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Abstract. At the beginning of the paper we describe the state of art in linear cryptanalysis of block 
ciphers. We present algorithms for finding best linear expressions proposed by Matsui [9] and Ohta 
[11]. We sketch basic linear cryptanalysis (0R, 1R, 2R attacks) and the known extensions. We explain 
the advantages and the limitations of applying linear cryptanalysis and its extensions to block ciphers. 
In the second part of the paper we describe our proposal of a new extension to linear attack based on 
the application of a probabilistic counting method. It allows the reduction of two consecutive rounds 
and form the basis for mounting e.g. 3R attacks. We present experimental results of the 
implementation of this attack to the Data Encryption Standard.  
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1.  INTRODUCTION 

Symmetric block ciphers are one of the fundamental 
tools in modern cryptography. Their popularity 
requires a high level of trust in their security. 
Unfortunately there are neither any known 
constructions of block ciphers, which offer 
unconditional security nor practical constructions, 
which offer provable computational security. So in 
practice evaluations of the security of these ciphers is 
heuristic based on the consideration of the resistance 
of the cipher to known attacks. The effectiveness of 
attacks is measured by comparison of their 
complexity (time and memory) with the exhaustive 
search attack. During this evaluation only those 
attacks are taken into account, which are known at 
the time. One of the most important attacks 
considered is linear cryptanalysis. In 1993 it was 
successfully used by Matsui to cryptanalyse DES. It 
needed 243 known plaintext/ciphertext pairs to derive 
26 bits of the key.  
The purpose of this paper is to describe the main 
issues of linear cryptanalysis beginning from 
algorithms for finding best linear expressions [9,11] 

through description of basic attack (0R) and linear 
attacks with round reductions (1R, 2R) to various 
extensions of linear cryptanalysis (analysis with 
multiple expressions [5], linear-differential 
cryptanalysis [7], linear cryptanalysis with non-linear 
approximations in outer rounds [6], the use of 
quadratic relations in S-box [13] and the probabilistic 
counting method [12]) and the limitations of their 
use. 

We also propose the application of probabilistic 
counting method for reduction of two consecutive 
rounds which forms the basis for mounting e.g. 3R 
attacks (which in some applications are more 
effective – require less texts than 2R attacks - even 
though they are based on probabilistic assumptions). 
We describe the implementation of this attack to 
Data Encryption Standard. The results should be 
treated as announcements only, because the 
experiments are still under development. 

1.1 Notation and Definitions 
Throughout this paper we use Matsui’s [8] 
numbering of DES bits. The input bits, key bits and 
output bits of F-functions, S-boxes, etc. are 
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numbered from right to left starting from 0. We also 
use Matsui’s notation in which A[i] denotes i-th bit of 
vector A, while A[i1, i2, ... in] denotes exclusive-or of 
the bits of vector A located in positions i1, i2, ... in. 
We also use the notation of Harpes [4] in which 
A•ΓA denotes scalar multiplication of two binary 
vectors over GF(2), which is equivalent to exclusive-
or of the A bits chosen by binary vector ΓA (e.g. A = 
1011, ΓA = 0001, then A•ΓA = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 
A[i4]). 
Let P, C, K denote plaintext, ciphertext and key. We 
assume that plaintexts, ciphertexts and keys are 
uniformly distributed in appropriate spaces. We also 
assume that round keys are independent. 
By r we denote the number of rounds, while by Ci we 
denote the ciphertext after round i, which means that 
P = C0 and C = Cr. N denotes the number of analysed 
pairs of texts. 
A linear approximation is a linear dependence 
between bits of the round input block, bits of the 
round output block and bits of the round subkey. A 
linear expression is a linear dependence between bits 
of the cipher input, cipher output and bits of all the 
subkeys. An effective linear expression is an 
expression which holds with probability different 
from 1/2. 
Probability of the linear approximation (p) is defined 
in the probabilistic space with: 
• a set of elementary events Ω, which is a 

Cartesian product of the set of all input blocks to 
the round and all subkey blocks, 

• σ - field which is the set of all subsets of Ω, 
• probability distribution on the elementary events 

assigning to each of them equal probability.  
There is a random variable defined in this space, 

which assigns to each elementary event the value 0 or 
1, dependent on whether the approximation holds or 
not. Event X is defined as a sum of the elementary 
events for which the random variable is equal to 1. 
Probability of a linear approximation is equal to the 
probability of event X in this probabilistic space. 

1.2 Linear Cryptanalysis 
The basic idea of linear cryptanalysis is to find an 
effective linear expression for an analysed block 
cipher, s.t.: 
(P • ΓP) ⊕ (C •Γ C) = Σz (Kz • ΓKz). (1) 
with a certain probability p, measured over all 
choices of P and K. 
In the case of iterative block ciphers, finding the 
linear expression has 2 steps. At first we linearise one 
round, looking for effective approximations of the 
following form: 
(Ci-1 • ΓCi-1) ⊕ (Ci •Γ Ci) = Ki • ΓKi (2) 
where Ci-1 is the input vector to round i, Ci is the 
output vector from round i and Ki is the key used in 
round i. A linear expression is obtained by combining 
linear approximations in such a way that only bits of 
plaintext, ciphertext and subkeys appear in the final 
expression. For a few rounds of a cipher and for 
ciphers with a simple structure (e.g. RC5) this 

process can be done manually, but in most cases it is 
easier to use a computer. The algorithms for finding 
linear expressions for DES [3] are described below. 
With an effective linear expression we can start a so-
called 0R attack (algorithm 1), based on the 
maximum likelihood method. This attack determines 
with required probability whether the right side of 
equation 1 is equal to 0 or 1. The success rate of the 
attack increases with the number of analysed texts 
and with the bias |p - 1/2|. 

