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Abstract

The shape of the first of two contacting bodies is optimized on the basis of sensitivities calculated for the second body, i.e. workpiece. The
finite element simulation of sheet metal forming process and direct differentiation method of sensitivity analysis are used. Some energy
measures of deforming sheet metal treated as a cost functional and its gradients with respect to the tool (punch) shape parameters is evaluated.
Tool shape optimization based on “‘exact” sensitivity results is performed. Calculated sensitivities with respect to the tool shape parameters
are the input for each iteration of the optimization algorithm (treated here as a ““black box’’) from which new values of the design variables are
obtained until the cost functional is minimized, yielding the optimal shape for the considered functional.

As an example the axisymmetrical part of the compressor cover produced in one of sheet stamping factories is considered. It was impossible
to produce it without shape modifications. Energy consumption measure is minimized here but other objective functions can easily be

included in the algorithm.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The subject of this paper is the shape and nonshape ‘exact
sensitivity’ based optimization of transient problems of
sheet metal forming. In the last years the sensitivity analysis
has been found the most effective (exact, reliable and
computationally efficient) tool in optimal design.

Finite element simulation of industrial sheet metal form-
ing processes is now widely used in design, in the auto-
motive industry for instance. The spring-back, wrinkling and
fracture phenomena can be simulated, as was written for
instance almost 10 years ago in the first authors paper [11]
published in the Journal of Materials Processing Technology
and in many other papers related to the finite element
simulation of sheet metal forming processes. Tool shape
optimization is still performed, however, by classical trial
and error numerical experiments and/or appropriate adjust-
ments in stamping factories.

Classical mathematical methods of optimization based on
sensitivity analysis have been developed and applied mainly
in structural engineering. A short state of art in this field and
interesting sensitivity based shape optimization of heat
conduction systems are presented in [1]. Application of
these methods in the area of metal forming appears to be
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limited to stationary problems [3]. For effective optimization
of frictional contact problems with unilateral constraints
directional derivatives should be considered [5].

The analytical (exact) calculations of sensitivities of the
problem functions with respect to the design parameters are
relatively complex, which is the reason that the majority of
known solutions are based on the finite difference sensitivity
techniques [6,12].

Possible gains can be achieved during the process by
minimization of forming energy consumption, tool wear,
number of operations, friction forces or maximization of
admissible tool velocity. Also the better product quality can
be expected with proper surface characteristics (without
wrinkling or other geometrical defects), uniform blank
thickness, strain and stress distribution, smaller residual
stresses etc.

In sheet metal forming various and sometimes contra-
dictory criteria must be satisfied, so many different objective
functions are necessary in order to obtain proper quality and
product cost. Very often traditional trial and error procedures
should be used as complementary to minimization proce-
dures. Possible design variables are initial sheet thickness,
blankholder forces, drawbed profiles and location, friction
law coefficients and parameters defining tool shape. The
choice of objective function in optimization problem is not
unique. It depends on these features of the final product,
which are most important for the producers. Number of
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possible objective functions which can be applied in metal
forming are listed and discussed in [4].

In this paper the minimization of some measure of the
global dissipation energy is performed

qf//t (67¢) dQdr (1)
QJO

The region occupied by the body W varies in time ¢, ¢° is the
time at the end of deformation process. The stress and strain
rate fields are denoted by ¢ and &, respectively. The expres-
sion (1) must be calculated for the whole deformation
process by accumulation of all incremental values. Some-
times we must admit more than one objective function to be
considered simultaneously, so many functions can be used at
the same time for the multicriterion optimization.

After calculation of sensitivity gradients d'¥W/dh; of the
objective function ¥(h;) with respect to the design para-
meters vector h = {hy,... h,} at the end of the process
(which is crucial for time dependent plasticity problems) the
minimization of the function (1) with respect to the design
parameter h must be performed. Next the design variable
must be updated and all calculations are followed by the next
step of the iterative optimization procedure. It means that it
is necessary to repeat the calculations of the whole deforma-
tion process in order to get the new values of the function ¥,
its gradients and problem constraints. So the optimization
procedure is relatively expensive as the number of optimiza-
tion iterations is equal to the number of numerical simula-
tion of the sheet metal forming process, including necessary
sensitivity calculations with respect to the basic design
variables during all these simulations. More details about
this algorithm and constraints are given in Section 4.

In this paper exact sensitivities are obtained by direct
differentiation of all functions entering the problem and
included into the flow approach-based nonlinear code for
finite element simulation of sheet metal forming.

