of Mechanics, vol.50, No.5, pp.829-847, (1998)

18

Step 2.

We estimate the model parameters (identify their distributions) basing on the data

partially identified in Step 1. Now we try to verify the validity of the data for the complete

identification procedure. We examine the reliability of the experimental data using the linear

interdependence of two parameters in the Paris-Erdogan model of the stochastic crack growth.

To do this, we compare the results of model identification obtained by two different methods.

Assume that the value of the parameter mi  for fixed i is known (it is identified in the

procedure of Step 1). Now we can calculate the values of the parameters A  and B  in the

linear dependence (7.3).

Method 1.

In this method the coefficients A and B are identified according to the formulae of

Section 4 with the use of all the pairs of the estimated values ( )m Ci i, ln .

Method 2.

In this method the coefficients A and B are identified with the use of all the pairs of

( )m Cj j, ln  except of the i-th pair.

Now, having the values of A and B estimated, we are able to calculate (according to

(7.3)) the approximate value of the model parameter lnCi  for every mi .

The first performed test shows, what is the influence of the i-th measured trajectory on

the approximation quality of ln Ci . Fig. 4 shows the result of classical (one-point) cross-

validation of the experimental data. The points on the plot marked with crosses represent the

value of mean-square error of the approximation of the value of ln Ci  estimated from the

trajectory by ln C Am Bi i= + , where the parameters A  and B  were calculated by the

Method 1. Points marked with circles represent the analogous error but for parameters A  and

B  calculated according to the Method 2. It is seen that the differences in the approximation

errors are significant for 9 measurements. This means that 9 measurements are not appropriate

for the identification of the parameters of the Paris-Erdogan model. They contain a lot of

information specific for themselves but useless for approximation of the general properties of

the model.
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Fig.4. The mean square error for approximation of the parameter ln Ci

The following identification method treats the cross-validation problem more

generally.

Method 3.

In this method, the coefficients A and B are identified with the use of all the pairs of

the estimated values ( )m Cj j, ln  except the k randomly selected pairs.

The results of the Method 3 are presented in Fig.5. There are 3 lines in the plot. The

dashed line shows the value of the mean square error of the approximation of the parameter

ln Ci  with the value mi  and formula (7.3), where the constants A and B were calculated

according to the Method 2 (this is the sum of the errors for all 68 experimental trajectories).

The solid lines show the analogous error but when the coefficients A and B are calculated

according to the Method 3. The functions depend on k, the number of the omitted points (for

two different random selections).

It is seen that, in general, omission in the approximation procedure of ln Ci  at a given

point just the measurement made at this point, gives the effect comparable to neglecting more

than 30 randomly selected points (that is about 50% of the points considered in the estimation
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procedure). This means that each point of the Virkler data is strongly informative for the

estimation of the value at this point.
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Fig. 5. The averaged mean square error of estimation of the parameter ln Ci

9. Closing remarks

One of the most important tasks of the experiment’s design is the verification of the

consistency of the measured experimental data. To analyse the data, we have applied the

method analogous to the statistical procedure of cross-validation. Since the results of

measurement had to be applied for identification of the parameters of a certain mathematical

model, we applied this model (or, more precisely its parameters) as the quality measure of the

set of experimental data. Such a methodology is very intuitive: the collected data can be more

appropriate for one model, less appropriate or useless for another. The reasons for this fact can

be very different. It can happen that some model is not adequate for description of the

observed physical phenomenon and this fact must be always taken into account in the

identification process. However, this is not the only reason of failure of the procedure.

Sometimes the algorithms of the model parameters estimation require a specific structure of

data. Therefore one must carefully design the experiment planning its duration, sampling in

time, location of sensors over the sample, etc., taking into account the final destination of the

obtained data. Summing up, validation of the experimental data must be always connected

with the model where the data are utilised.
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In this paper we have considered the following practical problem: for a given set of

experimental data (Virkler data on the fatigue-crack length) and the mathematical model of a

physical phenomenon (Paris-Erdogan randomised model of fatigue-crack growth), verify the

validation of the data for identification of the model parameters. The conclusions regarding

possibility of application of the Virkler data in the Paris-Erdogan model are the following:

•  Virkler data applied in identification of the Paris-Erdogan randomised model are sensitive

to the length in time (duration) of the sample trajectories. They are also very sensitive to

omitting the results of certain sample measurements in the identification procedure.

•  After the cross-validation procedure applied to the Paris-Erdogan equation, we must say

that while the model gives a good qualitative description of the stochastic crack growth,

there is a small possibility of prediction of the behaviour of the crack in a certain sample of

a material. To estimate the parameters of certain trajectory of good quality, we should

include into our calculations the experimental results obtained just for this trajectory.

•  In the experiments of a kind analogous to the Virkler one, the number of the measured

samples and the length of the observed trajectory is essential for the quality of

identification of any mathematical model of the tested phenomenon.

To conclude our considerations we must say that while every experiment, before it is

made, must be carefully designed, then the following cross-validation procedure can strongly

confirm the applicability of the obtained data for mathematical modelling. This procedure

indicates in particular the coherence of the obtained experimental data and the applied

theoretical model of the phenomenon.
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