Algorithm 1 (attack 0R) [8] 
Input:  

N known pairs of plaintext and ciphertext,  
effective linear expression with probability p 

Step 1:  
For each pair count the value of left side of 
equation 1. Let N0 be the number of pairs for 
which the left side of the equation is equal to 0. 

Step 2: 
If N0 > N/2 then  

set Σi(Ki • ΓKi) = 0, if p>1/2 and 1 if p<1/2, 
else 

set Σi(Ki • ΓKi) = 1, if p>1/2 and 0 if p<1/2. 
Output: 

the value of Σi(Ki • ΓKi) (correct with probability 
dependent on N and |p - 1/2|). 

 
In practical attacks with similar complexity we can 
obtain more subkey bits. For this purpose attacks 
with round reduction are used (1R and 2R). The first 
uses an effective linear expression for r-1 rounds and 
computes the inverse of the last round of the cipher 
for each candidate for the last round subkey. For each 
candidate we count the difference between the 
number of times when the left side of the linear 
expression is equal to 0 and when it is equal to 1. For 
the correct subkey the bias between this value and 
N/2 will be close to the expected bias for the 
expression in use. For incorrect keys it will be close 
to 0. In this way we can determine with the required 
probability the subkey bits in the last round and the 
value of the modulo 2 sum of the subkey bits 
appearing in the linear expression. The idea of this 
attack is based on a hypothesis described by Harpes 
[4] that the choice of an incorrect key in the last 
round is equivalent to adding an additional round to 
the cipher, which decreases the effectiveness of the 
linear expression in use. In practice checking all the 
possible values of the subkey in the last round is too 
complex (requires too much memory). The solution 
is to check only a subset of the bits of the last round 
subkey.  
In a similar way the 1R attack can be used for the 
reduction of the first round of the cipher. 

Algorithm 2 (attack 1R) [8] 
Input: 

N known pairs of plaintext and ciphertext, 
effective subset of last round subkey bits being 
searched, 
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effective linear expression for r-1 rounds with 
probability p, which uses only these bits of Cr-1 
which can be computed from the effective subset 
of subkey bits  

Step 1: 
For value of Ki

r effective bits of subkey Kr, let N0
i 

denote the number of pairs of texts for which the 
left side of the (r-1) - round linear expression is 
equal to 0. 

Step 2: 
Let N0max = max

i
(N0

i) and N0min = min
i

(N0
i). 

Step 3: 
If |N0max - N/2| > | N0min - N/2 | then 

set the value of effective subkey bits Ki
r 

corresponding to N0max, 
set Σi(Ki • ΓKi) = 0, if p>1/2 and 1 if p<1/2, 

If |N0max - N/2| < | N0min - N/2 | then 
set the value of effective subkey bits Ki

r 
corresponding to N0min, 
set Σi(Ki • ΓKi) = 1, if p>1/2 and 0 if p<1/2, 

Output: 
effective subkey bits in last round, 
the value of Σi(Ki • ΓKi) for rounds 1 to r-1, 
both results returned with probability dependent 
on N and |p-1/2|. 

 
The 2R attack allows further increase of the 
effectiveness of the analysis. The idea is similar to 
the 1R attack: we use an expression for r-2 rounds of 
the cipher and invert the first and the last round. 
 
To give a sketch of probabilistic fundamentals we 
recall here the Piling–Up Lemma, which is used to 
calculate probability p of the linear expression, when 
the probabilities pi (1 ≤ i ≤ r) of all linear round 
approximations are known: 
 
Lemma 1 (Piling-Up) [8] 
Let Appri (1 ≤ i ≤ r) be independent, random 
variables, which are equal to 0 with probability pi and 
are equal to 1 with probability 1 - pi. Then the 
probability that 
Appr1 ⊕ Appr2 ⊕ ... ⊕ Apprr = 0 (3) 
is equal to: 

1/2 +2r-1 ∏
=

−
r

i
ip

1
).2/1( � (4) 

Then the probability of proper choice of key bits xor 
in 0R attack is equal to: 

Pr(N0 > N/2) = �
∞

−−

−

)2/1(2
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2
1 2

pN

t dte
π
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This equation describes the success rate (Table 1) for 
some probability p of a linear expression. This 
probability increases when the number of analysed 
texts increases and when bias |p-1/2| increases. 
 