As an example the axisymmetrical part of the compressor
cover produced in one of sheet stamping factories is con-
sidered. For the time being only total strain energy con-
sumption is minimized but any other objective function can
easily be included into the algorithm.

The design variable vector h is assumed to depend on the
tool shape. Tool master nodes with coordinates X which
participate in design variation are specified. An useful way
to do this is to represent tool surface as polynomials
or splines and calculate sensitivities with respect to its
coefficients. The proper choice of tool surface representa-
tion and design variable selection are shortly discussed in
Section 5.1.

2. Basic formulation of sheet metal forming
The flow approach to metal forming problems with the

rigid—viscoplastic material model is used as the basis in this
paper [7,14].

The virtual work expression (equilibrium equation in the
weak form) to be solved reads

/ 010:dQ = / fTovdQ + / t'ovd(0Q) ()
Q Q oQ

where v denotes the velocity field, f the distributed volu-
metric load, t the traction on the boundary and integrals are
taken over the actual body volume element d€2 or its surface
element d(0Q), respectively.

Stresses are calculated from the constitutive equation

0jj = 8ij + POjj 3)

where s;; is the Cauchy stress deviator, p denotes the mean
stress and J;; the Kronecker delta. The constitutive function
u* is defined in the flow problem as [14]

— - 1/n
Lo o+ )
3¢ 3¢
Here, o, is the current static uniaxial tensile yield stress of
the material, ¢ the equivalent stress

_ 1/2

o = Gsysy)" (6)
where ¢ is the effective inelastic strain rate

KX o . 1/2

&= (%Sijfl,’j‘) / (7)

and y, n are physical parameters of the rigid—viscoplastic
model used.
For pure plasticity assumed later in this paper we set

y — oo and Eq. (5) yields simply

* O-,V
3
For strain hardening plastic materials the yield limit oy is a
function of the effective inelastic strain &

oy = 0,(¢) ©)

where Z has to be computed as the time integral of &.

The analogy between plastic flow and incompressible
elasticity allows the treatment of pure plastic flow problem
using a numerical code developed for linear elasticity. The
incompressibility condition must be satisfied.

In sheet metal forming the shell theory as the simplifica-
tion of 3D problems is used and large plastic deformations of
thin sheets of metal are treated as elastic incompressible
shell deformations. Plane stress assumptions are used in
shell theory so the incompressibility can be easily achieved
by adjusting the shell thickness during consecutive steps of
the solution to ensure the constant volume.

After spatial finite element discretization the ‘secant’
stiffness matrix K depends on the nodal velocities ¢ through
the parameter u* so that an iterative process is needed to find
the solution vector q

®)

KOgit) = Q, i=0,1,2,... (10)
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in which Q denotes the external force and
K" = K[ (")) (an

The element contributions to the stiffness matrix K and the
nodal forces vector Q are

K =2n / B/DB;rds (12)
1

Qi = 2n/Nitr ds + 27r;p; (13)
I

where [ is the element length, r the radial distance from the
symmetry axis, and t and p are the surface and point load
vectors, respectively. Details of the generalized strain rate—
velocity relationships for the axisymmetric viscous shell are
given in Appendix A and in paper [7].

Please, note that in this approach K” is not the function of
q because q is not the main unknown, q is calculated for a
rigid—plastic material as the product of velocity q and
pseudo-time increment.

Using the Newton—Raphson scheme the ith residual is
defined as

RY =Q-— K(i)q(i) (14)
while the iterative correction 5('1([) such that
¢ =q" +5q", i=01,2,... (15)
is computed from
(0 s5a® — g — K,
K;y'0q" =R 16
T 04 94 q (16)
where
OK ou* .
Kr=K 17
T +8,u* 04 q (17)

is the tangent stiffness matrix.

3. Tool shape sensitivity in sheet metal forming

For the design of the new sheet metal forming process it is
useful to know the sensitivities of many different functions
describing stress, strain, plastic strain, thickness distribution
inside deformed blank with respect to the shape parameters
of the tools (punch, die, blankholder). If the shape parameter
changes are not large, the first gradient of the function with
respect to shape parameter can be treated as the proper
sensitivity measure.

In paper [10] direct differentiation method (DDM) was
used in order to calculate thickness sensitivity with respect
to friction. The extension of this algorithm to the shape
sensitivity is based on domain parametrization (control
volumes) approach (DPA) [3].

