
Enhancing the Oakley key agreement
protocol with secure time information

Pawel Szalachowski and Zbigniew Kotulski

Institute of Telecommunications, the Faculty of Electronics and Information Technology, Warsaw
University of Technology, Warsaw, Poland

Email: p.szalachowski@stud.elka.pw.edu.pl, zkotulsk@tele.pw.edu.pl

Abstract—Message freshness and time synchronization
are nowadays essential services in secure communica-
tion. Many network protocols can work correctly only
when freshness of messages sent between participants
is assured and when internal clocks protocol’s parties
are adjusted. In this paper we present a novel, secure
and fast procedure which can be used to ensure data
freshness and clock synchronization between two com-
municating parties. Next, we show how this solution can
be used in cryptographic protocols. As an example we
apply our approach to the Oakley key determination
protocol providing it with time synchronization without
any additional communication overhead.

Index Terms—freshness, security protocols, time syn-
chronization, Oakley protocol, cryptographic protocols

I. INTRODUCTION

Freshness is the security property of data which is
very important and desired in network communication.
This property guarantees protection from variants of
the replay attack. We distinguish two types of fresh-
ness: weak and strong. Weak freshness provides only
partial ordering of messages. This type does not supply
any other kind of time information, e.g., a delay. How-
ever, strong freshness provides total messages ordering
and delay information, so this type of freshness can be
obtained in time synchronization protocols.

The scheme presented in this paper addresses the
freshness issue and it has ability to synchronize time.
It is very light (sending only one short message
is required) and it is based on cryptographic hash
functions, which are fast constructs. Our proposal can
be applied in many existing communication protocols,
where small modifications can result in significant
advantages. We show them for a popular key agree-
ment protocol which is Oakley. Our extension of the
Oakley protocol enables, except of standard secret key
agreement by two parties, additionally synchronization
of their clocks in a cryptographically secure way.

This work is supported by the National Science Center (NCN),
under Grant with decision’s number DEC-2011/01/N/ST7/02995

This paper is organized as follows. In Section II
we present the related work and in Section III we
shortly describe the Oakley protocol underlying a
role of cookies for its functionality. In Section IV
we introduce our time refreshment scheme and its
implementation in the Oakley protocol. The analysis
of security and performance of the approach presented
is in Section V, while Sections VI and VII describe
the applications of the new protocol and conclusions.

II. RELATED WORK

In practical solutions [1] timestamps, counter values
and pseudo-random numbers are used as freshness
identifiers. In case of strong freshness, every time
when a synchronization message is being sent, the
sender must disclose his time or another value which
he uses to ensure freshness. It is often undesirable in
networks with open medium (e.g. in Wireless Sen-
sor Networks, WSNs) or in dynamic networks, like
Internet. For example, an attacker knowing time can
compromise a pseudorandom number generator (if the
time value has been used as a seed, what is a frequent
practice). Another case is, e.g., IP Timestamp in Linux
implementations. An attacker knows when a computer
had been restarted last time, so he knows if the restart
occurred after some critical system’s update. Freshness
is so important that many cryptographic protocols
require assurance of this property. A precise definition
of freshness and examples of attacks against it can
be found in [2] where also complexity of checking
freshness for many different scenarios is presented.
Corin in [3] develops and analyses a model for security
protocols that takes time into account. He considers
two aspects of the problem: an influence of time
on messages flow (e.g. timeouts, retransmissions) and
time information within protocol’s messages (e.g., a
timestamp). Next method for analyzing the security
protocols with time aspects is presented in [4]. This
paper analyses real-time properties of security proto-
cols by a Strand Space-based approach.

Another crucial issue connected with time is time
synchronization. Precise time is necessary in many

