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Parameter sensitivity analysis in frictional contact problems of 
sheet metal forming 

M. Kleiber, W. Sosnowski 

Abstract Influence of frictional contact effects on parameter 
variations of some nonlinear behaviour is studied. The flow 
approach to deep drawing simulation is taken as the underlying 
nonlinear mechanics problem. Theoretical considerations are 
followed by the discussion of computational aspects. In 
particular, difficulties resulting from parameter 
nondifferentiability of the response at some points along the 
deformation path are indicated and discussed in the 
computational context. An advanced numerical illustration is 
given. 

1 
Introduction 
Development of formulations and numerical algorithms for the 
analysis of nonlinear solid and structural mechanics problems 
has been the subject of research activity for many decades. By 
now, the treatment of even those problems which are considered 
the most challenging, like large inelastic deformations under 
contact constraints, has reached a level of maturitywhich makes 
it possible to effectively address almost every complex problem 
of engineering analysis in this area. The natural next step on 
which researchers have focussed attention in the last few years 
is the sensitivity analysis of the nonlinear response with respect 
to system parameters, Tsay, Arora (1990); Vidal and Haber 
(1990); Chen, Hisada, Kleiber, Noguchi (1993); Kleiber (1990). 
The possible gains here can be phrased as follows: 

(a) Gradients of functions describing system behavior with 
respect of parameters entering any specific theory 
employed are indispensable in majority of algorithms 
used for system optimisation, reliability and 
identification, 
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(b) It is now broadly accepted that any realistic large-scale 
engineering simulation has to be complemented with an 
extensive study on response sensitivity to system 
parameters just to deepen our understanding of the 
system behavior. 

Noteworthy problems of nonlinear mechanics for which 
satisfactory sensitivity techniques have not yet been developed 
are those with unilateral constraints such as theories of plasticity 
with elastic range and contact/friction formulations. 
Particularly challenging are the latter problems - among very 
scare attempts to deal with them are the theoretical discussion 
given in Bendsoe et al. (1985) and the presentation of some 
algorithmic issues in Baniotopoulos and Abdalla (1995); the 
work of Xian Chen (1994) should also be mentioned. This paper 
is a next attempt to address this class of problems with emphasis 
on including an up-to-date contact/friction and plasticity 
formulation as well as on effective solving of a complex metal 
forming problem of engineering significance. 

In Sect. 2 we briefly present equations describing 
the problem of deep drawing of metal sheet in the 
framework of the flow approach. Contact and friction effects 
are included. Basic concepts of the sensitivity analysis for 
such a formulation are discussed in Sect. 3, while Sect. 4 
contains exemplary numerical studies followed by conclusions 
in Sect. 5. 

2 
Flow approach to deep drawing simulation with 
contact and friction effects 
The flow approach to metal forming problems based on 
rigid-plastic and rigid-viscoplastic material model has been 
successfully used in practical computations for many years, 
Zienkiewicz, Godbole (1979); Ofiate, Zienkiewicz (1983); Ofiate, 
Kleiber, Agelet (1988); Ofiate, Agelet (1992), for instance. In it, 
a crucial factor in accurate modelling of realistic technological 
problems is the way of dealing with frictional contact effects. 
Following Zienkiewicz, Godbole (1979); Ofiate, Zienkiewicz 
(1983); Ofiate, Agelet (1992); Wriggers, Simo, Taylor (1985); 
Wriggers, Van, Stein (1990) we shall briefly review below the 
equations describing one of the possible formulations for the 
sheet metal forming problem with the contact and Coulomb 
friction effects included in the model. 

The equations describing the rigid-viscoplastic (or, as 
a special case, rigid-plastic) material behavior are identical to 
those of a non-Newtonian fluid. This justifies the use of the flow 
approach in which the main variables are the velocities of the 
deforming body defined in an Eulerian frame typical of 
fluid flow problems. Also, the strain rates are linearly dependent 
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on the velocities in a standard manner while the constitutive 
equation relates stress and strain rates. The problem of 
visco-plastic flow can be presented as follows: 

equilibrium: 

%,j = 0 (1) 

constitutive law: 

1 1 (2) 
d 0 = ~ (a,j -- p6 o) = 2# ~ % 

geometric relation: 

d,j - 1 (3) - ~ ( %  + v~,~) 

where a v and % are the Cauchy stress tensor and its deviator, 
respectively, p is the mean normal stress, v~ is the spatial velocity 
vector, d is the rate of deformation tensor and the constitutive l] 
function (viscosity)/2 * is defined as 

# *  - 3~  - 3~  
(4) 

Here, ay is the current static tensile yield limit, 6 is the equivalent 
stress 6 = (3/2sqsq) ~n, g is the effective inelastic strain rate, 

= (2/3  dqdo)ln and 7, n are parameters of the model. For strain 
hardening materials the yield limit cry is a function of the 
effective inelastic strain g, (ry = ay(g); g has to be computed as 
the time integral g. 

