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object output (snapshot) 𝐮𝒊 
sequence of vectors  
eg. nodal temperatures 
nodal displacements 

excitation sequence 𝐤𝒊  

As all response vectors come from the same physical object, they are 
correlated. The correlation of multidimensional vectors means that they  
lay in a hyperplane  
 

Object responses as correlated vectors  

gentle introduction  
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gentle introduction  

What is POD? 
 

Similarities with Fourier analysis   
 

•POD is a technique of expansion od sets of vectors (snapshots), into a 
sequence of orthogonal POD modes (basis vectors) 
 
•Modes exhibit optimum approximation property 
 
•Expansion of the set into modes can be truncated after first few dominant 
modes, practically without affecting the accuracy  
 

•Leaving out the less important modes results in filtering out the noise  
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POD modes are constructed using statistical methods to detect the 
correlations between the vectors in the data set.  



original  
coordinates  
frame 

principal component analysis PCA 
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If vectors are correlated, they form a set of almost in-plane vectors 

principal component analysis PCA 

original  
coordinates  
frame 
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new (POD) set 
of coordinates  
frame 

in the rotated coordinate frame one coordinate of ALL vectors is negligible. 
 
The dimensionality of the problem is reduced by one. For almost parallel  
vectors, two coordinates can be neglected, if one axis of the coordinates 
system is parallel to the vectors.  

principal component analysis PCA 

original  
coordinates  
frame 
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111 s 

Image identification (whose face is in the picture?) 

FERET database: financed by US Department of Defense 

8 

Face recognition  



111 s 

each face – 5000 pixels times 256 gray levels 
    = 1.28 106  DOFs 

any face can be defined as a linear combination of only 50 DOFs (eigenfaces)  
M. Turk and A. Pentland, "Eigenfaces for Recognition", Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991 

modes  

(eigenfaces) 
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Face recognition  



Available: the face database & some portions of the picture.  
WHAT IS THE FULL PICTURE? 

a) Known light pixels only. 
b) Retrieved face (not included  
in database) using 50 DOFs  
and gappy data 

c) Source picture (original)  
d) Retrieved face (not included  
in database) using 50 DOFs  
and entire picture 
 R. Everson and L. Sirovich,  Karhunen–Loeve procedure for 

gappy data, 1995/J. Opt. Soc. Am. A Vol. 12, No. 8/August 
1657 

a) b) 

c) d) 
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Face recognition  



  

POD APPROXIMATION 
 

1st step:  
construct the optimal  
approximation basis 

 
2nd step:  

find the expansion coefficients 

STANDARD APPROXIMATION 
 

1st step:  
guess the optimal  
approximation basis 

 
2nd step:  

find the expansion coefficients 

POD BASE PROPERTIES – 
OPTIMALITY w.r.t. APPROXIMATION: 

no other basis carries more energy in the same number of modes 

  Approximation problem 
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Analytical solution of heat conduction problem 

amplitude   eigenfunction (1,2 or 3D) 

for given BC 

amplitude   amplitude   

truncation of the series removes higher frequencies.  

 

Inverse problems  advisable to remove higher frequencies  

𝑇(𝐫, 𝜏) = 𝐴𝑗(𝜏 
∞

𝑗=1
𝜙𝑗(𝐫) 

𝐴𝑗 𝜙𝑗 

𝜙1 𝜙2 𝜙3 
𝜙4 
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Expansion into eigenfunctions 



IDEA –find eigenfunctions by studying the response of the system to various   
excitations 

modes as empirical eigenvectors 

eigenfunctions of B.V.P have optimal approximation properties.  
 
but 
 
determining eigenfunctions is expensive (most often not possible).  
 

ki ui 
output 
(response) 

excitation 

Eigenfunctions can be extracted from the response of the system, even when the 
B.V.P. is unknown. 
 

object 
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Expansion into eigenfunctions 



Separation of variables: same type of parametrized boundary conditions, different values of 

parameter sets 𝒌,  for given set of parameters 

           

for 1st set of parameters 𝒌1 

for 2nd set of parameters 𝒌2 

for kth set of parameters 𝒌𝑘 

can be put together as   

𝒌 – vector of parameters defining the boundary conditions 

 𝒓 – vector coordinate (spatial variable) 

𝜏  -  time  

𝑇(𝐫, 𝜏) = 𝐴𝑗(𝜏 
∞

𝑗=1
𝜙𝑗(𝐫) 

𝑇1(𝐫, 𝜏) = 𝐴𝑗
1(𝜏 

∞

𝑗=1
𝜙𝑗(𝐫)

𝑇2(𝐫, 𝜏) = 𝐴𝑗
2(𝜏 

∞

𝑗=1
𝜙𝑗(𝐫)

                  ⋮

𝑇𝑘(𝐫, 𝜏) = 𝐴𝑗
𝑘(𝜏 

∞

𝑗=1
𝜙𝑗(𝐫)

 

𝑇(𝐫, 𝜏, 𝐤) = 𝐴𝑗(𝜏, 𝐤 
∞

𝑗=1
𝜙𝑗(𝐫) 
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Expansion into eigenfunctions 



• how to determine the eigenfunctions? 