669

areas of our every day life. Besides scientific and engi-
neering applications like synchronous measurements,
all legal and financial transactions, transport, business
and other social activities with distributed resources
demand reliable and accurate time. IEEE provides
standard for precise clock synchronization in [5]. It is
especially important for applications which require the
highest trust level (e.g. electronic documents). Barak
in [6] describes an efficient and fault-tolerant clock
synchronization method. This is especially important
for network communication. The most widespread
time synchronization protocol is NTP (The Network
Time Protocol) [7], however, there are many different
solutions for specific network environments [8], [9].
For example, the paper [10] presents a scheme of
synchronization of a time-of-day clock in nodes of a
local area network. In the paper [11] time synchro-
nization solution for high latency acoustic networks
is introduced. The paper [12] presents a time syn-
chronization approach for large decentralized systems.
Another example, which is the WSN, is a very hostile
environment for communication protocols. It operates
in an open medium and nodes of the network are
hardware-constraint. In such a case there are many
opportunities to attack network services. The time
synchronization service is also prone to the attacks
in this environment. Vulnerabilities of this service in
sensor networks are presented in [13]. Therefore, these
networks especially need secure and very efficient
solutions, such as [14]–[16]. Surveys on time synchro-
nization schemes in the WSNs are presented in [17],
[18].

Protocol which connects freshness with time syn-
chronization, but without actual time disclosure, would
be very interesting and helpful in many applications.

III. THE OAKLEY PROTOCOL

Secure key agreement is a very actual and important
task for network communications. The Oakley key
determination protocol [19] is a generic key agreement
protocol. It is widespread in Internet communication
because it is often included in the IPsec protocol
(more precisely, in the ISAKMP [20]). The goal of
Oakley is establishment of a secret key between two
parties communicating through an insecure channel. It
is based on the Diffie-Hellman key agreement protocol
but it has some additional advantages. The Oakley
protocol is scalable and secure. Its main features are
presented below:
• the protocol offers strong authentication methods

for the parties’ identities;
• before authentication, two parties do not have

to compute the exponentiations shared, so it is
efficient;

• the authentication checks the results of exponen-
tiations assigned to the identities of the parties;

• Oakley allows two parties to negotiate the meth-
ods of: encryption, key derivation and authenti-
cation;

• it allows the two parties to agree a shared secret
without resource demanding public key encryp-
tion;

• several options for the key computation are avail-
able;

• the parties can derive a new key from an existing
one in a few ways, with aid of the Diffie-Hellman
protocol or without;

• Oakley uses cookies to provide a mechanism
which helps avoiding Denial of Service (DoS)
attacks. This will be present it in details in the
next subsection;

• additionally, the parties can define their own or
select the existing mathematical structures for the
Diffie-Hellman protocol;

• the protocol allows two parties to use features,
that are best suited to their needs and capabilities;

As we can see from the above, the Oakley protocol
is very powerful and flexible. However, in spite of
that it fulfills its usual duties, it may be enhanced
with additional functions. Since, as many other popular
cryptographic protocols, it omits strong freshness or
time synchronization service, it can be extended with
these security services.

The Oakley protocol defines two parties: Initiator
and Responder. This is similar to the Client-Server
architecture in messages exchange services. However,
in Oakley the parties provide equal contents in the
key negotiated. The protocol offers many scenarios
of establishing a new secure communication channel;
its versions depend on participants’ preferences and
capabilities. In spite of that the messages exchanged
are different in the protocol’s versions, Oakley includes
several permanent elements. One of those obligatory
elements is a cookie, which will be discussed now as
an essential part of our freshness scheme.

Cookies
The Oakley protocol is protected against some sort

of DoS attacks. This is realized by anti-clogging tokens
called cookies. The cookies are exchanged between the
parties in each version of the protocol as messages’
headers. Since large integer exponentiation is com-
putationally the most expensive step of the protocol,
before the parties start its execution they exchange the
cookies to ensure that they are legitimate and they are
interested in the protocol’s execution. For both parties
the cookies act as participants’ identifiers and they rely
on source addresses.

Another duty of the cookies is keys naming. In
[19] the cookie of Initiator is denoted by CKY -I
and analogously, the cookie of Responder is CKY -
R. A concatenation of these identifiers gives the key’s

670

identifier KEY ID. KEY ID is associated with the
key shared by the parties and it is very important in
further keying material usage and regeneration.

The Oakley standard defines several ways of execu-
tions of the protocol. The short one, called aggressive,
needs only three messages exchanges, see [19]. Among
other parameters that are sent in the protocol’s steps,
cookies are included in almost each message.

Cookies are present always in the Oakley’s initial
messages (sometimes they are null values), so calcu-
lation of their values should be quick and easy. Usually
they are 64-bit pseudo-random numbers. They are
connected with remote IP addresses of the protocol’s
users and they must be unique over some period of
time, for each such an IP address. Because of these
requirements, many implementations use the crypto-
graphic hash functions for cookies generation.