The response functional (1) must be mapped to the
reference configuration

x=x(&h)

using the determinant J of the Jacobian matrix

- 8xi

() = az, (18)

Typical for many standard finite element codes isopara-
metric element concept was used in this mapping.

The Eq. (2) in the reference configuration are as
follows:

/ (o6& — £T6v)J dQy — / t'ovosd(0Qy) =0 (19)
Q 0Q0

where 0J defines the surface transformation into the refer-
ence configuration, dJ = J[J~n] and n is the normal vector
field in the current configuration.

3.1. Sensitivity of velocity fields

The gradients of velocity field with respect to shape
parameter h can be calculated after linearization of (19)
as follows:

dq |7y dB) .
Kr—=—-/ 2B B — qJ dQ
T /Qo (dh +u dh q 0

dB\" dJ
— | 2w (=) BqJdQy, — | 2u*B"Bq—dQ
/Qou<dh> q. 0 /Qoll qdh 0

dB\" doJ
— — ) plJdQ, — | BTpI—dQ 20
/Qo<dh>p o /QO p an % (20)

where q is a typical nodal velocity affected by the perturba-
tion of the design variable h, B the velocity—strain rate
matrix, J the determinant of the Jacobian matrix, u* the
viscosity. The matrix B and its derivatives with respect to
two independent design parameter sets selected as described
in Section 5.1 are given in Appendix A.

In plasticity the effect of the pressure field p on velocity
can be neglected, so the last two terms in Eq. (20) vanish and
the sensitivity of the normal vector does not enter into such
simplified model.

The right hand side of the above expression was calcu-
lated by direct differentiation (i.e. without finite difference
scheme) coupled with control volume approach which is
relatively easy to implement because of its full analogy to
isoparametric element concept. Errors typical for semiana-
Iytical finite difference methods are avoided. We can observe
that on the left hand side of both equations, for both
fundamental and sensitivity problems the same stiffness
matrix appears. This fact makes the algorithm efficiency
much higher.

The sensitivity of viscosity p* with respect to the design
parameter can be calculated using the chain rule of differ-
entiation, thus

du* _ Ou” dq
dn;  0q dh;

ey
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In fact the viscosity does not depend explicitly on displace-
ments q = qA?

o ow 0s 0¢

04" 9% 0 g (22)
where from Eq. (5) we have
oW _[—oy+ ((1/m) = )&/
Ot 3E
= :T TAT
(3‘?) _Z= P4 4)
0¢) 6 3¢ 3e
dé d(Bq)
(dq> 6XN dq

In Appendix A the derivatives of matrix B with respect to
two independent design parameters sets chosen as described
in Section 5.1 are given.

3.2. Sensitivities of the energy function with respect
to the design parameters

Total strains are calculated incrementally during defor-
mation process
e A = ¢ 1 Ag! (26)

Strain increment A¢’ depends on strain rate and time incre-
ment

t+At
Ae' = / ¢ dr (27)
t

For typical stamping process and for relatively small time
increments the Eq. (27) can be rewritten as follows:

Ae' = &' At (28)
The energy dissipation given by formula (1) has to be
calculated incrementally

T[+At — q/l + Aq/l (29)

where the energy dissipation increment A¥’ equals

AV = > / (a")TAe' dQ, (30)
e=1,..E” Qe

where E is the number of finite elements in the system.

In practical applications some energy measure can be
minimized yielding optimal design close to exact solution.
In this paper such energy measure was calculated as the
function of stress and strain fields calculated at the end of
deformation process, t = t¢

= 3 / (")"e" dQ, (31)
e=1,..E/ Qe

Let us consider the energy dissipation measure given by
formula (31). Its derivation with respect to design variable

h; results in

dv*  [((do)" = . de
— £ 32
dh; ( dh; e dn ¢y

where to simplify notation the index #° is dropped in all
symbols related to the end of deformation process.

Strains are calculated as product of strain rates times
pseudo-time increment A¢, so strain shape sensitivity equals

de  dé

de _ de 33
iy~ diy 33

In case of rigid—plastic material model ¢ is not the real
time—the absence of viscosity allows to treat the time just as
the integration parameter in nonlinear equations.

Strain rate derivative with respect to design variables is
equal to
) 4B (i41) o (D)

dq
=== B
a, —agd TP

(34)

where i denotes the step counter.
The stress ¢ in flow approach depends on strain rate and
on material tangent matrix D only

o =D(h,¢)é (35)
The stress shape sensitivity equals
d dD dé

D (36)

dhy — dhy T dhy
where D is material tangent matrix.

dD. oDdi. 9D,

D=0 T 37
an " oran o ©7
de  [0D. dB dq"\ oD,

— = |==e+D|[—=q" +B —¢ 38
d; {a&” }(dhjq B Tt OY

Exact calculation of dD/dh; involves thickness differentia-
tion with respect to z; which can be performed similarly as it
was done in paper [10] where thickness sensitivity with
respect to friction was established.