• how to evaluate the amplitudes?  

  

eigenfunctions  - analytical methods applicable only to very simple shapes  

amplitudes  - only approximate methods    

Proper Orthogonal Decomposition – empirical eigenfunctions 

 

Radial Basis Functions – multidimensional approximation of 𝐴(𝜏, 𝐤)    
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Expansion into eigenfunctions 



Subsequent snapshots u  

form columns of matrix U. 
 sampling points 

snapshot 𝒖𝒋  

𝑢1
𝑗
 

U 
𝒖𝒋 

snapshot matrix  U 

SNAPSHOT is a discrete image of the field, corresponding to a chosen excitation 
(vector of input parameters). May be computed or measured. 

𝑢1
𝑗
 

𝑢1
𝑗
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POD idea  



U = F 

U  – snapshot matrix, columns are subsequent snapshots u, 

– basis vector matrix (coordinates system, modes), columns are subsequent  

   orthogonal basis vectors ϕ𝒋 
.   A – amplitude matrix (coefficients of the expansion into modes). 

DECOMPOSITION – snapshot matrix U can be expressed as a linear 
combination of orthogonal basis vectors (modes) f  

A 

(N x M) (N x M) (M x M) 

F 
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POD idea  



U = 

Truncation  – snapshot matrix U can be approximated by a limited 

number of POD modes. Insignificant modes might be neglected  

A 

(N x M) (N x M) (M x M) 

U ≈ 𝚽  

(N x M) (N x K) (K x M) 

𝚽 

𝐀  

POD basis is optimal w.r.t approximation 

||𝐔 − 𝚽 ⋅ 𝐀 || → min 

POD basis is optimal in a sense that no other basis can contain  
more energy in the same number of modes    
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POD idea  



How to determine the POD basis 

Solve eigenvalue problem for the covariance matrix (other option SVD)  

(𝐔𝐔𝐓)𝜙𝑗 = 𝜆𝑗𝜙
𝑗 

      eigenvalue of the POD systems is a measure of 

• correlation – rapidly decaying eigenvalues indicate strong correlation in the 

snapshot set 

• energy carried by a given POD mode  

 

 𝑓𝑖𝑟𝑠𝑡 𝐾 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠

𝑎𝑙𝑙 𝑒𝑖𝑔𝑛𝑒𝑣𝑎𝑙𝑢𝑒𝑠
> 𝑝 

p - fraction of the energy that may be neglected. Find the 

smallest K fulfilling the equation. 
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POD idea  



DOF reduction 

transient heat conduction 
 

time integration of amplitudes  
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FEM = weak formulation + Galerkin weighted residuals+locally based trial functions      

approximation of temperature 

𝑁𝑖  trial (shape) functions 
𝑇𝑗  nodal temperature 

result of discretization in space  

    stiffness (conductance) matrix 
 
    mass (capacitance) matrix 
 
    vector of nodal temperatures 
 
    vector of temporal derivatives of temperatures 
 

𝑇(𝐫, 𝜏) =  𝑇𝑖 𝜏 𝑁𝑖
𝑁
𝑖=1 (𝐫) 

𝐊 

𝐌 

𝐓 

𝐓  

𝐊 ⋅ 𝐓 +𝐌 ⋅  𝐓 = 𝐟 
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POD as a reduced order method  



how to construct the POD basis?   
 
Solve the problem using standard time stepping FEM (FDM, FVM) for first few 
time steps.  
 
Every instantaneous temperature field is treated as a snapshot. POD analysis 
produces the (truncated) basis. 

time 

standard  

time stepping 
POD solution 

snapshots  

evaluated at  

time instants 
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POD as a reduced order method  



Instead of local shape functions trial and weighting functions are their 
linear combinations. Coefficients are the entries of the POD basis vectors. 
Both trial and weighting functions become global.  

POD function POD vector 

x 

𝑁 𝑘 = Φ𝑖𝑘𝑁𝑖
𝐾

𝑖=1
(𝐫) 𝑤 𝑘 = Φ𝑖𝑘𝑁𝑖

𝐾

𝑖=1
(𝐫) 

Note: discretization need not be started from scratch. It is enough to 
transform the existing  stiffness matrix and the rhs vector.  