In the Oakley protocol, the cookies are connected
with time and freshness, but they do not provide any
direct information about time. In our approach pre-
sented in the next section the cookies will be modified
in such a way that they will retain their uniqueness
property, but they will be additionally equipped with a
fresh time information. As a consequence, the whole
key agreement protocol will be enhanced with a new
service.

IV. TIME REFRESHMENT PROTOCOL

Absolute time synchronization in a large network
is almost impossible to achieve. In protocols which
deploy using synchronized time in parties’ internal
clocks, there is always acceptable tolerance of a local
time from a reference time. Therefore in our protocol
we take into consideration a tolerance parameter. For
security of time synchronization let us assume that the
parties of the protocol share a common secret.
In further considerations we will use the following
notation:
• ‖ is the concatenation of two blocks of bits 1

• tR is the actual Responder’s (or Server’s) time,
assumed to be the reference time;

• n is the time tolerance parameter;
• fn(.) is a function that converts each of the values

x̂ ∈ {tR−n, ..., tR, ..., tR+n} to one value f̂n =
fn(x̂) and which satisfies the following condition:

fn(tR) 6= fn(tR + k) (1)

for all integer k such that |k| > n;
• H(.) is a cryptographic hash function or a MAC

scheme;
• K is the secret key shared by Initiator and Re-

sponder;

1To protect the blocks against concatenation flaws one should
assume fixed sizes of the blocks concatenated;

• IPI is the IP address of Initiator (known to the
both parties).

The protocol starts with sending init message from
Initiator to Responder. After receiving the init mes-
sage, Responder (which keeps the reference time)
computes only:

HR = H(K‖IPI‖n‖fn(tR)), (2)

concatenates it with the time tolerance parameter n
and sends the result to Initiator as a reply. In the next
step, Initiator reads his actual time (tI). Succeeding,
if

H(K‖IPI‖n‖fn(tI)) 6= HR, (3)

then Initiator decides that his clock is desynchronized
(his time is outside of the set {x−n, ..., x, ..., x+n}).
When the hashes are equal, he decides that his clock
and the Responder’s clock are synchronized with a
precision defined by the parameter n. To come to a
decision only one hash computation is required for
each party. In the above calculations we assumed that
the parties of the protocol shared the common secret
K. To authenticate the messages they merged the se-
cret K with the other parameters being sent. However,
since in many MAC schemes a secret parameter K is
used as the algorithm’s parameter, it is not necessary
to merge K with the messages before the algorithm’s
execution.

Protocol details

An important element of the construction presented
is the function fn(.). It should convert any of
x− n, ..., x, ..., x+ n to one value in such a way that
the property given in (1) is satisfied. The auxiliary
function f̂n(.) can be defined as:

f̂n(x) =

x− r

p
, r ≤ n

x+ p− r

p
, r > n

(4)

where p = 2n+ 1 and r = x mod p.
The purpose of using fn(.) is to obtain the same

value of hash (equal to the hash of the value in the
middle) for all arguments of a given time range, as
it is presented in Fig. 1. As we can see, the reference
time must lie in the middle of the time range. The
function f̂n(.) is piece-wise constant. So, to pass time
tR with tolerance n, we must shift the arguments of
the function f̂n(.) in such a way that the reference
time will lie in the middle of the time range. In order
to achieve this we define the offset parameter ô as:

ô = tR mod p. (5)

To obtain the time freshness information we first
compute

fn(tR) = f̂n(tR − ô) (6)

671

Fig. 1: Intervals of constant values of the output of
function fn(.)

Fig. 2: Initial messages of the Oakley protocol with
the time refreshment scheme included

and then the hash value of the concatenation of all the
parameters required:

HR = H(K‖IPI‖n‖ô‖fn(tR)). (7)

In this scheme, we additionally used the parameter ô,
defined above. It is crucial for achievement property
(1) of the function fn(.). This parameter depends
on the actual time (it is obtained dynamically), so
to achieve its integrity we concatenate it with other
parameters and hash them together. Of course, the
receiver of the hash does not know the ô value, so
we must sent it separately. Moreover, if we have not
agreed the tolerance value, we must sent it also with
the hash value.