Table 1. Success rate of 0R attack  

N ¼|p-½|-2 ½|p-½|-2 |p-½|-2 2|p-½|-2 
probability 
of success 84,1% 92,1% 97,7% 99,8% 

 
In linear cryptanalysis with 1 round reduction the 
probability of the correct choice of subkey bits is 
equal to: 
Pr(Kr

i
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The above equation describes the success rate (Table 
2) of the 1R attack. 
 
Table 2. Success rate of 1R attack  
N 2|p-½|-2 4|p-½|-2 8|p-½|-2 16|p-½|-2

probability 
of success 48,6% 78,5% 96,7% 99,9% 

 
For further details of the probabilistic fundamentals 
of linear cryptanalysis see [17]. 

2. EXPRESSION SEARCH ALGORITHM 

As we mentioned above the first step in a linear 
attack is to find an effective linear expression for the 
cipher. This should be done by linearising the non-
linear elements and extending this linearisation to the 
beginning and end of the round function. Now the 
propagation of the masking values should be 
considered. We give an example on DES: 

Following dependency holds:
ΓCH

i = ΓXi-1 ⊕ ΓCH
i-2, and

ΓCL
i = ΓCH

i-1.

ΓCH
0

ΓK0

ΓX0

ΓCH
1

ΓX1

ΓK1

ΓCH
2

ΓX2

ΓK2

F1

F2

F3

ΓCH
0

ΓCL
0

ΓCL
1

ΓCL
2

 

Fig. 1. Propagation of masking values in DES. 
It is very important to notice that propagation of 
masking values (Fig. 1) is different from the 
operations in the cipher, e.g. when we consider a 
mask as a set of bits, we will see that an exclusive-or 
operation on a mask will work as a tee, while a tee 
operation will work like an exclusive-or. 
At the beginning of expression search algorithm we 
set a boundary value of the expression bias. We also 
set a value of the best one round bias. During the 
analysis, we will compare the bias of the current 



Proceedings of ACS’2000, Szczecin, pp.523-530 
expression concatenated with the best possible 
expression with the boundary bias. If our current 
expression would not be better that the bound, we 
will discard it. 
In the first round we choose ΓCH

0 in such a way as to 
determine the approximation of the round with the 
largest bias |p - 1/2|. In other words we choose ΓCH

0, 
and we try to find such ΓX0 that the bias is large. If 
the chosen approximation concatenated to the best r-
1 round expression would have better bias than the 
bound we can start looking for the approximation of 
the second round. Otherwise we have to try find a 
better approximation for the first round. 
In the second round we have a similar situation, we 
control the masking value ΓCH

1 (through masking 
value ΓCL

0) in such a way as to find the 
approximation of the second round which 
concatenated to the expression of (r-2) rounds would 
give better bias than the bound. In the following 
rounds we have ΓCH

i fixed, we can only choose ΓXi 
to improve the bias.  
At the end of the algorithm we get one or more linear 
expressions and we can start analysis. 
The algorithm sketched above was presented by 
Matsui [9]. Ohta [11] optimised this algorithm by 
discarding some expressions during precomputation 
phase. He obtained a significant improvement in the 
expression search of FEAL. The comparison of the 
effectiveness of these algorithms for searching for 
linear expressions for DES can be found in [14]. 

3. EXTENSIONS OF LINEAR 
CRYPTANALYSIS 

Several extensions to linear cryptanalysis were 
proposed, which improve the effectiveness of the 
attack, e.g. use of non-linear approximations in outer 
rounds reduces the number of analysed texts by a 
factor of 1/ 2 . 
Differential-linear cryptanalysis is a very powerful 
attack on DES with a reduced number of rounds. The 
uses only 512 chosen plaintexts in comparison to 
linear cryptanalysis which needs to analyse 500,000 
of known plaintexts and to differential cryptanalysis 
which needs to analyse 5,000 chosen plaintexts to 
obtain the same success probability.  
Multiple expression1 attack reduces the number of 

analysed texts by a factor of 
� −

−

i ip

p
2)2/1(

2/1 , where 

p is the probability of the best linear expression in 
use, and pi are the probabilities of each of the 
expressions. 
The latest extension proposed by Shimoyama [13] 
reduces the number of plaintexts by the factor 25/34.  
In this section we sketch all these attacks. 

                                                           
1 called multiple approximation in [5]. 

