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Abstract

In this paper previous study on the influence of frictional contact effects on velocity field [2], is extended to the
case of blank thickness variation with respect to some parameters characterising the friction evolution law. The
algorithm presented can be used in sheet metal forming for the thickness distribution optimisation.

Keywords: metal forming, frictional contact, sensitivity, optimisation

1. Introduction

In [2] the influence of frictional contact effects on va-
riations of some nonlinear metal forming response cha-
racteristics were studied.

A crucial factor in accurate modelling of realistic
technological problems is the way of dealing with fric-
tional contact effects.

A rigid - viscoplastic material model is assumed. The
equations describing the rigid-viscoplastic (or, as a spe-
cial case, rigid-plastic) material behavior are identical
to those of a non-Newtonian fluid. This justifies the
use of the flow approach in which the main variables
are the velocities of the deforming body defined in an
Eulerian frame typical of fluid flow problems. Also, the
strain rates are linearly dependent on the velocities in a
standard manner while the constitutive equation relates
stress and strain rate.

In this paper the previous sensitivity study is exten-
ded to the case of blank thickness variation with respect
to some parameters characterising the friction evolution
law. The simplistic models of friction used by the au-
thors so far and based on numerically motivated minor
modifications of the standard Coulomb law have proved
to be insufficient. Thus, a more advanced description of
friction should be used in which the friction coefficient
is changing in the course of the process and depends on
the surface finish, lubrication properties and contact
forces.

The importance of this study is belived to originate
from the broadly accepted conviction that the blank
thickness distribution is a major factor in evaluating the
quality of the forming process. Thus, the sensitivity of
the thickness to friction evolution parameters appears
crucial for industrial applications.
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Large scale numerical computations illustrate the
theoretical development.

2. Basic formulation of sheet metal forming

The flow approach to metal forming problems based
on the rigid-viscoplastic material model is used as the
basis in this paper [3, 5].

After spatial discretization the ’secant’ stiffness ma-
trix K depends on the solution q through the viscosity
parameter p* so that an iterative process is generally
needed to find the solution vector q.

K¢t =qQ i=0,1,2,.. (1)
in which Q denotes the external force, for instance pres-
sure (usually constant),

K® = K(u* (D)) (2)

and the constitutive function (viscosity) p* is defined
as

B == ——r (3)

Here, oy is the current static tensile yield limit, & is

l L . .
the equivalent stress & = (2s;5s;)?, € is the effective

inelastic strain rate, § = (%d,-jd.-j)a and v , n are pa-
rameters of the model. For strain hardening materials
the yield limit ¢y is a function of the effective inelastic
strain £, oy = oy (€) ; € has to be computed as the time
integral of €.

Using the Newton-Raphson scheme the i-th residual
is defined as
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R = Q- K(i)q(i) (4)

while the iterative correction §q(*) such that

q(i-}-l) - q(l) + 6(1(‘) 1= 0, lY 27 (5)
is computed from
ng)éq(i) = R® (6)

where Kr is the tangent stiffness matrix.

Let us consider a single slave node ’s’ coming into
contact with a master segment i.e. belonging to the
finite set of active nodes S4,s € Sy

The velocity vector q; is assumed to be related to
the vector of the element nodal velocities by means of
the transformation

Qoaes = AL, ANex1 (M

The quantities

T e 4
() Kesn, xn, = €Al N¢x2n2X1nTx2A5 J(6A1)® (8)

(C)RE’;)N.,Xl = EAge)Tchzngxlg,(i)GAt 9)

are the contributions to the element tangent stiffness
matrix and tangent residual force vector due to contact
[3, 5, 4]. n denotes the unit normal to the tool (master)
segment, € is the parameter, g, is gap function and 8 is
a parameter of the integration scheme.

Limiting ourselfes to the linear Coulomb friction law
we postulate the tangent force residual in the form, cf

eq. (9)
@Ry, = —peAl) \ otax1g,6AL (10)

in which )
o slip

= flastR||
K;, = —pe(0A1)? AL t¢nT A" (12)

is the non-symmetric contribution to the element stiff-
ness matrix due to friction at the node ’s’. After trans-
formation of the secant stiffness matrix to the tangent
one the final system of FEM equations becomes

t’ = tsgn(q,) (11)

(KP + KO + K)sq ) = RO + RO + R (13)

3. Sensitivity analysis with tangent stifness
matrix

By using the definition of the residual given in eq.
(4) and differentiating it with respect to h where A is
any parameter entering the theory we obtain, [2]

dq dR

T = dn laram (14)
in which the notation on the right-hand side is meant to
indicate that the derivative should be computed under
the assumption of the current velocities q independent
of the parameter h.