Implementation in the Oakley protocol

In our proposal hash, tolerance and offset
parameters are included into a cookie of the
Responder. We presented that structure above. Thus,
the cookie looks like this:

CKY −R = HR‖n‖ô. (8)

In common scenarios our solution may be used as
is presented in Fig. 2. The init message is generic for
Oakley. Responder delivers a cookie with other Oak-
ley’s fields. The cookie consists of the hash, tolerance
and offset values. Initiator produces another hash value

from his local time (see Remark 1) and then checks
if the hashes are equal. If they are, then his time is
in a time range of Responder, so Initiator can adjust
his own clock to Responder’s time using the offset
value. Otherwise, Initiator needs to synchronize his
time by an external service (see Remark 2 and Remark
3 below). Note that Initiator knows his own IP address,
but the tolerance and offset parameters are delivered in
the cookie. Remaining steps of execution of the Oakley
protocol are specific for a given scenario.
Remark 1. In our approach we treat transfer delays
as negligible values. If these delays are significant
then Initiator must take them into consideration, so
the time of Initiator obtained by the system function
get time(.), before using a cryptographic hash func-
tion, should be adjusted according to the delays.
Remark 2. Our scheme also allows Initiator to make
an attempt of the ”off-line” time synchronization.
Initiator may be interested in looking for the reference
time by checking probable time values from different
ranges (see e.g. [21]).
Remark 3. We rely on the Oakley protocol in ensuring
integrity of the protocol’s messages. So, when Oakley
fails, the Initiator must not apply any changes in
configuration of his system. We describe this aspect
in Section V.

Execution of the enhanced protocol

Presentation of a complete Oakley’s execution needs
description of several additional elements of the proto-
col. Concatenation operation ‖ and the hash function
H(.) already have been introduced. The rest of nota-
tion follows the Oakley’s specification [19]:
• ID(I), ID(R) denote the identities of Initiator

and Responder;
• EKI

(.) and EKR
(.) are the encryption using

public key of Initiator and Responder;
• EHAO is a list of encryption/hash/authentication

methods choices offered;
• EHAS is a set of three items selected from the

list EHAO (they are the methods for encryp-
tion/hash/authentication accepted);

• T = OK KEYX represents a type of the
message;

• NIDP means that the identities are not en-
crypted;

• NI and NR are the nonces supplied by Initiator
and Responder;

• KIR = H(NI‖NR);
• sKI and sKR are values which are included into

the nonce fields of Initiator and Responder;
• R′ is the identity of Responder in the form of a

plaintext;
• KEY ID = CKY -I‖CKY -R is the name of a

secret key negotiated;

672

• sKEY ID denotes the keying material for the key
called KEY ID.

An example of the so-called aggressive version of
the Oakley protocol with private identities and without
Diffie-Hellman protocol is now considered [19]. This
scenario is noteworthy if we need simplicity and high
performance of the protocol. However, the perfect
forward secrecy for the session key is not achieved
in this mode. Exchange of messages in this version
of the protocol is presented in Fig. 3. Let us now

I message R
→ CKY -I , 0, T , 0, 0, EHAO, NIDP , →

ID(R′), EKR′ (ID(I)‖ID(R)‖sKI), NI

← CKY -R, CKY -I , T , 0, 0, EHAS,
NIDP , EKI

(ID(R)‖ID(I)‖sKR), Nr,
H(KIR‖ID(R)‖ID(I)‖NR‖NI‖EHAS)

←

→ CKY -I , CKY -R, T , EHAS, NIDP , →
H(KIR‖ID(I)‖ID(R)‖NI‖NR‖EHAS)

Fig. 3: Execution of the enhanced version of the
Oakley protocol

focus on cookies. The first message contains only
CKY -I (0 in a message denotes a null value). Next,
Responder produces CKY -R in a way presented in
Fig. 2 and sends it within the second message. When
Initiator receives it, he is able to check if his time is
synchronized (with a tolerance n). If it is, then the
time value can be adjusted by ô to the reference time.
Otherwise, in case of a desynchronized clock, Initiator
can detect this and adjust time using some external
time-synchronization protocol, see e.g. [7]–[10].