3.1 Non-linear approximations in outer rounds 
It was natural to consider whether linear 
approximations in linear cryptanalysis can be 
replaced by non-linear ones. There are two 
advantages which this extension could give. Firstly, 
the number of non-linear approximations is much 
larger than linear ones, so it may be easier to find an 
approximation with a large bias. Secondly, it would 
make possible an attack on large S-boxes used in 
round functions. Unfortunately, Harpes [4] 
demonstrated problems in general use of non-linear 
approximations in linear analysis.  
Knudsen proposed to use non-linear approximations 
in outer rounds. He used only approximations with a 
non-linear combination of the input bits and a linear 
combination of the output bits.  
For an illustration of the attack we present an 
example. Consider an approximation of DES S-box 
S8 which involves bits x0x1 on the S-box input. Then, 
depending on the value of the subkey bits k0 and k1 
and denoting the appropriate text bits after expansion 
by z0 and z1, we obtain that x0x1 = z0z1, when 
(k0, k1) = (0, 0), x0x1 = z0z1 ⊕ z0, when (k0, k1) = (1, 0), 
x0x1 = z0z1 ⊕ z1, when (k0, k1) = (0, 0) and 
 x0x1 = z0z1 ⊕ z0 ⊕ z1 ⊕ 1, when (k0, k1) = (1, 1).  
In outer rounds the cryptanalyst knows the value 
corresponding to bits z0, z1 before the transformation 
with the subkey. Similarly to the 1R attack, he can 
try to guess the value of the correct subkey bits. 
Assume that the probability of the approximation in 
use is equal to p. When his guess is correct, he 
correctly reconstructs x0 and x1 and the product x0x1. 
When his guess is incorrect, e.g. he chooses k0 ⊕ 1 
and k1, then he guesses (x0 ⊕ 1)x1 and the expression 
on input bits to the S-box will be equal to the 
expression on output bits of the S-box with some 
probability p1. If |p1-1/2| < |p-1/2| then with a 
sufficient number of analysed texts the incorrect 
choice can be detected. In the opposite case the 
incorrect guess will dominate, but in a practical 
attack the cryptanalyst chooses the approximation 
with a larger bias anyway. When both biases are 
equal, they are indistinguishable for the cryptanalyst. 
Knudsen applied his attack to DES reduced to five 
rounds; the comparison with the original attack is 
given in the following tables: 

Table 3. Success rate in 0R Matsui’s attack on 5 
rounds of DES ((p-½)-2 = 68,720) 
N 17,180 34,360 68,720 
probability 
of success 74% 88% 98% 

Table 4. Success rate in 0R attack on 5 rounds of 
DES with non-linear approximation in outer rounds 
((p-½)-2 = 14,728) 
N 3,682 7,364 14,728 
probability 
of success 86% 92% 100% 
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3.2 Differential-linear cryptanalysis 
Differential-linear cryptanalysis was proposed by 
Langford and Hellman [7]. They noticed that three 
round differential characteristics [1] which hold with 
probability 1 can be effectively used in linear 
cryptanalysis. 
The main idea of the attack is the observation that 
complementing two bits (which after expansion are 
the middle bits of an input to the S-box) in one of the 
analysed texts leaves many bits of C3 unchanged. 
Among these bits are input bits to Matsui’s best 3-
round linear expression (bits number 57, 46, 40, 35 
and 17). Because the parity of these bits never 
changes, the parity of output bits from the linear 
expression is unchanged with probability 
p’ = p2 ⊕ (1-p)2 = 0.576, where p = 0.695 is the 
probability of Matsui’s linear expression. (This result 
comes directly from the Piling-Up Lemma.) 
To attack DES the cryptanalyst for each pair of 
ciphertexts inverts the last round, computes the parity 
for both inverted ciphertexts and, if the parity is 
equal increases N0

j where j is the index of the 
analysed candidate for the last round subkey. The 
largest N0

j indicates the correct subkey with a 
probability depending on the probability of the linear 
expression in use and the number of analysed pairs. 
Further improvement of this attack can be achieved 
by using structures proposed by [1] for packing the 
analysed plaintexts. To sketch the idea of structures 
we give an example. When there is a possibility to 
use more than one differential characteristic in an 
attack e.g. 4-tuples of plaintexts: P, P ⊕ 
0x2000000000000000, P ⊕ 0x4000000000000000, P 
⊕ 0x6000000000000000, instead of time-consuming 
encryption of all these plaintexts, we can encipher 
only three of them and get the information about the 
4-th through analysis, which is not so time-
consuming. 

3.3 Multiple expressions 
The extension proposed by Kaliski and Robshaw [5] 
was based on the observation that during the attack, 
the cryptanalyst differentiates between the 
distribution with an expected value equal to p and 
variance p2 and the distribution with an expected 
value equal to 1-p and variance p2. Use of multiple 
expressions decreases the variance of the 
distributions.  
Modified equation 1 assumes the following form: 
(P • ΓPj) ⊕ (C •ΓCj) = Σi (Ki • ΓKi), (6) 
where ΓPj, ΓCj denote binary masking vectors of 
plaintext and ciphertext used in linear expression 
number j (1 ≤ j ≤ J). 
Instead of N0 in algorithm 1, Kaliski proposed to use 
a statistic of the following form: 

U = �
=

J

j

j
j Na

1
0  (7) 

where a1, a2, ..., aJ, are positive and s.t. �
=

=
J

j
ja

1
1 . 

For simplicity we assume that pj-1/2 > 0. 

Algorithm 3 (attack 0R with multiple expressions) 
[5] 
Input:  

N known pairs of texts,  
effective linear expressions with probability pj. 

Step 1:  
For each linear expression let N0

j be the number 
of pairs for which the left side of equation 6 was 
equal to 0. 

Step 2: 

Count the value U = �
=

J

j

j
j Na

1
0 . 