Some authors [9] have proposed for above calculations
some simplifications. They neglect D matrix derivatives in
Eq. (38) assuming they are small

do™)  do di dB dgq"”
= _p|=¢q"") +B—=— 39
A, didhy (dhj R AT 39)

Above equation can be applied when thickness distribution
is not of primary concern in shape optimization. Sensitivities
given by Eq. (32) can be used directly in optimization
algorithm.

3.3. Design elements and master nodes

The derivative of any function, for instance B(x) with
respect to the design variable can be calculated using the
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chain rule of differentiation, where simplified dependency of
any node coordinate on the master node coordinate can be
assumed for a specific problem at hand.

For the tool shape sensitivity such dependency must be
established for active sets of nodes with coordinates x being
in full contact with the part of the tool, where master nodes
with coordinates X are defined. For these active nodes the
derivative of B(x) with respect to the design variable A is
equal to
OB 0B 0Ox; 0X;

Bly,  Ox; OX, Ol (40)

when some specific master node coordinate is chosen as the
design parameter h = X3, as was assumed for one of design
parameters set in numerical example presented in Section 5,
the above equation simplifies to

B _ 0B O
8X3 o 8)(,' 8X3

(41)

4. Optimization algorithm

Shape sensitivities can be used directly in optimization
using the sequential quadratic programming algorithm
which was treated as a “black box”, so details about it
are not given in this paper but can be found in [8]. General
scheme of calculations is shortly described in next section
where numerical example is presented.

5. Numerical example

An axisymmetric part of a compressor cover produced by
the stamping factory HYDRAL in Wroclaw (Poland) shown
as a detail marked by letter F in Fig. 1 is considered. The
diameter of this axisymmetric detail is denoted by ¢ and R
denotes rounding. Some of dimensions, for instance the
diameter ¢ = 13 mm or detail height 8 mm are fixed (cannot
be changed during optimization), some defining upper part
shape of this detail are free do design. The deep drawing of
this detail was impossible at the beginning of production,
due to the localization effects (failures near the bottom part
of the workpiece or excessive thinning of the blank sheet) so
some optimization of tool shape by simple numerical simu-
lation and trial and error procedure was undertaken first [2]
and checked next against optimal solutions obtained with
finite difference sensitivities.

Now we will try to do it in a more advanced manner, by
exact shape sensitivity calculations and optimization by
using the sequential quadratic programming method [8].

5.1. Design variable selection

The possible punch geometry representation could be
expressed in terms of line segments or spline functions

®=13.0
D=10.4
R=3.0

8.0

1]

7

axisymmetric part of detail F

Fig. 1. Compressor cover produced by stamping factory HYDRAL.
Dimensions are given in millimeter.

but the relatively large number of design variables would
be needed for smooth punch surface description in the first
case and wavy contour could be expected in the other case
[6].

So the best choice is performed when optimized part of
the punch shape is described by polynomials. In this paper
the simple parabolas are taken with some design constraints
imposed on their coefficients and limiting points 1 and 2 (see
Fig. 2). Such boundary representation assures smoothness of
the punch surface and gives possibility to reduce the number
of design variables just to three polynomial coefficients, or
even to one radial coordinate of the parabola inner point 3.

The shape sensitivities are calculated analytically by
DDM with respect to two independent design variables
sets:

e In first case vector h contains only three components
namely, the parabola parameters a, b and c. Each con-
secutive approximation of this vector defines a new punch
shape.

e Insecond case only one radial coordinate of the parabola’s
inner point 3 is chosen as the design variable h = Xj.

The solutions are compared with results obtained by the
same optimization method but different sensitivity calcula-
tions that is by the finite difference method.
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Fig. 2. Initial tools shape. Optimized part of the punch denoted by thick
line.

In order to calculate the sensitivities of energy function by
finite difference method, the proper perturbation of design
variable must be established. In Fig. 3 the results of such
analysis for different perturbations of radial coordinate X3 of
the parabola inner point 3 is shown. The value of 0.0004 was
chosen as some approximation of the optimal perturbation.