Sometimes, during communication it is a necessity
to obtain a new key from the old one. It should be
realized in an easy and fast way. Oakley provides us
such a mechanism, called the quick mode. Usually
this operation is performed periodically so it is an
excellent opportunity to synchronize time. However,
in the standard protocol there is no field (like a
cookie) to carry secure time information. Therefore
we must add this short field to some existing mes-
sage. The modified quick mode with a secure time
information is presented in Fig. 4. After quick mode
execution the parties have the new key computed
as H(sKEY ID‖NI‖NR) and, moreover, Initiator is
able to synchronize his clock (in the way presented
in the previous example). The cookie of Responder
is constructed in Eq. (7). Additionally, to authenticate
the cookie, the value of CKY -R is concatenated with
other inputs of the hash function. It is realized in
the second message. The quick mode is very fast, it
requires only sending three messages and the calcula-
tions are also very simple.

I message R
→ KEY ID, NI , H(sKEY ID‖NI) →

← KEY ID,NR,
H(sKEY ID‖1‖NR‖NI‖CKY -R),
CKY -R

←

→ KEY ID, 0, H(sKEY ID‖0‖NI‖NR) →

Fig. 4: The Oakley’s quick mode with a secure time
information

V. ANALYSIS

A cookie is a quite short message. We want to
include hash and two parameters within 64 bits. The
tolerance (n) parameter can be agreed in advance, but
then our scheme becomes less flexible. We save space
in the cookie for a longer hash, but we can not match
the time range. Fixed n may be useful in embedded
systems, but we decide to consider a flexible example
of the scheme.

The approach presented is closely connected with
a cryptographic hash function. The hash function is
a core of our solution, so this element should be
chosen very carefully. It should be widely approved
and secure. The best known general attack against
hashes is the birthday attack, which enables finding
collisions [22] with the lowest computational effort.
For the hash function H(.) we define the collision as
finding two messages m1 and m2 such that:

m1 6= m2 ∧H(m1) = H(m2). (9)

TABLE I: Average number of hash calculations to
obtain a collision with a given probability versus
length of given parameters.

Prob. nl = 1
ol = 2
hl = 61

nl = 2
ol = 3
hl = 59

nl = 5
ol = 6
hl = 53

nl = 7
ol = 8
hl = 49

nl = 9
ol = 10
hl = 45

nl = 15
ol = 16
hl = 33

25% 1.15×109 5.76×108 7.20×107 1.80×107 4.50×106 7.03×104

50% 1.79×109 8.94×108 1.12×108 2.79×107 6.98×106 1.09×105

75% 2.53×109 1.26×109 1.58×108 3.95×107 9.88×106 1.54×105

Of course, the occurrence of collisions is very un-
desirable. In our case a collision is not very interesting
for an attacker, it rather can mislead Initiator. Having
unsynchronized time, he could obtain the same hash,
so he could deduce that his clock is synchronized.
In Table I we present how many (in average) hashes
one must compute to obtain the collision with a given
probability. This estimation depends on the param-
eters’ lengths in a cookie message. In 8 octets we
must place the values of: tolerance, offset and hash.

673

Fig. 5: Average number of hash calculations to obtain
a collision with a given probability versus tolerance
field length

So, in the cookie we define fields with fixed size. In
Table I we denote by nl, ol and hl the field lengths
for the tolerance, offset and hash values. The lengths
are expressed in bits. The most important for this
consideration is the length of the tolerance parameter
(nl), because it determines the length of the offset
field (ol) and, as a consequence, the hash length (hl).
Basing on this information and on a communication
profile we can evaluate the length of the field n in a
cookie. Additional visualization of how the tolerance
field length influences the probability of collision is
presented in Fig. 5.

For attacker with ability to eavesdrop and to tamper
messages, a forgery in the time refreshment protocol
is equivalent to breaking the hash function used or
finding the key K. The probability of successful attack

should be close to max(
1

2l
,
1

2l′
), where l and l′ are

security parameters (l is the length of K and l′ is the
length of the hash function output), but an attacker
has no significant gain in collisions’ calculation. The
key K should be at least 112-bits long for medium-
term protection. The tolerance n and the offset ô are
sent as a plaintext, so we must ensure their integrity.
That is realized by concatenating these values with K,
IPI and the value of fn(tR − ô) and by calculating
their hash, see (7). The verification passes when all
these values are correct. However, a malicious attacker
can modify all messages. So, when he decides to
modify any parameter of the Responder’s cookie,
then Initiator states that his clock is desynchronized
(even if it is not true). Initiator on this level cannot
detect a malicious modification. But our scheme is
embedded into the Oakley protocol, which provides
integrity/authentication of messages, so any malicious
modification would be detected in the following steps
of the Oakley protocol.