It is interesting and extremely useful computationally to 
observe that the structure of the above equations is anologous 
to that of standard incompressible infinitesimal elasticity, the 
differences being (a) displacements and strain velocities 
replacing displacements and strains themselves and (b) the 
constitutive function #* replacing the elastic shear modulus #. 
The analogy has a great computational potential since it allows 
to treat advanced plastic flow using computer software 
developed for linear elasticity. To do so one has simply to allow 
the elastic shear modulus # to be a given function of the current 
yield stress cr z and the current effective strain rate g, and to 
interpret the displacements u, as the instantenous velocities v,. 
The fact that the underlying material is incompressible may 
cause some difficulties in dealing with bulk forming processes 
in 3D or plane strain, Antunez, Idelson (1990) - it is of no 
concern in solving sheet forming problems such as those 
discussed in this paper. 

For the virtual velocity field v satisfying appropriate 
kinematic boundary conditions the 3D virtual work equation 
reads 

o'[•215 f~[x,V6x3d~Q+ f tL3v3• 
n n dO~ 

(5) 

which upon introducing the finite element expansion 

v3•215162215 (6) 

with iIN• ~ as nodal velocities, yields 

T 
f BN• • 1d-Q- QN• 
1"2 

with 

T 
= r • 3t3 • I d(df2) 

n d;2o 

(8) 

(9) 

Using Eqs. (2), (6) and (8) becomes 

(!2/-/'~BT•215215 + I PBfI•215215 
a& 

in which 

(10) 

16• 1 ={1  1 1 0 0 O} (11) 

On account of the incompressibility constraint 

t r d =  r llx6B6•162215 1 = 0 for any (~x/• 1 (12) 

Eq. (10) becomes 

( f 2 # * B T •  6B6 • N d - O ) ~ •  1 = Q N •  
~2 / 

or shorter 

(13) 

KN• qN• = QN• 

where 

#* = #* (g, %, ~, n)  

= ~(q) 

(14) 

% = %(g) (15) 

are known functions of the respective arguments. The stiffness 
matrix K depends on the solution q through the viscosity 
parameter #* so that an iterative process is generally needed 
to find the solution vector q. Experiences with solving forming 
problems described by Eq. (14) show, Antunez, Idelsohn (1990), 
that the Newton-Raphson iteration scheme is applicable (i.e. 
it converges) only for markedly rate-dependent materials (steel 
in hot working conditions) for which n < 2 in Eq. (4). Otherwise 
the direct iteration based on 

K(')/I('+I) = Q i =  0,1,2 . . . .  (16) 

in which 

K ~ = K(#* (~l~ (17) 

is preferred even if is only linearly convergent. (Procedures for 
accelerating convergence have been proposed by Antunez, 
Idelsohn (1990)). 

Using the Newton-Raphson scheme we have the i-th residual 

d6 • = B6•215 1 (7) R ('> = Q -- K(')/I~ (18) 



while the correction 6il (') such that 

/10+,) = dl{*) + 6q(0 (19) 

is computed from 

OR (') 6_(, ) R('+I) -~ R~O + ~ '-1 = 0 (20) 

i.e. as 

6/10'= -- (ORO)~-IRO)= K~'-'R '0 (21) 

where 

- the boundary of the rigid body is approximated by 
a collection of straight linear segments, 

- the linear Coulomb friction law is assumed. 

Let us consider a slave node's '  of the deforming body that 
is likely to penetrate a master segment of the rigid body defined 
by the nodes 'ml', 'm2', Fig. 1. The so-called gap function is 
defined at the point's '  as 

~S = (Xs - -  Xr~,) n ( 2 5 )  

where n denotes the unit normal to the master segment, x= is 
the current position of the slave node's' and x~ is the (constant) 
position of the master node 'ml'. 

