
On automatic secret generation and sharing: part II

KAMIL KULESZA, ZBIGNIEW KOTULSKI
Institute of Fundamental Technological Research, Polish Academy of Sciences
ul.Świętokrzyska 21, 00-049, Warsaw Poland, e-mail: {kkulesza, zkotulsk}@ippt.gov.pl

Abstract: In the paper we propose a method of automatic secret generation and sharing.
The secret considered is a binary string of fixed length. We show how to
simultaneously generate and share random secret. Such a secret remains
unknown until it is reconstructed.

Key words: cryptography, secret sharing, data security, extended key verification protocol

1. INTRODUCTION

In this part of the paper we use terms and notation introduced in [2], that is the
first part of this paper. All preliminaries are also contained there. However, in order
to deal with automatic secret generation, we start reasoning from some philosophical
background. Longman’s “Dictionary of Contemporary English” describes secret as
“something kept hidden or known only to a few people”. Still, there are few basic
questions about nature of the secret, that need to be answered:
• When does the secret existence begin?

• Can secret exist before it is created?

• Can secret existence be described by binary variable?

• Can secret exist unknown to anyone; do we need at least one secret holder?

• If secret is shared, how one can verify its validity upon combining the shares?
In our approach secret existence begins, when it is generated. However, for the

secret that is generated in the form of distributed shares, moment of creation comes
when shares are combined for the first time. Before that moment, secret exists only
in some potential (virtual) state. Nobody knows the secret, though secret shares
exist, because they have never been combined. In order to assemble it, cooperation
of authorized set of participants is required.

In such a situation, there are only two ways to recover secret: by guess or by
cooperation of participants from the authorised set. The first way can be feasibly

2

2

controlled by the size of the secret space, while the other one is the legitimate secret
recovery procedure.

In case of the KGH1 (see [1]) secret sharing scheme, the process of creating
secret shares destroys original copy of the secret. Once shares are combined, the
secret is recovered. Recovered secret has to be checked against original secret in
order to validate it. Hence, there must exist primary (template) copy of the secret.
This can be seen from different perspective: recovered secret allows to identify and
validate authorized set of participants, so, the template copy is required for
comparison. For instance, consider opening bank vault. One copy of the secret is
shared between bank employees that can open vault (the authorized set of secret
participants). Second copy is programmed into the opening mechanism. When the
employees input their combined shares, it can check whether they recover proper
secret.

Automatic secret generation and sharing (ASGS) allows computing and sharing
the secret “on the spot”, when it is not predefined. This is typical situation, that
secret helps to identify authorized set of participants upon recovery. In such an
application any element from certain set (say, all l-bit vectors) can be a secret.
Automatic secret generation allows random generation of the secret and elimination
of the secret owner. Later is important even without elimination of the secret owner.
It makes the secret choice “owner independent”; hence decrease chances for the
owner related attack. For instance: users in computer systems have strong inclination
to use as the passwords character strings, that have some meaning for them. The
most popular choices are spouse/kids names and cars’ registration numbers.

In the following sections we propose the mechanisms, that allow automatic
secret generation, such that:
a. The generated secret attains a randomly generated value.
b. Two copies of the secret are created.
c. Both secret copies are created in a distributed form.
d. Nobody knows the secret till the shares from the authorized set are combined.
e. Distributed secret shares can be replicated without compromising the secret.
f. The secret shares resulting from replication have different values then the source

shares.
The outline of the paper is as follows: in section 2 we present basic method for

automatic secret generation and sharing. Next section brings description of methods
for secret replication. Different cardinalities for the replicated sets are being
considered. Proposed methods support extended capabilities, which apart from being
interesting theoretical constructs on their own, allow greater flexibility in the
applications of secret sharing schemes.

Again we recall remarks about procedures and algorithms presented in this
paper. Every routine is described in three parts:
a. Informal description,
b. Routines written in pseudocode, resembling high level programming language,
c. Discussion. Methods and results are formally justified.

1 For brief KGH description consult [2]

3

3

2. BASIC SECRET SHARES GENERATION

In this section we present algorithm that creates a secret simultaneously in two
distributed copies.

Let)1(
is and)2(

is be some secret shares in KGH secret sharing scheme, let S
denote the secret shared. Now, we show how to generate two authorised set of secret

shares { })1()1(
2

)1(
1

)1(,...,, dsssU = and { })2()2(
2

)2(
1

)2(,...,, nsssU = , such that

)2()1(

)2()1(
i

Ui
i

Ui

sSs ⊕⊕
∈∈

== .)1(U is authorised set of primary secret shares that is used

for verification of)2(U .)2(U is called authorised set of user secret shares or, for the
reasons that will become clear later, authorised set of master secret shares. To

generate)1(U and)2(U algorithm SetGenerateM is used.