𝑇(𝐫, 𝑡) =  𝑎𝑘(𝑡)𝑁 𝑘(𝐫)
𝐾

𝑘=1
 𝐊 ⋅ 𝐚(𝑡) + 𝐌 ⋅ 𝐚 (𝑡) = 𝐟 (𝑡  

• symmetry of matrices preserved 

• dimensionality significantly reduced  

• sparsity lost 
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POD as a reduced order method c 



Example: heating up a turbine blade 
heat conductivity k=20 W/mK, specific heat cr=5 x 106 J/m3 K. initial condition T0 = 300K.   

200 snapshots every 0.1s, central differencing in time 

node 2679 

node 3117 

1400 K, 600  W/(m K) 

750 K, 650 W/(m K) 
2 

worst case 

1400 K,  

500  W/(m K) 
2 

2 

0 

1 6 0 0 

t e
 m
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 e

 r 
a

 t u
 r 
e

 ,  
 K

 

POD solution snapshots 

1 2 0 0 

8 0 0 

  4 0 0 

  0     1 0 0   2 0 0   3 0 0   4 0 0 

solid lines – FEM 

points POD 

A. Fic, R.A. Białecki and A.J. Kassab Solving transient nonlinear heat conduction problems by Proper Orthogonal Decomposition, 

Numerical Heat Transfer, Part B, 48 (2005), pp. 103-124. 

R.A. Białecki, A.J. Kassab and A. Fic Proper Orthogonal Decomposition and modal analysis for acceleration of transient FEM 

thermal analysis, International Journal for Numerical Methods in Engineering, 62 (2005), pp. 774-797. 

node 836 

works also with nonlinear material 
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POD as a reduced order method  



FEM 3,151 DOFS  

time 40 s 

POD 17 DOFS 
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POD as a reduced order method  



FEM 3,151 DOFS  

POD 17 DOFS 

time 100 s 
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POD as a reduced order method  



FEM 3,151 DOFS  

POD 17 DOFS 

time 200 s 
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POD as a reduced order method  



multiscale problems 
 

approximation of amplitudes 

28 



separation of variables  

𝐮 – arbitrary discretized field (e.g. temperature) 
𝐤 – suitably selected parameters vector (e.g. time, conductivity…) 
𝐫  – spatial coordinate 
𝑎𝑖  – amplitude (to be found) 

 

       known POD basis takes care of the spatial distribution, dependence on other     
       variables accommodated in amplitudes 

How to evaluate amplitudes? 
 

• solution of ODEs  

• fitting data – approximation of the generated snapshots  

𝐮(𝐫, 𝐤) =  Φ𝑖(𝐫)𝑎𝑖(𝐤 
𝐾

𝑖=1
= 𝚽 ⋅ 𝐚(𝐤) 

𝐚 𝐤 = 𝐁 ∙ 𝐠(𝐤) B – matrix of unknown, constant coefficients, 

𝑔𝑖(𝐤) =
1

|𝐤−𝐤𝑖|+𝑟
2
   interpolation function – Radial Basis Function (RBF) 

𝐮 𝐫, 𝐤 = 𝚽 ⋅ 𝐁 ⋅ 𝐠 𝐤 = 𝐄 ⋅ 𝐠 𝐤   
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multiscale problems 



natural draft wet cooling tower 
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multiscale problems 



 
 

scheme of a wet cooling tower 

warm  

water in 

cooled  

water out 

spray 

rain 
fill 

cold, dry air in cold, dry air in 

warm,  

moist air 

out 

pond 

main problem: different geometry scales  
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multiscale problems 



outside - kilometers 
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multiscale problems 



inside tens of meters 
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multiscale problems 



 
 

• Large exchange surface: 100-250 m2/ m3  

• Minimized pressure drop 

• High durability 

• Material: PP/PVC 

• Height in CT: 60-120 cm 

fill - heat and mass exchanger, centimeters  
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multiscale problems 



 
 

 
model of the fill zone 

vertical channels with no transversal mixing (1D model) 

model of a channel 

fill zone 
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multiscale problems 



 
 

Multiscale approach implemented 

1D models of channels 
of the fill  

CFD model of the tower 
fill treated as porous medium 

inflow rates  
and temperatures  
of water  
and air, inflow 
air humidity 

distributions  
of mass  
heat and 
momentum 
sources  
in each  
channel  
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multiscale problems 



energy conservation 

mass transfer kinetics 

energy transfer kinetics 

flux due to 

evaporation 

flux due to 

convection 

model of the channel - governing equations: 4 ODEs 

mass conservation 

two points problem - implicit self adaptive finite volume technique used in the study 