The inequality 
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0dl(~) - 0d 1 K (~ + 2(BTBdl ~ d O  = - -  K~ ) 

is the (non-symmetric) tangent stiffness matrix while 

(22) 

[ ( 1 ) 1  
0p* 0#*0g0d - - a y +  n - - 1  (~ )  
O~l ~  t)~ 0dc~ 1 -  3~ 3 \ 7 /  32BTB/1 (23) 

g~ > 0 (26) 

has to be checked for all candidate contact nodes 's' from the 
finite set S, s~S. In general, S will contain all the boundary nodes 
of the deforming body. For g~ < 0 the constraint equation for 
the node's '  becomes active (s~Sa); otherwise, the constraint 
is inactive (s ~ S~). The length of the master segment is defined as 

l = I] Xt'a2 - -  Xr//1 I] ( 2 7 )  

If quasi-stationary problems are considered no time integration 
enters; otherwise, for an implicit scheme the computation of 
the load term QQ/~/1 contribution to the tangent stiffness matrix 
may be required. To better see that difference between the 
Newton-Raphson and direct iteration we rewrite Eq. (16) as 

K(~ I~ = R (~ (24) 

where 6/1 ~ and R "/are given by Eqs. (19) and (18) respectively. 
The class of sheet forming sensitivity problems we aim at 

solving allows to employ the axisymmetric shell theory as 
developed in metal forming context by Ofiate and Zienkiewicz 
(1983). In fact, the analogy of the flow equations to those of 
infinitesimal elasticity makes it possible to replace any standard 
elastic formulation by the one describing rigid-viscoplastic 
forming problem. An approach of this kind was successfully 
employed by Ofiate and Zienkiewicz (1983); details of it are not 
repeated here for brevity. 

It should be also emphasized that the deep drawing problems 
are inherently transient and application of the flow approach 
methodology, best suited for steady-state situations requires 
appropriate re-interpretation and numerical treatment. The 
reader is referred to Ofiate and Zienkiewicz (1983) for detailed 
description of the algorithm used to this purpose. 

Description of contact effects is essential for realistic 
modeling of many technological problems related to sheet metal 
forming. A brief description of a formulation discussed by 
Wriggers, Simo, Taylor (1985), Wriggers, Van, Stein (1990) 
which is broadly considered most accurate and effective is given 
below under a number of simplifying assumptions relevant to 
the problem on hand. The assumptions are as follows: 

- 2D problems are considered only, 
- one of the contacting bodies is rigid resulting in the 

unilateral constraints imposed on the motion of the metal 
sheet considered, 

while the unit vector tangent to the segment as 

1 
t = ~ (x ,~  - -  x z , )  (28) 

We are looking for a solution to the problem at a fixed time 
instant t + At assuming that the solution up to the preceding 
time instant t inclusive has already been obtained. The 
iteration number at the time step considered is denoted by T, 
as before. 

The contact constraint condition (26) at time t + At and 
iteration 'i' reads 

t+a~i) = (t+atx~) _ Xm,)rn > 0 (29) 

which at the (i + 1)-th iteration becomes 

,+,,g},+l) __ + 6u(," - XmYn 

= + 6 u ?  Tn = + M "  (30) 

where to simplify notation the index 't + At' is dropped in all 
symbols denoting variations. 

~ g 

Fig. t. Geometry of the slave nodes with a master segment ml-m2 



To effectively use (30) in the framework of the flow approach 
the change in the gap function has to be expressed in terms of 
the nodal velocities by using a time integration scheme of the 
form, for instance 

A 
for any admissible 8q, 82, yields the equations 

8~+~r  \ ^ 81~ + ,+~2(,+~) - os " 6 "  
" O t + ~ l + , )  Ot+Atq(i+l,) q = 0  (41) 

,+atx,(,+~) = t+~tx s(') + OAtbq(f 0 <- 0 _< 1 

o r  

( 3 1 )  (t+Atg},+,) l t+At)~,)~)~= 0 
(42) 

300 

Su~0= OAt6q~ ') (32) 

where 0 is a parameter  of the integration scheme while 

3q~,)  = t+A tq~Z+ l )  __ t + A t q ~ O  (33)  