The scheme presented protects the reference time
even when an attacker compromises the key K. It is

because of the inherent properties of a cryptographic
hash function, which produces the cookie. In this case
the attacker must perform the brute force attack in or-
der to determine the values of parameters hashed. The

TABLE II: Average number of hashes needed to deter-
mine the reference time with a given time resolution
and a given tolerance parameter length

Time n = 2 n = 6 n = 15 n = 40 n = 100 n = 250

16bits 8.2×103 2.7×103 1.1×103 4.1×102 1.6×102 6.5×101

32bits 5.4×108 1.8×108 7.2×107 2.7×107 1.1×107 4.3×106

64bits 2.3×1018 7.7×1017 3.1×1017 1.2×1017 4.6×1016 1.8×1016

time of a successful attack mainly depends on the value
of n. This is because the larger size of parameter n
decreases the size of outputs of the function fn(.) (and,
what it follows, the number of its possible values), so
an attacker has to compute less hashes in average to
break the protocol. The second important factor is the
time resolution. The most popular size of actual time
storing is 32 bits, but 16 bits and 64 bits variables
are used too. Table II presents average numbers of
hashes needed by an attacker to be computed in order
to determine the reference time. We present it with a
fixed time resolution and a fixed value of the tolerance
parameter.

Analyzing Table II and taking into account Table I
we can adjust the parameter n to achieve acceptable
security level for our time refreshment protocol.

The memory, transmission and computational over-
heads of the scheme presented are negligible for In-
ternet applications. Our solution uses a cryptographic
hash function; generally, the most of implementations
of ISAKMP use fast cryptographic hash functions (for
cookies generation) too. We change only the arguments
of this function, which fits (in most cases) to one block
of a hash. Furthermore, modifications are introduced
only in the first phase of the Oakley protocol. For
this reason, the computational overhead due to time
freshness service is negligible.

VI. APPLICATIONS OF THE NEW PROTOCOL

Our scheme ideally fits as a lightweight time re-
freshment protocol. It can be easily integrated into
other existing security protocols. Its main security
requirements are that the parties share the secret key
K and that the protocol provides data integrity. The
last requirement can be achieved by using additional
authentication code for a message. In many protocols
there exist fields for timestamps, which can be used
in such a case. A good example is Optimized Link
State Routing Protocol (OLSR) and its secured version
[23], where the method described could be placed into

674

a timestamp message. Other examples of methods,
which can be enhanced with time refreshment are
authentication protocols like [24]–[26], where also
timestamp fields occur.

There are many other applications where assurance
of an actual time is required. One more good example
could be Kerberos Protocol [27], [28], where the
time of a server and the time of clients must be
synchronized. Our scheme can be applied there: when
a client detects that his time is desynchronized, he
should synchronize it with a trusted host (server).
The server does not disclose its time, thus a potential
attacker, even when the secret key is compromised,
knows only that the client’s time is wrong. The pre-
sented proposal of freshness may be used also in
other applications, e.g. position-based nodes selecting
in the WSNs, see [29] or as freshness solution for key-
agreement protocols [30].

VII. CONCLUSIONS

In this paper we proposed a protocol which realizes
time synchronization and data freshness between two
parties. The approach described ideally fits crypto-
graphic or secure communication protocols. Hence we
decided to use the Oakley protocol as an example of
its application. The Oakley protocol can be enhanced
in an easy way, because of cookies contained in
its messages. Moreover, such an extension gives no
significant computational or memory overhead to the
original protocol. Another crucial issue is security. It
strongly depends on a cryptographic hash function
chosen, traffic in the network and the tolerance param-
eter selected. As is shown in the above, appropriate
selection of these factors can give us the expected
security level. All parameters can be set according
to a given key agreement scenario. We can increase
the level of security by agreement of the tolerance
parameter in advance (then the hash value in a cookie
will be longer). The scheme should be composed into a
protocol which provides integrity of messages (as the
Oakley protocol does), otherwise it needs additional
authentication code to protect the hash value and the
protocol’s parameters. As is presented in this paper,
our solution is fast, scalable, secure and it can be
integrated with existing protocols in an easy way.
It can be very useful, especially for secure content
distribution approaches like [30].