As a consequence, the right-hand side vector can be
computed provided the primary (equilibrium ) problem
has been solved; the velocity sensitivity vector d?(hl then
follows by solving eq. (14) which is linear and does
not require iteration. Clearly, the latter property has
fundamental significance in terms of computational ef-
ficiency.

The direct differentiatiom method (DDM) based sen-
sitivity equation (14) can be extended to account for
contact and friction effects by observing eq. (12). We
obtain the equation

dq d
(Xr +Kc+Kf)Eﬁ = E[R+Rc+Rf] lgzqem (15)

which can be effectively used to compute sensitivity of
any functional. In the above equation the following
notation was used

R, = Z Z ——eA,(")Tng,ﬁAt = Z (E)RE‘;)NCM
e=1, ,Es€)Sa s€Sa
(16)

T X
Ry= 30 30 -weAegoat= 30 @RY),
e=1,..Es€)Sa S€ESA
(17)

where FE is the number of finite elements in the system.
By specifying the parameter h we can readily derive
explicit expressions for the right-hand side vector in eq.
(15) or eq. (186).
For h = p (coefficient of friction) we have, for in-
stance

dRc 7T a'tx.,
Em feargrau= 2o D —eAS “{“[WJ’
e=1,.  Es€)Sa

.
(1- 9)AtAe%3]}9At (18

dR T

B g = XX (h T egnes
H 6:1,..,EJE(¢)5A

d'x,

T
€A, t'{n[ »

.d'q
+(1-0)AtA E]}em)(m)

4. Sensitivity analysis with secant stifness ma-
trix

In [2] the sensitivity solution was obtained only once,
at the end of calculations, by replacing the secant stif-
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fness matrix used in the whole analysis of the basic
problem by the tangent stiffnesss matrix. Such an algori-
thm had serious limitations - it was very difficult, and
in the majority of analysed examples even impossible to
get sensitivity solution at the early stages of the si-
mulation process. The reason was the ill-conditioning
of the tangent stiffness matrix as explained in [1]. Tt
was stated there that the Newton-Raphson iteration
scheme is applicable (i.e. it converges) only for mar-
kedly rate-dependent materials (steel in hot working
conditions, for instance), for which n < 2 in eq. 3.
Let us consider again eq. (1) , i. e.

K[u*(q, h)lq(h) = Q(h) (20)
Differentiating eq. {20) with respect to h gives
dK . qu dQ

Fh-q+ Pl (21)
dq _dQ dK,
dq dQ  dK du*
K=o G (23)

The above equations have to be solved with respect

(i-1)
to 71% iteratively, using the value —%— calculated pre-
viously at the iteration (i-1).

dq(" dQ dK , au*

_4Q —_( ap dq(’ 1)
“dh ~ dh  du* Oh

The right-hand side vector in eq. (24) can be presen-
ted more explicitely by noting that

x / 2BTBdQ =
dp*nyn  Ja
Z o 2BeT6stes><6dQe (25)
6,u. 0/,4 dq dp*
Bh 6q dh " dh (26)
Op _ op 0¢ dd
89 ~ 8¢ 8d dq (27)
where
o [—oy+ (3 - 1)(£)7]
6#'- = - i) . (28)
3 3¢
o 27 2B4T
—5_6_)6x1_ 3¢~ 3¢ 1xs (29)
is the row vector, and
dd d(Bq)
——==B 30
dq sxn dq (30)

dq)  dQ dK dp* . Ap* dqt-b
o= 220 ————(~“— g 31)
dh ~ dh  dp* 0n 3 3q dh
dg® dr
Knwn (=5 )N 1 = (G s
dK dy* dqli- .
£ 4 Javx:  (32)

B dp* NxN[(—d_‘I)lxN( dh )le

with N denoting the number of the degrees of freedom
for the whole structure.
The term %[le] in eq. (32) on the right hand side

of eq. (15) has the form

dr d

Py dh,[R+R + Ry] lq;tq(h) (33)
used for the sensitivity solution with the tangent stiff-
ness matrix. The secant stiffness employed in eq.(32) yields
sensitivity solutions for all steps, (i.e. after each step
of the equilibrium problem solution), thus giving infor-
mation about evolution of the sensitivities in the whole
process of deformation.