The expression (33) is a straightforward consequence of the 
relationship 

which read more explicitely 

t+At l ( (~+  1 ) t + A t q ( t + l )  t + A t Q T  (0 
(e) ~" T - -  (e) 

...}_ (t+Atr ^ i (e) r 
. ~ + 62,)A~No•215 = 0  

g5 - - - t  % + = 

(43) 

(44) 

'+a' x~"+') = tx, + A f q ,  + PAt( ~+A,.q~,+, _ tq~) 

----tx s + (1 -- 0)At 'q,  + 0At'+A'q(j + '  (34) 

The so-called perturbed Lagrangian function is adopted in the 
discretized form for one 'e '- th finite element with N~ degrees 
of freedom and with just one node ' s '  in contact as 

By linearising the equations a t  ( t + A t q 0 + l ) t + A t 2 ,  ) and noting 
that, cf. Eqs. (18), (33) 

t+At][(O) t+At~l ( i+l )  t+Ato iT(O __ t + A t K O + l ) ~ A ( i )  t + A t f ' l T  (0 
(e) ~ ' T  "1 - -  (e) "< - -  (e) T v ~ l  - -  (e) "~ 

+ t+At l r  1) t+AtAO+ 1) 
(e) ~ ' T  "1 

- -  t + f i t l f ( i + l ) ~ A ( i )  - -  t + h t D ( i )  (45) --(e) "T ~ (e) *" 

t+At  ( t + l ) t + A t  (z+l) I~e(t+Atq (t+l), t+AtZ(z+l)) I~I (t+ Atq ('+1)) + 2 s g~ we obtain 

1 
(,+ i) ~(,+ ~) (35)  

28 % % 

in which e is a parameter, [I  can be given an interpretation in 
terms of the element potential energy associated with the 
incremental deformation with the velocity ~+A,q0+, 

~ I ( t + A t ~ l ( i + l )  ) l t + A t , h ( t + l ) T t + A t I ( ( i ) t + A t A ( i + l )  
= ~ "1 *'(e) "1 

_ t+AtQ~l;It+Atq(i+l) (36) 

and 2~ is the contact force normal component  at node ' s '  (due 
to the assumption of frictionless contact only the normal 
component  of the force appears in the formulation). The 
velocity vector q~ is assumed to be related to the vector of the 
element nodal velocities by means of the transformation 

t+atK0) A(e)T,, &A+] ~ ~(0 ](,)A(e)r~A~ - 

(~) r 6 q  ) ( 4 6 )  
1 ^ (,) = 1 (,) o) 

L W A f 0 A t  z <52s ~2~ -g;  

By solving the second equation for 821'/ 

62~̂  (o =e(g;(~ + nrA~")6"q (~ -- "~s0) (47) 

and substituting it in the first equation, we obtain 

[t+atu-0) eA~WnnTA~)(PAt)E] ~q( i )  = (oR(1) _ _  eA, ng'~ PAt  (e) ~ 'T  + (e) r O) 

(48) 

o r  

[t+Atl((0 ~A (t) -- R(~) -C I~(') (49) (~) --r  + (e)Kcs] ~'q - (e) ~- -- (~)*-~, 

- A(~ q~,• q~2• ~ 2 Ne ~ e  I (37) The quantities 

The velocity at the node ' s '  has to satisfy the constraint @)K=~N~• ~ = eA~WN~• 2n2 • 1niT• 2A~ ~) (0At) 2 (50) 

~+a'{ '+ '  = g}') + nrOAt6qCj ) > 0 ~") - ~A (e)~ n • lg~~ (38) (e)"csNeXl - ~  s Ne• 2 (51) 

Stationary conditions for the functional [I~ 

6qlI~ - 8II~ 3"q = 0 
~ l ( t  -t- 1) 

8rI~ &,t 0 
6 z I ] ~  - 0 2 ( , + ,  = 

are the contributions to the element tangent stiffness matrix 
and tangent residual force vector due to contact. The 
expressions (50), (51) have been derived relative to a single slave 

(39) node ' s '  coming into contact with a master segment. The matrix 
Kc, is symmetric. In forming the global stiffness matrix and the 
global residual force vector all the contributions due to 

(40) contact have to be accounted for in the course of the usual 
assembly process. Observing the global ordering of nodes and 



interelement connection we may symbolically write 

R~ = ~ R~, 
$ ES z 

s~S a 

The global system of FEM equations becomes 

K(,) .= K(,)I Xa(,) - R (,) + R~,) T ~ c J ~ " J [  - -  

(52) 