𝑑𝑚𝑤 = 𝑚𝑔𝑑𝑤 

𝑐𝑤𝑇𝑤𝑑𝑚𝑤 +𝑚𝑤𝑐𝑤𝑑𝑇𝑤 = 𝑚𝑎[𝑐𝑝𝑎𝑑𝑇𝑎 + 𝑑𝑤(𝑟 + 𝑐𝑝𝑣𝑇𝑎) + 𝑤𝑐𝑝𝑣𝑑𝑇𝑎  

𝑑𝑚𝑤 = 𝛽(𝑤𝑠 − 𝑤𝑎)𝐴𝑑𝑧 

𝑑𝑄 = (𝑐𝑤𝑇𝑤 + 𝑟)𝛽(𝑤𝑠 − 𝑤𝑎)𝐴𝑑𝑧 + ℎ(𝑇𝑠 − 𝑇𝑎)𝐴𝑑𝑧 
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multiscale problems 



 
 

model of channel invoked frequently, iterative  process numerically very intensive.  

POD employed to speed up the solution of the model of a single channel 

acceleration of the calculations   

Input data  
-inlet mass flow rates of air and water 
-inlet temperatures of air and water 
-inlet air humidity 
 

                    input vector  
 
Output data  
- heat and mass sources at centers of CFD cells within the channel  

 
                     snapshot vector 

𝐤 = {𝑚𝑤
𝑖𝑛, 𝑚𝑎, 𝑇𝑤

𝑖𝑛, 𝑇𝑎
𝑖𝑛, 𝑤𝑖𝑛  

𝐮𝑖 = {𝐪𝑠
𝑖 ,𝐦𝑠

𝑖    

Low order POD model – functionality of neural network  

𝐮(𝐤) = 𝐄 ⋅ 𝐠(𝐤) 

acceleration - 100 times, accuracy beter than 1%  
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multiscale problems 



 
 relative error of POD approximation  

training set 

# snapshot 

# snapshot 
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multiscale problems 



 
 relative error of POD approximation  

testing set 
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multiscale problems 



 
 

numerical mesh: 

4.84 M elements 
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multiscale problems 



 
 velocity contours  
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multiscale problems 



 
 temperature contours  
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multiscale problems 



 
 

atmospheric wind profile with  
u0 = 1.6 m/s at 2 m 

air recirculation in the wake 

flue gas discharge through the cooling tower  
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multiscale problems 
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Experiment

CFD

experimental validation 

A. Klimanek, M. Cedzich and R. Białecki 3D CFD modeling of natural draft wet-cooling tower with flue gas injection, Applied 

Thermal Engineering, 91 (2015), pp. 824–833, doi:10.1016/j.applthermaleng.2015.08.095 

A. Klimanek, R.A. Białecki, Z. Ostrowski, CFD two scale model of a wet natural draft cooling tower, Numerical Heat Transfer, 

Part A: Applications,  57:2, (2010), pp. 119-137 
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multiscale problems 



inverse problems 
 

approximation of amplitudes  

as in multiscale 
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inverse problems 



direct problem – well defined 
all conditions of unambiguity known  

D 

k T 

cause 

conditions  
of unambiguity 

model 

temperature  
field 

𝐷(𝐤) = 𝐓 
result 

inverse problem 
some conditions of unambiguity unknown, some measured results available   

𝐤𝑘 𝐓𝑚 

cause 

conditions  
of unambiguity 

temperature  
field 

result 

𝐷−1(𝐤𝑘,𝐓𝑚) = 𝐤𝑢 

some  
data 
known 

some  
measurments  
known 

D 

model 

𝐤𝑢 
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inverse problems 



ill posed 
problem 

regularization 

• reduction of DOF’s  

• filtering out noise (neglecting higher POD modes) 

• modification of the operator  (Tikhonov)  

well defined  
problem 

special techniques needed to mitigate ill posedeness 

• solution may not be unique 
• results can be unstable w.r.t. small changes in input data 

ill-posedeness of inverse problems 
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inverse problems 



POD/RBF inverse algorithm 
 

generating the POD base  
 

generating POD basis 

• produce the snapshot 
matrix by solving a set of 
direct problems for a 
sequence of missing 
parameters 𝐤𝑢 

 

• generate the POD basis 
Φ  

 

• produce the truncated 
POD basis Φ  

training POD-RBF 
network 

 

