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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

On two motions of a : artlcle driven by equlvalent
ergodlc and chaotlc reﬂectlon laws

- J.SZCZEPANSKI, Z. A. KOTULSKI

(WARSZAWA)

IN THE PAPER We ana.lyse dynamncal systems describing the motion of a free part:cle
in a domain on a plane (a square). We show that topologically equwalent refle
laws (each of them ergodic and chaotic) governing particle’s motion at th
of reflection can lead to two dynamical systems with entirely dJEerent qua.hta.tive
properties. We also indicate a general problem of transferring such properties llke
chaos and ergodicity from a subsystem to the extended one.

1. Introduction

THE MOTION OF A FREE PARTICLE in a bounded domain is mherently determined by
the shape of the boundary and the reflection law at this boundary. The reflection
law m rmponmble for the global behaviour of the velocity of the particle during
its contact with the boundary of the domain. In such dynamical systems (in the
xdea.hsed theoretical ‘model), the fundamental physical laws like the conservation
of linear momentum and the conservation of energy are assumed to be satisfied

what leads to extensively studied classical billiards. This means that the incidence

angle is equal to the reflection one. In general, analysing the transformation of

the angles of the’'moving particle at the moment of reflection one can observe that

the ref ectl- iy law 1tself 1S a dynamlcal system This has created a temptatlon to

¢ ?'ii qere are only hypo thesu on what happens when the partlc-

le reaches the bounc ary, more or . less confirmed by experiment. Reflection law
models are an in erme ate case between the deterministic systems first conside-
SHINBROT [2] and systems with random reflection laws [6].

N amely, we adm:t a system mth a strictly deterministic reflection laws that are
not one-to-one maps. Thus, in this case it can happen that two different initial
conﬁguratlona in the phase space lead to the same final configuration what is im-
POSSi| and Shinbrot model. There is a number of maps playing
the role of the reﬂectlon law. The authors investigate the properties of the reflec-
jon laws finding al ' enomena like: non-slip reflection
208 ergodxmty (mxxmg prOperty) of

systems dmcnbmg beha\nour of the partxcle

- The reflection laws describe the global behavu)ur of the velocity of a freely
moving particle during its contact with the boundary of the domain. From this
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point of view, non-classical reflection laws do not satisfy such a fundamental
physical law as the conservation of linear momentum However, one can find some
situations where such laws can describe realistic physma.l phenomena. Consider
for example the container, the wall of which has some microstructure (Fig. 1).

We assume that the mass of the reflected particle is negligible in comparison to
the mass of the container. Then the reflection process, observed as non-classical,

can in fact be the effect of few classical elastic reflections where, for every micro-
reflection, the conservation of linear momentum is satisfied. In this model, due

to the small scale of the mlcroreﬁectlon we ldentlfy the outgomg posmons with

the mcommg point.

F1G. 1. Effect of the boundary microstructure on the reflection law.

After the reflection law was extracted fro the extended d* namical syster
describing the motion of freely moving particle and then independently conside-
red, one can ask the following questions: What are the properties of the extended
system if we use non-classical reflection law? What is the effect of the specific
properties of the reflection law (like chaos or ergodicity) on the behaviour of the
particle? Is the partlcle motion- cha.otlc or ergodlc'? Let us reark that thlS is a
dlﬁ'erent prob am * ved i

of a moving Partlcle. We perform our considerations in two dimensions, where
qualltatwe results we are interested in can be observed. Extensions of the results

imensional spaces lead to some technical problems, what can be also
observed in the case of the widely studied classical billiards theory. However, the

results in two dimensions can give some suggestmns concerning the behav:our of
more-dJmmslonal systems. * - - —