Algorithm description: SetGenerateM creates)1(U and)2(U , such that dU =)1(,

nU =)2(. First, GenerateM 2 is used to create set M , such ndM += . Next, M

is partitioned into)1(U and)2(U . The Accumulator executes algorithm
automatically.
Algorithm 1: SetGenerateM(d , n)
Accumulator:

GenerateM(nd +)

for 1=i to d do // preparing)1(U

ii ms =:)1(

save)1(
is

end //for

for 1+= di to nd + do // preparing)2(U
dij −=:

ij ms =:)2(

save)2(
js

end //for

return { })1()1(
2

)1(
1

)1(,...,, dsssU = , { })2()2(
2

)2(
1

)2(,...,, nsssU =
end// SetGenerateM
�

So far, generation of secret sets)1(U and)2(U , was described. In order to make
use of the secret shares they should be distributed to secret shares participants.
Shares distribution is carried out via secure communication channel. Little
modification (using send instead of save) of SetGenerateM allows distribution of

2 for description of the algorithm GenerateM consult [2]

4

4

shares once they are created. Due to the volume constrains this topic will be omitted.
Usually, one participant from the authorized set is assigned one secret share. Let

)(n
iP denote secret share participant that was assigned the share)(n

is from)(nU .

When 1)1(=U , one is dealing with degenerate case, where Ss =)1(
1 . It is

noteworthy that, when 1)1(>U , shares assignment to different participants)1(
iP

allows to introduce extended capabilities in the secret sharing scheme. One of
instances could be split control over secret verification procedure.

3. SECRET SHARES REPLICATION

Algorithm 1 allows only two sets of secret shares to be created. Usually,

only)2(U will be available for secret participants, while)1(U is reserved for shares
verification. Often, it is required that there are more than one authorized sets of
participants. On the other hand property used in Algorithm 1 does not allow creating
more than two authorized sets. The problem is: how to share the secret further
without recovering it’s value?

This question can be answered by distributed replication of)2(U into)3(U .

Although all participants)2(
iP take part in the replication, they do not disclose

information allowing secret recovery. Any of)2(
iP should obtain no information

about any of)3(
is . Writing these properties formally:

1. Sss i
Us

i
Us ii

== ⊕⊕
∈∈

)3()2(

)3()3()2()2(

.

2.)2(
iP knows nothing about any of)3(

is .

Such approach does not compromise S and allows to maintain all previously
discussed automatic secret generation and sharing features.

3.1 Authorised set replication (same cardinality sets)

The authorised set satisfies: nUU ==)3()2(, { })2()2(
2

)2(
1

)2(,...,, nsssU = ,

{ })3()3(
2

)3(
1

)3(,...,, nsssU = . Procedure SetReplicate replicates set)2(U into the set
)3(U .

Procedure description: SetReplicate takes)2(U , M , such that)2(2 UM ∗= .

First, all participants)2(
iP are assigned corresponding vectors im . Each of them

performs bitwise XOR on their secret shares and corresponding im . Operation

5

5

result is sent to the Accumulator. Accumulator adds nim + to form)3(
is , which later

is sent to)3(
iP . As the result, simultaneous creation and distribution of)3(U takes

place.

Procedure 3:SetReplicate(M ,)2(U)
Accumulator:

)2(: Un =

for 1=i to n

send im to)2(
iP

)2(
iP : iii ms ⊕=)2()2(:ω // ω is l-bit vector (local variable)

end//for
for 1=i to n

)2(
iP send)2(

iω to Accumulator

Accumulator: niii ms +⊕=)2()3(: ω

send)3(
is to)3(

iP

end// for
end//SetReplicate
�

Algorithm EqualSetReplicate is the final result in this section.

Algorithm description: EqualSetReplicate takes)2(U . It uses SetReplicate to

create and distribute set)3(U , such nUU ==)3()2(.

Algorithm 2: EqualSetReplicate()2(U)
Accumulator:

)2(: Un =

)2(: nGenerateMM =

SetReplicate(M ,)2(U)
end// EqualSetReplicate

Discussion: We claim that EqualSetReplicate fulfils requirements stated at the

beginning of section 3:

1. ())2(

1

2

1

)2(

1

)2(

1

)3(

1
i

n

i
i

n

i
i

n

i
niii

n

i
i

n

i

smsmmss ⊕⊕⊕⊕⊕
===

+
==

=��
�

�
��
�

�
⊕��

�

�
��
�

�
=⊕⊕= as requested.

2. All)3(
is result from XOR of some elements from)2(U with random im , nim +

hence they are random numbers.�

6

6

3.2 Authorised set replication (different cardinality sets)

For 32 UU ≠ there are two possibilities:

Case 1: The authorised set satisfies: dn < , { })2()2(
2

)2(
1

)2(,...,, nsssU = ,

{ })3()3(
2

)3(
1

)3(,...,, dsssU = . The algorithm SetReplicateToBigger takes)2(U . It uses

SetReplicate to create and distribute set)3(U , such dUUn =<= 32 .

Algorithm description: SetReplicateToBigger takes d and)2(U . It generates M ,
such that dM = . Next, it uses SetReplicate to create and distribute first n

elements from)3(U . As the result participants)3(
iP for ni ≤ have their secret

shares assigned. Remaining participants)3(
iP are assigned im (ni >) not used by

SetReplicate. As the result)3(U , such dUUn =<= 32 is created and distributed.