• define the radial basis 
function 𝑔(𝐤𝑢) 
 

• train the POD basis to 
obtain the interpolation 
matrix 𝐁 

 

• generate the low 
dimensional model 
𝐮 𝐤𝑢 = 𝐄 ∙ 𝐠 𝐤𝑢  

solving inverse problem 

• minimize the 
discrepancy between the 
measurements 𝐘 and the 
output of the low 
dimensional model  

min
𝑤.𝑟.𝑡.𝐤𝑢

𝐘 − 𝐓 𝐤𝑢 = 

min
𝑤.𝑟.𝑡.𝐤𝒖

||𝐘 − 𝐄 ⋅ 𝐠(𝐤𝒖)|| 
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inverse problems 



regularization properties of POD RBF 
 

• filtering out noise 
 

• POD basis vectors describe mutual interrelation between physical variables 
stored at different positions of the snapshot. Nodal values are not 
allowed to vary independently  
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inverse problems 



Example 1 
Young moduli of human pelvic bone  
 
Layered structure of the bone (trabecular and cortical 
bone tissues) and homogenous (in each region) 
elastic properties assumed. 
 
Geometry: 
coordinate measuring machine & in-house code 
 
Solver of direct problem: 
MSC Nastran  
 
Measurements: 
Displacements(X,Y,Z)  in 3 points 
(simulated & experimantal ESPI) 
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inverse problems 



0.000000001

0.0000001

0.00001

0.001

0.1

10

1000

100000

10000000

0 5 10 15 20

eigenvalue #

e
ig

e
n

v
a
lu

e

Eigenvalues: 
 
For only 7 first POD base vectors 
neglected energy fraction is 0.993316E-12 

POD-RBF model 
 
400 snapshots 
 
combinations of  
various Young Moduli  
of cortical and trabecular  
bone tissue  
 
Each snapshots stores  
displacements (X,Y,Z)  
for  28530 nodes 
(i.e. 88590 entries) 
 
RBF: 
Thin-Plate splines & 
Inverse  multiquadrics  

Young moduli of human pelvic bone  
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inverse problems 



measurement  

points Results 

 

3% simulated  

measurements error 

(random, uniform distribution) 

 

Inverse multiquadrics RBF 

trabecular – rel. error 2.43% 

cortical  – rel. error -1.09% 

   

Thin-Plate splines RBF 

trabecular – rel. error 2.15% 

cortical  – rel. error -1.15% 

  

 

 

Young moduli of human pelvic bone  

Z. Ostrowski, R. Białecki, A. John, P. Orantek, W. Kuś, POD-RBF network approximation for identification of material 

coefficients of human pelvic bone tissues (Invited Keynote Lecture). In: WCCM8-ECCOMAS 2008 Joint 8th World 

Congress of Computational Mechanics and 5th European Congress on Computational Methods in Applied Sciences 

and Engineering, B.A. Schrefler and U. Perego (eds.), Venice, Italy, p.151, ISBN 978-84-96736-55-9, 2008. 
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inverse problems 



  Example 2 
Identification conductivity and film coefficient 

𝑥 coordinate, cm 

𝑦
 

c
o
o
rd

in
a
te

, 
c
m

 

0 

2 

4 

6 

8 

1 0 

1 2 

1 4 

inside all 10  
cooling holes  

  𝑞 = 400(𝑇 − 750)𝑊/𝑚2 

 coating   𝑘1 =? 

core of the blade 𝑘2 =?  

unknown distribution of the  
heat transfer coefficient 
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Unknown parameters 
•  conductivities of core and TBC 𝑘𝟏 & 𝑘𝟐 

•  distribution of film coefficient ℎ(𝐿)    
     Lagrange interpolating polynomial  
     4 control points 

another inverse problem 



POD basis  model: 
729 snapshots 
 
Sampled at: 
36479 points (nodes) 
 

Resulting POD base:  
1.E-9 signal energy neglected 
only 20 vectors (POD modes)  used  

1,E+00

1,E+02

1,E+04

1,E+06

1,E+08

1,E+10

1,E+12

1,E+14

1 3 5 7 9 11 13 15 17 19

POD eigenvalues 
eigenvalue 

# eigenvalue 
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Z. Ostrowski, R.A. Białecki and A.J. Kassab. Solving inverse heat conduction problems using trained POD-RBF network inverse 

method, Inverse Problems in Science and Engineering 16:1, (2008) pp. 39-54  

C.A. Rogers, A.J. Kassab, E.A. Divo, Z. Ostrowski and R.A. Białecki, An inverse POD-RBF network approach to parameter estimation 

in mechanics, Inverse Problems in Science and Engineering 20:5, (2012) pp 1-19 

Solver: 
MSC.Marc (by MSC Software) 

another inverse problem 



location of pseudo-sensors,  uniform random error  

distribution, amplitude 0.1, 1.0, 2.0 and 5.0 K  

(pseudo) measurements (numerical experiment) 