Step 3: 
If U > N/2 then  

set Σi(Ki • ΓKi) = 0, if p>1/2 and 1 if p<1/2, 
else 

set Σi(Ki • ΓKi) = 1, if p>1/2 and 0 if p<1/2. 
Output: 

the value of Σi(Ki • ΓKi) (correct with probability 
dependent on N and |p – 1/2| and weights aj.  

 
Kaliski noticed that the distribution of statistic U can 
be modelled using a normal distribution. He 
calculated the expected values and the variance. He 
also indicated that when the weights aj are 
proportional to the biases (pj-1/2) of linear 
expressions, the distance between N/2 and E[U] is 
maximised. He calculated the success rate of the 
modified algorithm, which is equal to: 

)
)2/1(41

)2/1(
2(

1

2

1

2

�

�

=

=

−−

−
Φ n

j
j

n

j
j

p

p
N , (8) 

where Φ(.) denotes the normal cumulative 

distribution function. When �
=

−
J

j
jp

1
)2/1(  is small, 

the success rate can be approximated as 

�
=

−Φ
n

j
jpN

1

2)2/1(2( ), while the success rate of 

Matsui’s algorithm is equal to ))2/1(2( −Φ pN . 
Algorithm 3 can be easily extended to 1R and  2R 
attacks. 

3.4 Shimoyama’s attack 
Recently Shimoyama [13] proposed an extension 
using formal coding of DES S-boxes to invert an 
outer round with probability 1. He found that there 
are seven algebraic quadratic relations of the DES S-
boxes. He used one of these relations instead of the 
outer approximation in a linear expression. His 
approximation which was used to invert S-box S5 
has the following form: 
(y1 ⊕ y2 ⊕ y3 ⊕ y4 ⊕ x2 ⊕ 1) *(x1 ⊕ x2 ⊕ x5 ⊕ 1) = 0 
which gives on the input and output to F function: 
(Fi[3,8,15,24,] ⊕ Ci[17] ⊕ Ki[26] ⊕ 1) 
*(Ci[16,17,20] ⊕ Ki[25,26,29] ⊕ 1) = 0. 
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Shimoyama used this relation instead of first round 
approximation in a linear expression of DES. He 
estimated each of the factors independently, which 
reduced the memory requirements. And finally he 
combined the results of both factors using Kaliski’s 
[5] method. 

3.5 Limitations of the basic attack and its 
extensions 
The basic attack and its extension have the following 
limitations: 
1. Complexity of the non-linear approximation search 
algorithms – effective search is feasible only then, 
when non-linear operations are algebraically defined 
e.g. as an addition in some field, or when the number 
of all possible combination of input bits to the 
operation is small. 
2. Memory complexity of the attack – it is usually 
impossible to mount an attack with two consecutive 
round reduction (due to mixing property e.g. in DES 
due to construction of permutation P). In attack on 
DES the cryptoanalyst needs to implement 26*6+6=242 
counters for candidates for a subkey in two 
consecutive rounds. 
3. Computational complexity O(N). 
 
To make an attack more flexible the cryptoanalyst 
needs to achieve an independence between the 
number of effective subkey bits and the multiple of 
the number of inputs to the S-box. It can be realised 
by use of non-linear approximations (but we have to 
remember the limitation due to complexity of non-
linear approximation search algorithms) or by use of 
probabilistic counting method [12], which is 
described in the following chapter. 

4. NON-DETERMINISTIC APPROACH 

We describe linear cryptanalysis with probabilistic 
counting method applied to DES. Use of this method 
increased the flexibility in the choice of number of 
effective key bits (in reduced rounds). We propose 
the construction of the attack with the reduction of 
two consecutive rounds. Such a construction can be 
effective due to use of the probabilistic counting 
method for an inversion of inner (second or 
penultimate) round of the cipher. This attack with the 
reduction of two consecutive rounds form the basis 
for mounting 3R attack. It makes possible to use the 
linear expression for the smaller number of rounds 
e.g. for (r-3) rounds, and for the reduction of number 
of analysed pairs of texts. 

4.1 Linear cryptanalysis with the probabilistic 
counting method 
In linear cryptanalysis with the probabilistic counting 
method it is presumed that analyst knows only a part 

of effective key bits (which are called visible bits)2. 
Bits unknown for the analyst are called invisible bits. 
During estimation of the value of the expression in 
which invisible effective key bits appear, instead of 
exact value its approximation is used, which holds 
with some probability. 
To explain the probabilistic counting method we 
present an example with 1R attack. We use (r-1)-
round effective linear expression and the 
approximation of one S-box in last or first round. 
Similarly to the previously discussed attacks (basic 
linear cryptanalysis and its extensions) for each part 
of subkey (visible effective subkey bits) we 
determine the bias between the number of events 
(pairs of texts) in which left side of the (r-1)-round 
linear expression is equal to 0 and the number of 
events when it is equal to 1. For proper subkey in 
outer round the bias should be close to the bias 
expected for the expression and for the wrong keys it 
should be close to 0. In this way we can conclude 
with required probability about the subkey bits in 
outer round and about the value of the exclusive-or of 
subkey bits in remaining (r-1) rounds. 
Let an (r-1)-round effective linear expression 
satisfied with probability p ≠ 0,5, have the following 
form: 
P • ΓP ⊕ Cr-1 • ΓCr-1 = Σi Ki • ΓKi, (9) 
 
from which we can obtain: 
P • ΓP ⊕ CL

r • Γ CH
r-1 ⊕ (F(CL

r, Kr) ⊕ CH
r) • ΓCL

r-1 
= Σi Ki • ΓKi. (10) 
 