REFERENCES

[1] L. Gong, “Variations on the themes of message freshness and
replay - or the difficulty in devising formal methods to analyze
cryptographic protocols,” in In Proceedings of the Computer
Security Foundations Workshop VI. IEEE Computer Society
Press, 1993, pp. 131–136.

[2] Z. Liang and R. M. Verma, “Complexity of checking
freshness of cryptographic protocols,” in Proceedings of the
4th International Conference on Information Systems Security,
ser. ICISS ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
86–101. [Online]. Available: http://dx.doi.org/10.1007/978-3-
540-89862-7 6

[3] R. J. Corin, “Analysis models for security protocols,”
http://eprints.eemcs.utwente.nl/1307/, Enschede, Netherlands,
January 2006.

[4] R. Sharp and M. R. Hansen, “Timed traces and strand spaces,”
in CSR 2007, ser. LNCS, M. V. V. Dickert and A. Voronkov,
Eds., vol. 4649. Springer-Verlag, 2007, pp. 373–386. [Online].
Available: http://www2.imm.dtu.dk/pubdb/p.php?5325

[5] K. Lee and J. Eidson, “Ieee-1588 standard for a precision
clock synchronization protocol for networked measurement
and control systems,” in In 34 th Annual Precise Time and
Time Interval (PTTI) Meeting, 2002, pp. 98–105.

[6] B. Barak, S. Halevi, A. Herzberg, and D. Naor, “Clock syn-
chronization with faults and recoveries (extended abstract),”
in Proceedings of the nineteenth annual ACM symposium
on Principles of distributed computing, ser. PODC ’00.
New York, NY, USA: ACM, 2000, pp. 133–142. [Online].
Available: http://doi.acm.org/10.1145/343477.343534

[7] D. L. Mills, “Internet Time Synchronization: the Network
Time Protocol,” IEEE Transactions on Communications,
vol. 39, pp. 1482–1493, 1991. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.9287

[8] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” in Proceedings
of the 5th symposium on Operating systems design
and implementation, ser. OSDI ’02. New York, NY,
USA: ACM, 2002, pp. 147–163. [Online]. Available:
http://doi.acm.org/10.1145/1060289.1060304

[9] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The
flooding time synchronization protocol,” in Proceedings
of the 2nd international conference on Embedded
networked sensor systems, ser. SenSys ’04. New York,
NY, USA: ACM, 2004, pp. 39–49. [Online]. Available:
http://doi.acm.org/10.1145/1031495.1031501

[10] S. Johannessen, “Time synchronization in a local
area network,” Control Systems Magazine, IEEE,
vol. 24, no. 2, pp. 61–69, 2004. [Online]. Available:
http://dx.doi.org/10.1109/MCS.2004.1275432

[11] A. Syed and J. Heidemann, “Time synchronization for high
latency acoustic networks,” in Proceedings of the IEEE
Infocom, Barcelona, Catalunya, Spain, April 2006. [Online].
Available: http://www-scf.usc.edu/ asyed/papers/tshl.pdf

[12] K. Iwanicki, M. van Steen, and S. Voulgaris, “Gossip-
based clock synchronization for large decentralized systems.”
in SelfMan, ser. Lecture Notes in Computer Science,
A. Keller and J.-P. Martin-Flatin, Eds., vol. 3996.
Springer, 2006, pp. 28–42. [Online]. Available: http://dblp.uni-
trier.de/db/conf/selfman/selfman2006.html

[13] M. Manzo, T. Roosta, and S. Sastry, “Time synchronization
attacks in sensor networks,” in Proceedings of the
3rd ACM workshop on Security of ad hoc and
sensor networks, ser. SASN ’05. New York, NY,
USA: ACM, 2005, pp. 107–116. [Online]. Available:
http://doi.acm.org/10.1145/1102219.1102238

[14] S. Ganeriwal, S. Čapkun, C.-C. Han, and M. B.
Srivastava, “Secure time synchronization service for sensor
networks,” in Proceedings of the 4th ACM workshop
on Wireless security, ser. WiSe ’05. New York, NY,
USA: ACM, 2005, pp. 97–106. [Online]. Available:
http://doi.acm.org/10.1145/1080793.1080809

[15] H. Li, Y. Zheng, M. Wen, and K. Chen, “A secure
time synchronization protocol for sensor network,” in
Proceedings of the 2007 international conference on
Emerging technologies in knowledge discovery and
data mining, ser. PAKDD’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 515–526. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1780582.1780638

[16] K. Sun and P. Ning, “Tinysersync: secure and resilient time
synchronization in wireless sensor networks,” in ACM Con-

675

ference on Computer and Communications Security. ACM
Press, 2006, pp. 264–277.