56 

another inverse problem 



Retrieved distribution of the film coefficient for different measurement errors   

b l a d e p e r i m e t e r , m m 
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1 2 1 4 1 6 1 8 2 0 
4 0 0 

4 5 0 

5 0 0 

5 5 0 

6 0 0 

6 5 0 

7 0 0 

7 5 0 

e x a c t 

P O D n o e r r o r 

P O D e r r o r 0 . 1 K 

P O D e r r o r 1 K 

P O D e r r o r 2 K 

P O D e r r o r 5 K 
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another inverse problem 



Retrieved values of  heat conductivity for different measurement errors   

m e a s u r e m e n t e r r o r a m p l i t u d e , K 
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 e
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 / m

 K
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9 

1 0 

1 1 

1 2 

1 3 

1 4 

1 5 

n o e r r o r 2 . 0K 5 . 0K 1 . 0K 0 . 1K 

exact 

core  

TBC 

insensitive to measurement errors  

exact 
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   Example 3 
Retrieving heat diffusivity – nondestructive method 

• cheap 

• extracting probes often changes the properties 
non-destructive  

• applicable to bodies of arbitrary shape 

• accounting for anisotropy 

based on 3D 
inverse 

technique 

• short time of experiment,  

• simple treatment of boundary conditions 

• wealth of experimental data  

transient 

desired features of techniques of retrieving thermal diffusivity 

inverse problem, retrieving diffusivity  
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massive carbon blocks (few tons).  International corporation 

commissioned installation for continuous checking the quality of carbon 

blocks. Resulting installation embedded in the production line. Operates 

almost 4 years. EU and US patent pending.  

 

Principle 

Laser short time, small surface area heating. IR camera records the  

temperature changes. Least squares fit of heat conduction model and 

measurements. 

 

Model 

semi-infinite anisotropic body heated by pointwise instantaneous heat 

impulse. Process lasts about one second, heat losses neglected. Analytic 

solution: Green’s function: temperature ratio (dimensionless). Levenberg 

Marquardt procedure used to solve the inverse problem, yielding 

components of the heat diffusivity tensor  

𝛩(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 = 0, 𝑡1, 𝑡2, 𝐷𝑥 , 𝑘𝑦) =
𝑇(𝑥𝑖 , 𝑦𝑖 , 𝑧 = 0, 𝑡1) − 𝑇𝑖𝑛𝑖𝑡
𝑇(𝑥𝑖 , 𝑦𝑖 , 𝑧 = 0, 𝑡2) − 𝑇𝑖𝑛𝑖𝑡

=
𝑡2
3

𝑡1
3

exp
1

4𝐷𝑥𝜆𝑦
(𝜆𝑦𝑥𝑖

2 + 𝑦𝑖
2)

1

𝑡2
−
1

𝑡1
 

𝑧 

𝑥 

𝑦 

laser  

impulse 

IR  

camera 

inverse problem, retrieving diffusivity  
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IR Camera 

Laser 

Sample holder 

industrial installation lab installation 

inverse problem, retrieving diffusivity  



models of heat 
conduction used 

in the inverse 
technique 

numeric, sample of 
arbitrary shape. 

Conduction 

numeric sample of 
arbitrary shape. 

Conduction in sample 
CFD in air. Realistic BC 

as previous but with 
POD-RBG 
accelerator  

analytic, sample of 
simplified shape, 

simple BC. 
Conduction 

inverse problem, retrieving diffusivity  
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Accounting for interaction with convection and radiation 

Assumptions: 

arbitrary domain  

short time heat sources acting on a small 
fraction of the boundary 

natural convection in the air in contact 
with the heated surface accounted for. 
Businesq model applied 

air treated as a transparent medium 

S2S radiation model employed 

equations in the sample and air domains 
solved simultaneously 

Symmetry 

Laser flash 

inverse problem, retrieving diffusivity  
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Single direct HT problem solution 

 

 

Accuracy of POD-RBF model is high, 
- RMSE (per one normalized snapshot 

 

IHTP problem solution 

 

 

 

Model Time 

Full CFD 12 hours 

POD-RBF reduced order << 1 sec. 