In attack with probabilistic counting method instead 
of exact value F(CL

r, Kr) • ΓCL
r-1 we use its 

approximation. We denote this approximation as 
~(F(CL

r, Kr) • ΓCL
r-1), and finally for an attack with 

probabilistic counting we obtain the expression: 
P • ΓP ⊕ CL

r • Γ CH
r-1 ⊕ CH

r • ΓCL
r-1  

⊕ ~(F(CL
r, Kr) • ΓCL

r-1) = Σi Ki • ΓKi. (11) 
 
The probability of the expression (11) depends on 
probability p of (r-1)-rounds linear expression and 
probability of probabilistic approximation of F 
function.  
Let Kv

r denote the key candidate for effective visible 
subkey bits in round r. Then the algorithm of linear 
cryptanalysis with probabilistic counting for DES has 
the following form: 
 
Algorithm 4 (1R attack with probabilistic counting 
and data counting phase) 
Data counting phase 
Input: 

N known pairs of texts, 
effective linear expression for (r-1)-rounds with 
probability p, which uses only these bits of Cr-1, 

                                                           
2 In practice this situation can occur, when an 

analyst has limited memory resources. 
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which can be computed from subset of effective 
bits kr

v. 
Step 1: 

Prepare 2t counters Tj (0 ≤ j <2t) and initiate them 
with zero, where j denotes value of effective text 
bits used in linear expression 

Step 2: 
For each plaintext and suitable ciphertext count t 
and increment value of counter Tj . 

Output: 
Counter table Tj. 

 
Key counting phase 
Input: 

table Tj,  
choice of effective subkey bits Kr, 
choice of visible effective subkey bits Kr

v, which 
are being searched,  
effective linear expression for (r-1) rounds with 
probability p which uses only these bits of Cr-1, 
which can be computed from subset of effective 
bits kr

v. 
Step 3: 

Prepare vk2 counters N0
i (0 ≤ i < vk2 -1) and 

initiate them with 0. 
Step 4: 

For each possible value i of effective subkey bits 
Kr

v and for each possible value j of effective text 
bits count the probability pij that left side of the 
linear expression assumes value zero averaged 
over all invisible effective key bits. Then set 
counter N0

i = Σj pij * Tj. 
Step 5:  

Set N0max = 
i

max (N0
i) and N0min = 

i
min (N0

i).  

Step 6: 
If |N0max - N/2| > |N0min - N/2| then 

set the value of effective visible subkey bits 
Kr

i corresponding to N0max,  
set �z (Kz  • ΓKz) = 0, if p>½ or 1, if p<½. 

If |N0max - N/2| < |N0min - N/2| then  
set the value of effective visible subkey bits 
Kr

i corresponding to N0min,  
set �z (Kz  • ΓKz) = 1, if p>½ or 0, if p<½. 

Output:  
effective visible subkey bits in last round, 
the value of (�z (Kz  • ΓKz)) for rounds 1 to r-1, 

both results returned with probability dependent on 
N, |p - 1/2| and probability of approximation of F 
function. 
 
Let us now consider the influence of bias εij = pij –½ 
resulting from the use of probabilistic counting 
method on the success rate of the attack. A basic 
construction element of linear cryptanalysis with 
probabilistic counting method is a probabilistic 
approximation of non-linear operations (in DES: S-
boxes). We introduce the probabilistic approximation 
and we will define probability with which the 
probabilistic approximation holds. Let α ° Γα 
represent a numerical value of the vector obtained 

through the selection of bits from vector α chosen by 
non-zero positions of masking vector Γα. Example: 
α = [1011], Γα = [1001], then α ° Γα denotes 
numerical value which represents vector [11]: 3. 
 
Definition 1 
Let α ° Γα denote the value of visible input bits to S-
box Si, α ° Γα  denote the value of invisible bits. Let 
β • Γβ denote the value of modulo 2 sum of chosen 
output bits of Si. We define the probabilistic 
approximation of S-box Si (1 ≤ i ≤8), as a dependence 
between visible bits on the input to Si α ° Γα and a 
value of the modulo 2 sum of chosen output bits from 
Si, which holds with probability p. We denote a 
probabilistic approximation of Si as: ΨSi (Γα, Γβ). � 
 
Definition 2 
For given S-box Si (i = 1,2, .., 8), and non-zero 
vectors Γα and Γβ  (1 ≤ Γα ≤ 63, 1≤ Γβ ≤15), with 
constant α °Γα, we define probability of probabilistic 
approximation as a proportion of number of events 
s.t. a value of modulo 2 sum of output bits from Si 
chosen by Γβ assumes value zero, under condition 
that the visible input bits to S-box Si indicated by Γα 
assume value α°Γα, averaged over values of all 
invisible input bits: 

Pr0|α°Γα (Γα, Γβ) = 
)(2

1
αΓHW

 #{β•Γβ = 0 | β=Si(α)}�

 (12) 
Example: Let’s consider S-box S5. Let’s assume that 
there are 4 visible input bits to S5: Γα = [110011], α 
assumes following values [000000], [000100], 
[001000], [001100], and Γβ = [1111] then 
computation process of the value Pr0|α°Γα is illustrated 
by table 5. A value α°Γα is computed as a scalar 
product of vectors α and Γα, and similarly with β • 
Γβ. Then we obtain: 
Pr0|α ° Γα = 0 ([110011], [1111]) = 0 (13) 

as a proportion of number of columns in which β • 
Γβ = 0, to the number of all columns. 
 