5.2. Summary of the algorithm in this specific example

1. Start optimization program with initial parabolic part of
the punch described by parabola h = (ag, by, co) or
h = X;.

2. Calculate strain energy measure and its gradients with
respect to the vector h.

3. Minimize energy by calculating its new value and new
parabolic shape h.

4. Compute new punch shape and repeat steps 2 and 3.

5. End if in two consecutive steps energy value does not
differ from the previous value more than assumed
tolerance.

494 1
492 1
490 T
488 T
486 T
484
482 1
480 T
4781 3
476 . . .

Energy consumption [N*m]

design variabe perturbation & X;

Fig. 3. Design variable perturbation choice for finite difference sensitivity
calculations.

The solutions will be compared with results obtained by
the same optimization method but different sensitivities
calculations—by finite difference method.

5.3. Results

In Fig. 4 the optimization path in the design space
obtained with sequential programming algorithm described
shortly in the paper is shown. The minimal energy measure
of 478.2521 Nm was calculated by finite element code
MARC and corresponds to the design variable value of
X3 =3.9892 mm. This value defines the parabola y =
—0.19069x? + 0.230245x + 0.6163 which describes opti-
mal punch part shape designed, see Fig. 5.

Almost the same parabola was obtained when sensitivities
were calculated by the DDM as shown in Fig. 5. The
calculated energy consumption was significantly smaller
in this case (it was equal to 392.16 N m). Also the shape
obtained with the second set of design parameters, i.e. with
parabola inner point variation was almost identical. The

3.9 3.95 4 4.05

4.1 4.15 4.2

Design variable [mm]

Fig. 4. Optimization path in the design space with sequential programming algorithm. Energy calculated by program MARC.
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—8-Y=-0.19069"X?+0.230245*X+0.6163 MARC
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325

0.5+
T fiteration step
45 8"iterationstep
> optimal shape

Fig. 5. HYDRAL test. Intermediate and optimal shapes of the optimized part of the punch.

calculations were about two times longer in the latter case
however. The whole analysis was completed by some trial
and error punch travel and die shape adjustment.

To our opinion the new methods of the tool shape
optimization should be confirmed with other, more appro-
priate objective function. For the time being only the
simplest energy consumption function was chosen. After
reading some referee comments authors decided to
include additional checking calculations of this energy
consumption function by the 3D version of our simulation
code.

Values of energy were checked by 3D code for eight cases
of different values of design variable X5. Comparison of
results obtained for 2D axisymmetric case, and 3D planar
strain case is shown in Fig. 6. On horizontal axis there are the
values of design variable X3 and on vertical axis there are the
values of energy. It is observed that the 2D curve of energy is
smoother than the one obtained by 3D calculations. The
values of energy are similar, the small discrepancies are due
to the different 2D and 3D discrete compressor cover part

Fig. 6. Nodal displacements vectors and geometry description for 2-node,
2D axisymmetrical element.

discretization. In both cases the minimal values of energy
correspond to the optimal value of design parameter
X3 =3.9892 mm. The deformed shapes of the blank for
different punch travels and collapse zone developed are
shown in Fig. 7.

——2D Program Version —=- 3D Program Version

650
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S —
400 —2

Energy Consumption [N m]

350

300

3,75 38 385 39 395

4

405 41 415 42 425 43

Design Variable X3 [*10E-03 m]

Fig. 7. Comparison of energy consumption curves calculated by 2D and 3D programs.
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6. Conclusions

1. The parameter and shape optimization algorithm applied
in practice may substantially reduce production costs in
industrial sheet metal forming.

2. Sensitivity gradient evaluation based on strict analytical
solutions are the most difficult task which has to be done
in order to solve specific problems at hand. For effective
optimization of frictional contact problems with uni-
lateral constraints the directional derivatives should be
considered.

3. In practical applications the proposed simple functions
(parabolas) describing optimized shape of tool parts
must be replaced by more general functions, for instance
special polynomials or splines.

4. The choice of proper objective function is decisive for the
optimization results. It is relatively easy to include any
objective function. The punch shape corresponding to the
minimal dissipation reduces the probability of local sheet
failure. Similar or better effects can be achieved by
introducing such objective functions as maximal local
energy rate or maximum effective strain rate.

5. The selection of the optimization algorithm may be
crucial for the effectiveness of the procedure. The tests
presented using the sequential quadratic programming
method shows its dependence of efficiency on the class
of the objective functions.

Acknowledgements

We would like to acknowledge the work of Prof. C. Agelet
de Saracibar Bosh from CIMNE Barcelona who wrote
the program MFP2D used after some extension in this
paper. Also the financial support of the Polish Commit-
tee for Scientific Research, grant 7TO8B03612 is appre-
ciated.