Algorithm 3: SetReplicateToBigger()2(U , d)
)(: dGenerateMM =

SetReplicate(M ,)2(U) // assigns shares for participants up to)3(
nP

for 1+= ni to d

send im to)3(
iP

end//for
end// BiggerSetReplicate
Discussion: We claim that SetReplicateToBigger fulfils requirements stated at the
beginning of section 3:

1. ())2(

11

)2(

11

)2(

1

)3(

1
i

n

i
i

d

i
i

n

i
i

d

ni
ii

n

i
i

d

i

smsmmss ⊕⊕⊕⊕⊕⊕
===+===

=��
�

�
��
�

�
⊕��

�

�
��
�

�
=��

�

�
��
�

�
⊕

�
�
	

�
�

⊕=

2. For ni > all)3(
is are equal to random numbers im . For ni ≤ all)3(

is result

from XOR of some elements from)2(U with random im , hence are random
numbers, too.�

Case 2: The authorised set satisfies: dn > , { })2()2(
2

)2(
1

)2(,...,, nsssU = ,

{ })3()3(
2

)3(
1

)3(,...,, dsssU = . The algorithm SetReplicateToSmaller takes)2(U . It uses

SetReplicate to create and distribute set)3(U , such dUUn =>= 32 .

Algorithm description: SetReplicateToSmaller takes d and)2(U . It generates
M , such that 1−+= dnM . Next, it uses SetReplicate code to create n secret

shares)3(
is . First 1−d shares are sent to corresponding participants)3(

iP .

Remaining)3(
is ({ }nddi ,...,1, +∈) are combined to form)3(

ds that is sent to)3(
dP .

As the result)3(U , such that dUUn =>= 32 is created and distributed.

7

7

Algorithm 4: SetReplicateToSmaller()2(U , d)
)2(: Un =

)1(: −+= dnGenerateMM

Accumulator:
for 1=i to n

send im to)2(
iP

)2(
iP : iii ms ⊕=)2()2(:ω // ω is l-bit vector (local variable)

end//for
for 1=i to 1−d

)2(
iP send)2(

iω to Accumulator

Accumulator: niii ms +⊕=)2()3(: ω
send)3(

is to)3(
iP

end// for
ACC.reset

for di = to n // all)3(
iω for di ≤ were already used

)2(
iP send)2(

iω to Accumulator

Accumulator: ACC.store()2(
iω)

end//for

readACCsd .)3(= //)2()3(: i

n

li
ds ω⊕

=
=

send)3(
ds to)3(

dP

end// SetReplicateToSmaller

Discussion: We claim that SetReplicateToSmaller fulfils requirements stated at the

beginning of section 2:

1. () ())2(

1

1

1

)2(

1

)2()2(
1

1

)3(

1
i

n

i
i

dn

i
i

n

i
ii

n

di
niii

d

i
i

d

i

smsmsmmss ⊕⊕⊕⊕⊕⊕
=

−+

===
+

−

==
=��

�

�
��
�

�
⊕=��

�

�
��
�

�
⊕⊕⊕⊕=

2. All)3(
is result from XOR of some elements from)2(U with random im hence

they are random numbers.�

3.3 Remarks

1. All three algorithms meet requirements stated at the beginning of the paper.
Combing this fact with security proof for KGH secret sharing scheme [1],
encapsulation and use of secure communication channels, enables us to consider
them as secure. Certainly, detailed proofs of security are yet to be constructed.

8

8

2. To obtain many authorised sets of participants, multiple replication of
)2(U takes place. In such instance)2(U is used as the master copy (template) for all
)(nU , 3≥n . For this reason it is called authorised set of master secret shares.
3. Proposed algorithms can accommodate arbitrary access structure, when

combined with cumulative array construction (e.g. see [3]).

4. FURTHER RESEARCH

We hope that in both parts of the paper we managed to present in
comprehensible way all basic algorithms for ASGS. However, much work still
needs to be done. Major research tasks are:

1. Generalization into arbitrary access structures. This seems to be relatively
simple task nevertheless it requires proper formalization.

2. Adding more extended capabilities to both methods. Some of possibilities
were outlined in the paper. Set of extra functions that can be embedded into secret
sharing scheme is much bigger. Authors are busy working in this field.

3. Construction of security proofs. As stated in the remarks at the end of
sections 3 and 4 such a proof needs to be constructed.

5. AKNOWLEDGMENT

The paper (both parts) was partially supported by State Comitte for Scientific
Research, grant no.8 T11D 020 19. The autors wish to thank our friends Kris Gaj
and Karol Górski for discussion and usefull comments.

6. REFERENCES

[1] Karnin E.D., J.W. Greene, and Hellman M.E. 1983. ‘On secret sharing systems’. IEEE
Transactions on Information Theory IT-29, pp. 35-41.

[2] Kulesza K., Kotulski Z. 2002. ‘On automatic secret generation and sharing: part I’.
Proceedings of ACS2002, pp. .

[3] Pieprzyk J. 1995. ‘An introduction to cryptography’. draft from the Internet.