Table 5. Computing the value of Pr0|α ° Γα([110011], 
[1111]) 

α 000000 000100 001000 001100 
Γα 110011 1110011 110011 110011 
α ° Γα 0 0 0 0 
α ° Γα  0 1 2 3 

β=S5(α) 0010 0100 0111 1101 
Γβ 1111 1111 1111 1111 
β • Γβ 1 1 1 1 
Pr0|α ° Γα = 0 ([110011], [1111]) 0 / 4 = 0 

 
We define an average probability and an average bias 
of probability of probabilistic approximation Pr0|α°Γα 

(Γα, Γβ) computed over all possible values of visible 
effective input bits to the S-box:  
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Definition 3 
For given S-box Si (i = 1,2, .., 8) and non-zero 
vectors Γα and Γβ (1 ≤ Γα ≤ 63, 1≤ Γβ ≤15) we 
define average probability 

iSpΨ
~ (Γα, Γβ) as a 

proportion of sum of absolute values of biases of 
conditional probabilities from ½: Pr0|α°Γα(Γα, Γβ), 
where the sum is taken over all possible values of 
visible input bits (α°Γα), to the number of all 
possible values of visible input bits:  

iSpΨ
~ (Γα, Γβ) =

�
−

=
−+

12

0
| 0)(

)(

|),(Pr
2
1|

2
1

2
1 α

αα
ααα

βα
ΓW

H Γ
ΓΓW

ΓΓ
�

�
�. (14) 

 
Definition 4 
For given S-box Si (i = 1,2, .., 8) and non-zero 
vectors Γα and Γβ (1 ≤ Γα ≤ 63, 1≤ Γβ ≤15) we 
define average bias of probability 

iSpΨ
~ (Γα, Γβ) 

from ½ as: 

iSΨε~ (Γα, Γβ) =
iSpΨ

~ (Γα,Γβ)-
2
1 = 

= �
−

=
−

12

0
| 0)(

)(

|),(Pr
2
1|

2
1 α

αα
ααα

βα
ΓW

H Γ
ΓΓW

ΓΓ
�

�
�. (15) 

 
Example 
Let’s consider S-box S5. Assume that there are 4 
visible bits on the input to S5: Γα = [110011], 
probabilities Pr0|α ° Γα(Γα,Γβ) for all values of α ° Γα  
are given in following table: 
 
Table 6. Probability distribution Pr0|α° Γα(Γα,Γβ) as a 
function of values of visible input bits to S-box 
(α°Γα) 
α ° Γα 0 1 2 3 4 5 6 7 
Pr0|α ° Γα(Γα,Γβ) 0 0 ¾ ¼ ¼ ¾ 1 1 
α ° Γα 8 9 10 11 12 13 14 15
Pr0|α ° Γα(Γα,Γβ) ¼ ¼ 0 0 1 1 ¾ ¾ 
 
then: 

iSΨε~ (Γα, Γβ) = 

�
−

=
−

12

0
| 04

4

|])1111[],110011([Pr
2
1|

2
1

αα
αα

Γ
Γ

�

�
 = 0,375.  

 (16) 
In DES maximum biases can be observed in 
following cases: 
 
Table 7. Maximum values of average bias of 
probabilistic approximations as a function of visible 
input bits to a S-box in DES  
number 

of visible 
bits 

approx
imated 
S-box 

input 
mask 
Γα 

output 
mask 
Γβ 

 

iSΨε~ (Γα, Γβ) 

1 S5 0x10 0x0f 0,3125 
2 S5 0x11 0x0f 0,3125 
2 S5 0x12 0x0f 0,3125 
2 S5 0x14 0x0f 0,3125 
2 S5 0x18 0x0f 0,3125 
2 S5 0x30 0x0f 0,3125 

3 S0 0x16 0x0f 0,375 
3 S7 0x16 0x0f 0,375 
4 S7 0x1e 0x0f 0,4375 
5 S3 0x3e 0x0f 0,5 

 
As we can see maximum average bias of 
probabilistic approximation with 1 or 2 visible bits is 
equal to the bias of best linear approximation.  
 