5. Thickness sensitivity with respect to fric-
tion

The thickness of the blank is calculated using the in-
compressibility condition. For an incompressible material
we assume

€3 = —-(E1 + 52) (34)

Thickness of the blank b(¢) for element No. ’e’ (index
(e) is later dropped for brevity) is calculated as the
function of initial thickness by and strain component in
the thickness direction calculated at time ¢ + At

t+A4At b t4+ At
/ by = / éadt (35)
o b 0
t+At logb|t+At (36)
eFAY = logb'+A! — log b, (37)
t+At pitat
este = log b (38)
b = boeap(e,) A (39)

The strain at time (¢ + At) can be obtained using the
deformation from previous iteration plus the corresponding
increment:

et = el + e AL = €501 + Bsxeqit AL
(40)
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Using egs. (34) and (40) equation (39) becomes

A = _boexplet + (BQ)itATAL + ¢l + (Bq)5+2¢ At
(41)
The thickness sensitivity with respect to friction can be
obtained under the assumption that sensitivity of the veloc-
ity field with respect to friction is known. We obtain

dbt+At
dp =

+ (B dq)t+At ]

dEl d€2

dq
—bo[ +(B=— q)i*“‘At + =2

e:cp[el + (BQ) AL+ el + (BQ)HM t] =
dq dq
_pt+AL vttt At ZANt+AL

6. Example - stretching of circular blank with
hemispherical punch

The stretching of a thin circular, isotropic sheet with

a hemispherical punch is considered.
In [2] the sensitivity of the horizontal nodal velocities
with respect to the friction coefficient was calculated by
using the direct differentiation method (DDM) and tangent

Symmetry axis

Yi 1.06"

2.2“

stiffness matrix for punch travel of ¢;, = 1.17 inches
was presented. Sensitivity values for the last step of
analysis were only calculated due to the fact, that the
analysis with tangent stiffness matrix at the beginning
of the process simulation was not possible -~ due to sin-
gularity

The geometrical configuration of the problem, tools
geometry, deformed sheet shape at the punch travel of
1.17 inches and its node numbers are shown in Fig. 1.
Limits of the no-contact area are marked in this figure
as well. The blank has the initial overall radius of 2.2
inches. The coeflicient of friction for the basic problem
is p = 0.04.

50 uniformly distributed linear axisymmetric shell
elements are used for the analysis, [3]. The finite ele-
ment program MFP2D described by [3]. and extended
by the first author of this paper is employed.

The uniaxial stress- strain curve for the matrix ma-
terial is given by

ton

o = 5.4+ 27.880-50¢ o for £<0.36
(43)

o = 5.4+ 24.46950% STZ for  £>0.36
(44)

In this paper sensitivity of the nodal velocities with
respect to the friction coefficient could be calculated
at any step. Then thickness sensitivity was obtained

.according to the formulae given in section 5. For the

Limits of no-contact
area

Figure 1: Hemispherical punch stretching problem. Tools geometry. Deformed shape and nodal points numbers.
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time being only friction evolution due to changing area
of contact was accounted for. Any friction evolution
due to any friction parameter changes can be easily
included as only very small changes to the program are
necessary in such a case.

Similarly as in [2] sensitivity values corresponding to
the sheet node numbers given in the previous figure
are shown for four different punch travels q in Fig. 2.
One can observe that the maximal sensitivity of ¢t with
respect to friction corresponds to the points being in
contact with the punch or die surface, depending on
punch travel. Also a negative sensitivity area in the
no-contact zone can be observed.

Similarly as in {2] the results for advanced process (for
punch travels of 0.927 inches and 1.227 inches) indicate
that the response sensitivity decreases with the process
development.

At the very beginning of the process for the punch
travel ¢ =0.327 inches, due to sticking conditions on the
rigid tools (punch and die) surfaces, very small sensiti-
vity of thickness with respect to friction was observed.

All solutions have been obtained using the secant stif-
fness matrix as described in Sec. 4 and have converged
very well at all stages of the process.

7. Conclusions

1. In the paper an important, but so far very rarely tre-
ated in the computational mechanics literature, area of
nonlinear parameter sensitivity studies has been iden-
tified and discussed.

2. A practical approach to the sensitivity analysis for
contact / friction problems has been developed and te-
sted numerically. The lubrication effects on thickness
changes can be easily investigated using the algorithm
presented. One can optimize process parameters or lu-
brication conditions in order to minimize thickness sen-
sitivity with respect to friction. It would be difficult to
overestimate the practical usefulness of such a numeri-
cal tool.
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