[17] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock
synchronization for wireless sensor networks: A survey,” Ad
Hoc Networks (Elsevier), vol. 3, pp. 281–323, 2005.

[18] A. Boukerche and D. Turgut, “Secure time synchronization
protocols for wireless sensor networks,” Special Issue of IEEE
Wireless Communications Magazine on Security in Wireless
Mobile Ad Hoc and Sensor Networks, vol. 14, no. 5, pp. 64–
69, October 2007.

[19] H. Orman, “The oakley key determination pro-
tocol,” RFC 2412, 1998. [Online]. Available:
http://tools.ietf.org/html/rfc2412

[20] D. Maughan, M. Schertler, M. Schneider, and J. Turner,
“Internet security association and key management
protocol (isakmp),” RFC 2408, 1998. [Online]. Available:
http://tools.ietf.org/html/rfc2408

[21] G. Lukas, A. Herms, and D. Mahrenholz, “Interval
based off-line clock synchronization for wireless
mesh networks,” SIGMETRICS Perform. Eval. Rev.,
vol. 35, pp. 10–12, December 2007. [Online]. Available:
http://doi.acm.org/10.1145/1328690.1328695

[22] G. Yuval, “How to swindle rabin,” Cryptologia, vol. 3, pp.
187–189, 1979.

[23] C. Adjih, T. Clausen, A. Laouiti, P. Mhlethaler, and D. Raffo,
“Securing the olsr protocol,” in In 2nd IFIP Annual Mediter-
ranean Ad Hoc Networking Workshop (Med-Hoc-Net 2003),
Mahdia, 2003, pp. 25–27.

[24] K.-Y. Lam and T. Beth, “Timely authentication in distributed
systems,” in Computer Security - ESORICS 92, Second Euro-
pean Symposium on Research in Computer Security, Toulouse,
France, November 23-25, 1992, Proceedings, ser. Lecture
Notes in Computer Science, Y. Deswarte, G. Eizenberg, and
J.-J. Quisquater, Eds., vol. 648. Springer, 1992, pp. 293–303.

[25] V. Goyal, A. Jain, and J.-J. Quisquater, “Improvements to
mitchell’s remote user authentication protocol,” in ICISC,
2005, pp. 69–80.

[26] “Logical analysis of authmac dh: a new protocol for authen-
tication and key distribution,” Computers & Security, vol. 23,
no. 4, pp. 290 – 299, 2004.

[27] Y. Li and J. Pang, “Extending the strand space method to
verify kerberos v,” in Proceedings of the Eighth International
Conference on Parallel and Distributed Computing,
Applications and Technologies, ser. PDCAT ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 437–444.
[Online]. Available: http://dx.doi.org/10.1109/PDCAT.2007.43

[28] D. T. Davis and D. E. G. Jr., “Kerberos with clocks adrift:
History, protocols, and implementation,” Computing Systems,
vol. 9, no. 1, pp. 29–46, 1996.

[29] P. Szalachowski, Z. Kotulski, and B. Ksiezopolski, Secure
Position-Based Selecting Scheme for WSN Communication,
ser. CCIS. Springer Berlin Heidelberg, 2011, vol. 160, pp.
386–397.

[30] P. Szalachowski and Z. Kotulski, “One-time broadcast encryp-
tion schemes in distributed sensor networks.” Special Issue of
International Journal of Distributed Sensor Networks on Smart
Sensor Networks: Theory and Practice, 2012.

[31] D. Maughan, M. Schertler, M. Schneider, and J. Turner,
“Internet security association and key management protocol
(isakmp),” RFC 2408 (Proposed Standard), Internet
Engineering Task Force, Nov. 1998, obsoleted by RFC
4306. [Online]. Available: http://www.ietf.org/rfc/rfc2408.txt

[32] P. Ashton and P. Ashton, “Algorithms for off-line clock syn-
chronisation,” 1995.

676