Problems of transferring of imposed properties from a dynamical system to
its extension appear in various situations [4, 5, 7, 8] and seem to be interesting
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both from the theoretical and practical point of view. They naturally arise from
the problems of physics, engineering dynamics, mathematical economy and many
others. In general, by an extended dynamical system we understand a system with
state space of dimension greater than the original one and functionally dependent
on it. Such a system can be a simple extension of the given dynamical system
obtained by adding more co-ordinates without changing the form of the primary
ones, or it can be some higher-dimensional dynamical system driven by the lower-
dimensional one. In this paper we consider the transfer problems in the case of
a free particle motion inside a bounded plane domain. We assume the reflection
law as a primary dynamical system and the motion of the reflecting particle as
an extended system. |

To establish a reflection law model one must select a domain with a certain

shape of the boundary and define the reflection law. Usually, the boundary is
assumed to be a closed, sufficiently smooth curve. The reflection law can be quite
general; in our considerations we assume that the particle moves with a constant
velocity, changing the direction at the moment of reflection. In the particular
case of the reflection law conserving the angle of incidence (the angle of incidence
1S ua.l to the angle of reﬂectmn) , one obtains the class of dynamical systems
atled bith Tms ervative reflection law (as a map) is neither ergodic
nor chaotlc (see formula (*) in the next Section). However, it is well known that
in appropriate domains it can lead to ergodic or chaotic motion of a particle.
Thus, to obtain ergodic [9] and chaotic properties [8, 10-11] of a reflection law,
one must assume another map relating the incident and outcoming angles. Such
models have been studied in [1-5].

Applying various reflection laws, we face some natural questions when descri-
bing the motion of particles:

¢ I'ix a reflection law. Do the ergodic and chaotic properties of the law transfer

‘to the same pmpertlw of partlcles motion for some typically used shapes of the

domain?

e Fix a shape of the ""i_mam Do topologically conjugate ergodic and chaotic
reflection laws generate equivalent motion of the particle?

Some insight into the first problem was given in [5]. It was shown that for
two simple domains, the ergodic and chaotic properties of the same reflection law

can transfer in a qmte different manner. In this paper we deal with the second
question.

Now we specify the model. We assume that the domain of a moving particle

‘18 a square. In the domain, the particle moves along straight lines with a constant

velocity; when it encounters a wall it “reflects”, that is, its velocity instantaneously -
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changes (according to some reflection law) to another “reflected” value to make
the particle remain inside the domam The motion of the partlcle is described by
two co-ordinates (Flg 2): - - S

Xn

Fi1G. 2. The co-ordinate system used to describe the motion of a particle in a squane

e the position z,, at the aquare 8 boundary at the moment of the n-th reflection
(measured counterclockwise from the fixed vertex of the square);

e the angle v, measured from the tangent to the boundary to the velocity
vector of the point after reflection (clockwise). f
To complete the definition of the system we assume some reﬂectmn law T .
(0 77) (0 /1 ): T(Vinc) = Vref 3) FOI examr "
conaervatwe reflection law is given by the map

wt

Vref = T(Vinc) =T — Vinc.

vmf -~ T(V. |

vinc ‘ "

X

F1G. 3. The reflection law in local co-ordinates.
Thus, the motion is described by the two- dimensional map
Fr:[0,L) x (0,7) — [0,L) x (0, ),

- FT(.’Sn, Vn) = (xn-l-l’ Vﬂ+1):

(2.1)

- L]
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where the subscript in F7 denotes the dependence of the function on the reflection
law T', and L is the length of the boundary of the square. E
We consider the following two reflection laws: '

Iy : (Oa 'ﬂ') — (O$ 7!'),

- Vref = 13 (Vinc) — ":"r""/inc("r

(2.2)

= Vinc)a
and

Ty : (0,7) — (0,7),
(2.3)
- 2Vinc for v € (0: 77/2)’

Vref = 12(Vine) = '
ref 2( ) { 2(7f' — Vinc) for Vinc € [77/2’ 7!')-

17 1s a unimodal map which is ergodic and chaotic [12]. T5 is the so-called tent
map, also ergodic and chaotic [13].