Method Time 

Parker Flash method (destructive) ~20 min 

Inverse analysis 

Analytical model  ~1 min 

Full CFD model ~8 days 

Reduced order  

POD-RBF model 
~2 sec. 

technique conductivity 

Parker Flash 43.1W/mK 

Analytic flash 41.1 W/mK 

POD-RBF 43.06 W/mK 

inverse problem, retrieving diffusivity  
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   Example 4 
tumor diagnostics based on response to cooling and heating  

 

Melanoma early diagnostics by primary care physicians. Cooling the suspected area and 

recording the temperature field. Solving inverse problem for perfusion intensity  

 

joint project of Silesian University of Technology (ITT), Institute of Oncology (Gliwice) and Juvena  

Bayesian inverse problem, tumor diagnostics 
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bone 
muscle 

fat 

dermis 

epidermis 
tumor 

DERMIS 

5.2 mm 
7 mm FAT 

EPIDERMIS 

TUMOR 
1 mm 

0.8 mm 

0.5 mm 

16 mm 

𝜌𝑡𝑐𝑡
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
𝑘𝑡
𝜕𝑇

𝜕𝑥
+ 𝜔𝑏𝜌𝑏𝑐𝑏 𝑇𝑎 − 𝑇 + 𝑞 𝑚 

 

Pennes equation  

perfusion metabolism 

four parameters characterizing the tissue, 𝐴 = 𝜌𝑡𝑐𝑡, 𝐵 = 𝑘𝑡 , 𝐶 = 𝜔𝑏𝜌𝑏𝑐𝑏 , 𝐷 = 𝑞 𝑚 

Bayesian inverse problem, tumor diagnostics 



Bayesian formulation 
 

Motto: deterministic inverse problem produce pointwise values of the parameters. 
 

Bayesian produce probabilistic distribution thereof  

1.parameters 𝐤 of the problem are random variables. 
 

2.any information that is available about the unknown parameters (prior). 
Usually the interval within which these parameters are expected is known, so is the probability 
density function 𝜋𝑝𝑟𝑖𝑜𝑟(𝐤). These information need not be very precise 

 

3. likelihood function describing the relation between the measurements 𝐘 

and results of the direct problem is defined 
 

4.evaluate probability distribution of the unknown parameters once the 

measurements are known , 𝜋(𝐤|𝐘)  

Bayesian inverse problem, tumor diagnostics 
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𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝐤 𝐘 =
𝜋𝑝𝑟𝑖𝑜𝑟 𝐤  𝜋 𝐘 𝐤

𝝅 𝐘
  

𝝅 𝐘  probability density of the measurements (normalizing constant), need not be deterjined 

Bayes equation 

𝜋 𝑘𝑗 =

1

𝜎𝑗 2𝜋
 exp −

𝑘𝑗 − 𝜇𝑗
2

2𝜎𝑗
2 𝑖𝑓 𝑎 < 𝑘𝑗 < 𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Typical priors 

Prior has Gaussian distribution for parameter 𝑘𝑗 with mean value 𝜇j and variance 𝜎𝑗  .  

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟~𝑝𝑟𝑖𝑜𝑟 ∗ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

𝜋 𝑘𝑗 =  

1

(𝑏 − 𝑎)
 𝑖𝑓 𝑎 < 𝑘𝑗 < 𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Bayesian inverse problem, tumor diagnostics 
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likelihood function 

 
 

Let 𝐓 𝐤  denote the simulated values of the measured quantities 𝐘, obtained for a 

selected set of retrieved parameters 𝐤. The measurement errors are assumed to be  

additive and independent of the parameters 𝐤 

 

𝛜 = 𝐘 − 𝐓(𝐤) 

 

Assuming that the measurement errors 𝛜  are Gaussian random variables, with zero 

means, known covariance matrix 𝐖, the likelihood functions becomes   

𝜋 𝐘 𝐤 = 2𝜋 −𝐷 2 𝐖 −1 2 exp −
1

2
𝛜𝑇𝐖−1𝛜  

= 2𝜋 −𝐷 2 |𝐖|−1 2 exp −
1

2
𝐘 − 𝐓 𝐤 𝑇𝐖−1[𝐘 − 𝐓 𝐤 ]         

𝐷   number of measurements 

  

Bayesian inverse problem, tumor diagnostics 
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Monte Carlo Markov Chain   

The posterior 𝜋(𝐤|𝐘)  can be evaluated using Monte Carlo Markov Chain,  
so that the that inference on the posterior probability becomes inference  
on its samples generated eg. by Metropolis Hastings algorithm.  
 