With knowledge of probabilistic approximation we 
can start to construct a probabilistic round 
approximation in similar way as in deterministic 
approach and then we can construct the attack on 
DES. But before we do this, we sketch the method of 
estimation of number of texts needed in analysis. As 
we mentioned above the number of analysed texts 
depends on the probability of linear expression and 
on the probability of probabilistic approximation of F 
function. This probabilistic approximation can be 
treated as a random variable, which is equal to zero 
with probability 

iSpΨ
~  and to 1 with probability 1-

iSpΨ
~ . With the assumption about independence of 

subkeys we can use Piling-Up lemma to calculate a 
bias of a new linear expression as: 
εr = 2 * |p – ½| * |

iSpΨ
~ - ½|, (17) 

so the number of pairs of texts needed in attack is 
equal to: 
N = c* (2 * |p – ½| * | 

iSΨε~ |)-2. (18) 
 
Now we can mount an attack on DES reduced to 3 
rounds. Best linear expression [8] is following: 
PL[15] ⊕ PH[7,18,24,29] ⊕ CL[15] ⊕ CH[7,18,24,29] 
= K1[22] ⊕ K3[22]. (19) 
 
To implement an attack with probabilistic counting 
method on 3-round DES we use two round linear 
expression and instead of last round approximation 
we use a probabilistic approximation with 4 visible 
bits on the S-box input. Average bias of probabilistic 
approximation for S5 with WH(Γα) = 4 and Γβ = 
[1111] is equal to 

iSΨε~ = 0,375. So the number of 
texts needed in attack is equal to: 
N = c * (2 * 20/64 * 24/64)-2 = c * 18,2.  (20) 
 
For comparison the number of texts needed in basic 
attack is equal to: 
N = c * (22 * 20/64 * 1/2 * 20/64)-2 = c * 26,2. (21) 
 
Moreover in a first case we determine 4 subkey bits 
and K1[22], and in the second case only K1[22] ⊕ 
K3[22]. 
 
In a basic form linear cryptanalysis with probabilistic 
counting method is not so effective as other 
extensions to linear cryptanalysis. E.g. Shimoyama’s 
attack on 3-round DES needed only: 
N = c * (22 *20/64 *1/2 *1/2) = c * 10,2 (22) 
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pairs of texts. So probabilistic counting can be treated 
only as a component e.g. a component of attack with 
additional round reduction. 
We sketch a linear cryptanalysis with reduction of 
two consecutive rounds of 4-round DES. We use 2-
round linear expression of the following form: 
PH[7,18,24,29] ⊕ PL[15] ⊕ CH

2[7,18,24,29]  
= Σz Kz • ΓKz, (23) 
 
and a probabilistic approximation in r-1 round of the 
following form: ΨS5 (α, [110011],[1111]), which 
holds with average bias 0,375. Taking into account 
an inversion of F function in round r, we obtain: 
PH[7,18,24,29] ⊕ PL[15] ⊕ CH

4[7,18,24,29] ⊕ 
~F3(CL

3, Kv
3)[7,18,24,29] ⊕ F4(CL

4,K4)[0,1,2,3,4,15, 
16,17,18,19,20,21,22,23,24,27,28,29,30,31]  
= Σz Kz • ΓKz. (24) 
 
Experimentally obtained success rate is following: 
 
Table 8. Success rate of linear cryptanalysis with 
reduction of two consecutive rounds on 4 round DES. 

N 
SR 

2*(2*|p–
½|

iSΨε~ )-2 
4*(2*|p–
½|

iSΨε~ )-2 
8*(2*|p–
½|

iSΨε~ )-2 
16*(2*|p–
½|

iSΨε~ )-2 

experiment
al 

30% 60% 80% 90% 

theoretical 48,6% 78,5% 96,7% 99,9% 
 

6. CONCLUSIONS  

We have implemented a linear cryptanalysis with 
probabilistic counting method on DES. We proposed 
linear cryptanalysis with two consecutive round 
reduction using the probabilistic counting method, 
which form the basis for a construction of 3R attack. 
The major limitation in use of linear cryptanalysis 
with reduction of additional rounds is the memory 
complexity of an attack. But it is possible to mount 
3R attack in which there are 2 outer rounds reduced 
and the second or one before last round. The 3R 
attack can be more effective that 2R attack for DES, 
if in second or in penultimate round the probabilistic 
approximation will be used which holds with average 
bias 

iSΨε~ (Γα, Γβ) bigger than 20/64 (the value of 
best deterministic approximation). It can happen e.g. 
in following cases the probabilistic approximation 
has W(Γα) = 3 and approximated s-box is S1 or S8, or 
W(Γα) = 4 and approximated s-box is S5. In the first 
case minimum memory requirement is equal to 
23*6+6+3 = 128 MB, and in the second case 24*6+4+6=16 
GB. So in the first case it is possible to attack DES 
on the PC, while in the second one a specialised 
device will be needed. We can theoretically estimate 
that in the second case, the number of texts will be 
reduced to 69% of texts used in 2R attack. We can 
achieve further improvement by combining the 
proposed attack with other extensions. 

7. FURTHER RESEARCH 

Our further research will concentrate on combining 
extensions of linear cryptanalysis with proposed 3R 
attack. Also our attention will be concentrated on 
explaining the dependence of success rate of attack 
on the distribution of probabilities in the inverted S-
box. 
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