These maps are tOpologca.lly conjugate [14]; the eqmvalence is given by the
homeomorplnsm

(24) o I g(y) = 2arcsin \/-—Z,

1.e. the following diagram is commutative:

0,7) L1 (0,x)

(2.5) lg g
o

—

This dlagram | ,ﬁ iel ds the followmg implications:

_____

I If v — & (80 Ty(vi) — Ti(P)) then the g-correepondmg sequences satisfy:

g9(vx) — g() and Ta(g(wx)) — g(T1(P)).

II. If the orbit {TT'(x),n = 0,1,2,. } has some pmpertles like periodi-
cxty, asymptotic penodlmty or denslty, then the g-corresponding {73 (g(vp)),
n=0,1,2,..} orbit has the sam -- .

3. Results

~Consider the motion of the partlcle in a square. In the models presented the
‘velocxty of the particle inside the square is constant and the reflection law at the

boundary is given by either T; or T5. It was proved in [5] that if the reflection law
18 defined by T3 then the motion Fi, of the particle is asymptotically periodic,
i.e. for almost all 1mt1al points (xg, 1), after sufficiently many reflections, the
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particle moves closer and closer to the edges of the square. More precisely, the
angle v,, tends to m and so the motion of the particle converges to the penodxc
changes of the positions z,, from vertex to vertex. '

Now assume that the reflection law is defined by 75. We show that the motion
Fr, differs qualitatively from Fr,. To study the behaviour of the system we
observe the second co-ordinate v of motion of the particle. First notice that due
to the geometry of the square (see Fig. 4), the velocity v,, changes in the following
way:

xn +}

e

 yn+l '
Vine = Vn

Vn+i

n+1

Xn Xn

Fi1G. 4. Types of reflections in a square.

\ L) Wa  for v, € (n/4,7/2)
SR 2T —vn) for v, € [1/2,37/4)
ves from one side to the opposite one. Notice that this is possible only when

w/4 < vp < 3m/4, which restricts the domam of the velocity in (2.3).

b) Untl = 2 (-7: — u,,) if the partlcle goes from one mde to the clock 7186

if the particle mo-

2
adjacent side; this is possible only when C O<wvp<m /2.

T
C) Untl = 2 (Vn —

2
kwise adjacent side; this is possible only when 7/2 < v, < 7.

From the above we see that our two-dimensional system Fr, is not a simple
extension of the one-dimensional law 75: due to the geometry of the square,
the second co-ordinate is modified in comparison to the simple reflection law.
Moreover, as we shall see below, the function describing the evolution of the
second co-ordinate is multi-valued over the interval (7 /4, 3w/4) - see Fig. 5 (the

choice of the value from two posslblhtles depends of the first co-ordmate i.e. the
position of the particle). 1

) if the pa.rtlcle goes from one 31de to the countercloc—
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F1G. 5. The plot of the multi-valued map governed by the reflection law 5.

L ft us introduce a new function, based on the properties b) and c) of the

reﬁectlon law* h

. - _J 2r/2 -v) for O0<v<T/2
(3'1) Ton(v) = 2(1/ —7/2) for w/2<v <.
This function will be used for the study of the evolutlon of the second co—ordmate
Of Ff_r2
- Observe that
(3.2) S _ - Top =Thoh,

_? .

where A is a umversal function, inherently connected with the shape of the square:

u+7r/2 for 0 <v<m/2,

(3-3) h(u) . ) - 7r/2 for 7r/2 v .

.ne can see that aftm n sflections the wloclty of the partlcle in the system of
co-ordinates, is of the following form: =

(3.4)

where the subscripts are a; = 2 or 2h for i = 1,2,.
determined by the initial point (zq, 1p).

N otice that the reﬂectmn law T2 has the followmg proper ty:

..y The sequence (a;)™, is

38 D) =Tr-w)
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Moreover, the function 75; satisfies the condition:
(3.6) Tn(v) = 7 = Ta(v).