Appendix A

Strain rate to velocity matrix B;

I ON; ., ON; T

cosd)g sin ¢ 9 0

— 0 0

' ON;

B, = |0 0 _ (A.1)
N os 6
0 0 ; cos
,
., ON; ON;

_—smqﬁ s cos ¢ s —N; |

The derivative of this matrix with respect to the 2D,
axisymmetrical element node radius r;, i = 1,2, see Fig. 8, is
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Fig. 8. HYDRAL test. Calculated deformed shapes for punch travels: (1) 2 mm; (2) 4 mm; (3) 6 mm; (4) 8 mm. Collapse (fracture) zones are indicated on

fig, (4).
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equal to

ON; d¢
0s Js dr
d 0 0

0

aB,‘ 2
=10 0

0
Or; N;sin ¢(d¢/dr)r + N; cos ¢

(A.2)

0 0

ON; d¢ .
_—cosqb 55 dr —sin ¢

72

ON; %
Os dr

The derivative of elemental matrix B; with respect to the
coefficients of the parabola which passes through this ele-
ment’s nodes is much more complicated. Due to the com-
plexity of analytical differentiation of the B; matrix
components with respect to the design parameters a system
for doing mathematics by computer ‘“Mathematica’ [13]
was used.

For 2-node linear element curvilinear coordinate s
depends on natural (elemental) coordinate & as follows:

l
ds = Edé (A.3)
The shape functions are equal to
1-¢ 1+¢
N =—> N, =——=> A4
1 2 ) 2 2 ( )

where —1 < ¢ <1
After substitution of the last two equations into (A.1) we
can obtain matrix B in the form

coordinate axis, equals

(2 —y1)

¢ = arctan
X —X1)

(A.7)

The equation of parabola which lies on coordinate points 1
and 2 of those elements which are in full contact with
parabolic part of the punch reads

x1 = ayl + by +c (A.8)
xy=ay;+by,+c (A.9)

“Mathematica” commands order for calculation of the
derivative of the first component of matrix B,

—cos[¢]
l

is as follows:

bll =

(A.10)

xl =ayl®> + byl + ¢
X2 =ay2’> +by2 +c

[ (1) -1 ] :
“Weoss “laing 0 Ji = arctan[(y2 — y1)/(x2 — x1)]
: I = (2 — y1)/sin]fi]
T 0 0 b11 = —coslfi]/I
B;=10 0 ; (A.5) Simplify[
—cos ¢ FortranForm[
0 0 7 TeXForm[
(__l)l(_sin ®) —1) cos ¢ ! where D in “Mathematica” language denotes differentia-
L l 2 tion. Final result of this differentiation reads
Dlp11,a) = (y1 4 y2)cos(2 arctan(1/b + ayl + ay2)) (A1)
T (=y1 +y2)(1 + b2 4 2abyl + a?y12 + 2aby2 + 2a2y1y2 + a?y2?) '
Dlp11, ] = cos(2 arctan(1/b + ayl + ay2)) (A12)
T (=1 4+ y2) (1 + b2 + 2abyl + a?y12 + 2aby2 + 2a%y1y2 + a2y22?) '
Now B; components depend on the radius of the center of the Dlbll,c]=0 (A.13)

axisymmetrical, 1D shell element used in our finite element

7‘2%(XQ —|—X1) (A.6)

and on the angle between this element and horizontal

All others components of matrix B, can be differentiated in a
similar way.

Matrix B of those elements which are not in full contact
with parabolic part of the punch at specific time step does not
depends directly on parabola parameters so we assume that
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its sensitivities with respect to parabola shape at this time
step equals zero.

The determinant of the Jacobian matrix is given by
formula

J =/ I} +J3]
where

Ji =100 —x)
and

Ja =300 =)

Gradients of this determinant with respect to the parabola
coefficients for those elements which are in full contact with
parabolic part of the punch can be again obtained by simple
differentiation:

(—y1 +y2)(b + ayl + ay2)(—y1* + y2?)

D[J,a]=
4Lyt y2 4+ (- (by)) —ay 1+ by2 + ay2?)?
(A.14)
—y1 4+ y2)*(b 1 2
DU, b= (=31 +2)°(b + ayl + ay2)
4\/%(—yl+y2)2+£(—(byl)—ay12+by2+ay22)2
(A.15)
DY,d =0 (A.16)
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