The candidate value 𝐤∗ is generated from a user defined distribution  

(say random walk) for known 𝐤(𝐭) parameter. Then the probability (MH ratio)  

is evaluated as 

𝛼 𝐤∗ 𝐤(𝐭) = min 1,
𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝐤∗ 𝐘 𝑞 𝐤(t) 𝐤∗

𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝐤(t) 𝐘 𝑞 𝐤∗ 𝐤(t)
 

𝑘𝑗
∗ = 𝑘𝑗

(𝑡)
+𝑤𝑗 2𝑟 − 1  

random walk if 𝑟 is a random number with uniform distribution in (0,1) and 𝑤𝑗  is  

the amplitude, then   

𝛼 𝐤∗ 𝐤(𝐭) = min 1,
𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝐤∗ 𝐘

𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝐤(t) 𝐘∗
 

taking advantage of the symmetry of the random walk the Metropolis Hastings  
ratio simplifies to  

Bayesian inverse problem, tumor diagnostics 
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a random number 𝑈 of uniform distribution in 0,1   is generated. 

If 𝑈 < 𝛼, 𝑠𝑒𝑡 𝐤(𝐭+𝟏) = 𝐤∗  otherwise, set 𝐤(𝐭+𝟏) = 𝐤(𝐭)    

The result of the MCMC is a sequence of stochastic vectors. Typical diagram of  
values of the parameter is shown below. The resulting distribution is obtained by 
grouping the vectors in bins.   
 

Markov chain, metabolism distribution for metabolism 

Bayesian inverse problem, tumor diagnostics 
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To use statistical inference, the number of vectors should be large. Each 
vector corresponds to a solution of one direct problem. The computational 
times are prohibitively long. ROM can be used to speedup the process, 
here POD-RBF models come into play.  
 
The comparison of the exact and ROM models produces a distribution of the 

error 𝒆(𝐤) = 𝐓 𝐤 − 𝐓ROM(𝐤)   introduced by the simplified model and its 

covariance matrix 𝐖𝑅𝑂𝑀 .  
 
Using the enhanced error model  i.e. neglecting the dependence of the 
error on the retrieved parameters produces the modified likelihood defined as  

𝜋 𝐘 𝐤 = 2𝜋 −𝐷 2 |𝐖 |−1 2 exp −
1

2
𝐘 − 𝐓 𝐤 − 𝒆 𝑇𝐖 −1[𝐘 − 𝐓 𝐤 − 𝒆 ]         

where 

  𝐞   - mean approximation error 𝐞 
  𝐖   - modified covariance matrix 𝐖  = 𝐖+𝐖𝑅𝑂𝑀 

Bayesian inverse problem, tumor diagnostics 
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MCMC 100 000 iterations – full model two weeks, POD 480s,  
online speedup 2500 times 

FEM vs POD-RBF model 

FEM- COMSOL, 1300 elements  

POD-RBF  18 modes 
Mean approximation error  0.3E-8  

Parameter Epidermis Dermis Fat Tumor 

𝜌 𝑡, 𝑘𝑔/𝑚
3 1085.0 1085.0 850.0 1085.0 ∗ 

𝑐𝑡, 𝐽/𝑘𝑔𝐾 3680.0 3680.0 2300.0 3680.0* 

𝑘𝑡 ,𝑊/𝑚𝐾 0.47 0.47 0.16 0.47* 

𝜔𝑏 , 𝑠
−1 0.0 0.0011 3.60𝐸 − 06 0.00525 

𝑞𝑚,𝑊/𝑚3 0.0 631.0 58.0 6310.0 

𝑝𝑟𝑖𝑜𝑟 𝑡𝑦𝑝𝑒 Gaussian Gaussian Gaussian Uniform 

simulated measurements, priors,  10% variation except tumor perfusion, 
metabolism +- 100%    

Bayesian inverse problem, tumor diagnostics 
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retrieved relative tumor perfusion  

Markov chain 
posterior distribution 

mean 𝐶𝑚𝑒𝑎𝑛 𝐶𝑒𝑥𝑎𝑐𝑡 = 1.041 
 
standard deviation 0.05084 

Bayesian inverse problem, tumor diagnostics 
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conclusions  

POD is a powerful tool of reducing the dimensionality of several classes of 
numerical models.  
 
Statistical processing leads to an optimal representation of the spatial 
distribution of the output variable.  
 
The dependence on input parameters can be obtained either by solving a 
set of differential equations or by resorting to RBFs. In the latter case, the 
functionality is that of neural network 
 
Application of POD-RBF networks in inverse problems introduces 
additional regularization by filtering out the noise and additional coupling 
between DOFs 
 
In the context of the Bayesian formulation of inverse problems, POD-RBF 
leads to extreme speedup.   