Both the above properties are satisfied for every v € (0, 7).
From (3.5) and (3.6) we have

B.7)  Th(v0) = Ton(Ten(w) = Ton(m — To(w)) = 7 — Ta(m — Ta(0))

' =71 — T3 (),
and generally, by induction,
(3.8) v, = 15 (1p) or Vn' =7 — 15'().

We come to the conclusion that after the n-th reflection, the second co-ordinate
F7 (x0,10) is either T3'(1p) or the point symmetrical to T3'(vp) with respect
to /2. Now, because T3 is ergodic (with an invariant measure equivalent to the
Lebesgue measure), [13], we conclude that for almost all initial points g the set
{U, = T3(w),n = 0,1,2,...} is dense in (0,7) [9]. Thus, for almost all initial
points (zo,g), the set of velocities {v,,n = 1,2,...} corresponding to each of
them is dense in a set of Lebesgue measure of at least /2. We.see that the
motion Fr, is completely different from the motion F7,, where the sequence

of velocities v, converged to the constant value 7r, mdependently of the 1mt1al
position zg and the starting velocity vg. :

Observe that an analogous result can be ob ained for rectangles.
To end this section, we point out an interesting property of the relation (3.2).
Consider the following chaotic and mixing reflection law:

(3.9) _ Tg(l/) = 2v (mod 7).

For this law applied to the motion of the particle in the square, the formula (3.2)
becomes _. J ,
(3.10) ' o T3y, = T30 h = T3.

This is an example of a law invariant with respect to the function h. This class
of reflection laws has an unusual property that the evolution of the second co-
ordinate v of particle’s motion Fp, is independent of the position x (the first
co-ordinate of Fry).

4. Final remarks and conclusions

The problems studied in this paper were inspired by previous investigations
connected with description of a single particle motion. The particle’s motion with
a non-classical reflection law arises in a number of practical physical phenomena.
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The models of this kind can be observed in very rarefied gases, the so-called
Knudsen gases |1, 4]. The investigation of the reflection law models allows us to
predict, under some additional mathematical assumptions, the qualitative pro-
perties of the one-particle distribution function of the gas (e.g. the analyticity).

- Another problem, directly related to the reflection law models, is the motion of
a particle in accelerators [15]. Moreover, in this case the particle’s motion can be
described by the so-called “standard maps” which turned out to be the Poincaré
maps generated by the moving particle [11, 16—-17|. These maps are topologically
conjugate to some dynamical systems obtained in the study of reflection law
models [5]. .

The transfer of properties from smaller to extended dynarmca.l systems can
also be analysed in the motion of the particle in a viscous medium under the
influence of a kick force. This phenomenon was modelled and investigated in [18].

Among many applications of chaos one can find also the recent utilisation of
chaotic dynamical systems to construct secure communication (see e.g. [19-20]).

In [21-22] we proposed the method of extendmg dyna.rmca.l gystems to construct

uch - ions. can be ,..erformed In the case of the block cryptosystems, the
encryptnon a.nd decryptlon 18 based on multiple inverse iterations and forward
iterations. The secret key is introduced into the reflection law (the velocity of the
particle) and the message is considered as the position of the particle [23]. Under
the appropriate way of transferring the properties of the reflection law, the initial
position of the particle cannot be reconstructed from the final position without
the knowledge of the initial particle velocity (our secret key). '

The considerations of this paper point out the mterestmg problem of con-
structing a chaotic and ergodic reflection law which would guarantee the transfer
of these pmpertles to certain extended dyna.mlcal systems, like the motion of a
particle in a ‘wide class of typical containers or some secure cryptosystems.

Our models lhow that there are no simple relations between the properties
of a reﬂectxon law and the propert1es of the motion of the particle. Even for the
same class of the reflection laws (in topological sense) with very strong properties
like ergodicity and chacs, the ¢ uahtatwe properties of the motion of the particle

(in commonly used contamers) can be essentially different. It is an interesting

open problem to find additional assumptions on the reflection law which would

ensure the transfer of the above propertles It seems that such type of reflections

uld be interesting from the physical point of view.
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