(53) 

Similarly as before in Eq. (52), the global quantities due to 
friction result as 

Rf= 2 Rb (62) 
s~S A 

K f =  ~ K b (63) 
seS  A 

while the final system of the FEM equations becomes 

1#(0 _L R"(0h 51A(~+l) (0 0) 0) (54) (K~) + "~ " " V  ,~'i = R + R~ + R} 

If in the iteration scheme the secant K ('/rather than tangent 
stiffness matrix K~ ) is employed in Eq. (54), only the linear 
convergence can be expected. On the other hand, the consistent 
way in which Kr and R~ have been obtained assures quadratic 
convergence provided the iteration is based on Eq. (54). 

So far, frictionless contact effects have been discussed. 
Limiting ourselves to the linear Coulomb friction law we 
postulate the tangent force residual in the form, cf Eq. (51) 

(55) (~)Rf~ = - # e A y  N, • 2t'2 x tgs OAt 

in which 

•lShp 
t ' = tsgn(iL) = II ~r "P II (56) 

Variation of the expression S/it RI, with respect to '*A~il('+' gives 

(~ (~/tTRf')6~1 = -#eOAtSilTA(f~(O~t-~'.g, + t '  Off.') Si] (57) 
3/1 \ v q  v q /  

By observing the relation, cf. Wriggers, Simo, Taylor (1985), 

St' 3"  = 1 [-SitJ'P ~. ., a II q"P  II 

1 ttr) A(,)(~d 1 (58) - . s l , p l ( 1 - n n  ~ -  
IIq, I 

which vanishes for 2D problems, and the relation 

ag, ~i = oat~r8r = ~atn~A~'~3,i (59) 
00 

we obtain from Eq. (57) 

0(S~l r Rfs) 
3(1 = 3/trKf S/1 (60) 

where 

Kf, = -- #e(0At)2A(f)~t'nrA(f)~ (61) 

is the non-symmetric contribution to the element stiffness 
matrix due to friction at the node 's'. 

(64) 

This system of equations, after appropriate specification to 
the shell problem on hand, allows to iteratively determine the 
unknown velocity field t+~Yi('+~). If, as observed before, secant 
stiffness matrix K/'l rather than K~ ) is to be employed, then 
Eq. (64) is used in the form 

(K(i)+K(r ('+') =R(O +R~(') + R) ~) (65) 

in which the non-symmetric contribution to the tangent 
stiffness matrix, cf. Eq. (22) 

E = aJ 2BrB~I(') ~ d[2 (66) 

has been neglected in the iteration matrix. 
A simple procedure to deal with friction can be based on the 

iterative adjustment of nodal reactions in contact nodes at the 
blank-tool interfaces until they satisfy a Coulomb type of 
friction law, Michalowski, Mroz (1978), for instance. 

Convergence and others problems appear when relatively 
small strain velocity increments with different signs for 
neighboring nodal points are observed. As can be seen from 
Fig. 2, in which the classical and a regularized Coulomb rule 
is presented, the Coulomb law may give very different friction 
forces for nodes sliding over rigid surfaces with almost the same 
velocity. Even for nodes with "proper" sliding direction 

-p Itnl 

p Itnl 

" ~ " ' ~ -  I - - -  p Itnl 

- p  II-I,.n, - - -  

Z~Ushp 

Fig. 2a, b. Coulomb friction layes a classical, b regularized 
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different friction tractions result from different slip values and 
"artificial wrinkling" is produced. 

Coulomb friction law is usually expressed as 

Aua~P=O if I f t [<p[LI  (67) 

Aua 'P=-A,  lf~l if If~l=#lf.I  (68) 

where Au ~'P denotes relative sliding between two contact points, 
2 is a positive scalar, f~ is the normal contact force and f~ is the 
tangent contact force which may be treated as reaction to 
sliding. Condition (67) corresponds to stick (sliding impossible) 
while condition (68) to a possible sliding. 

Additional regularization of the Coulomb law is necesary 
to avoid "artificial wrinkling". 

Algorithmic issues relevant to the computer code used in 
this study were thoroughly explained by Sosnowski (1993 and 
1994). In particular, the slip condition for those neighboring 
nodal points at which small strain velocities increments with 
different signs are observed is replaced by the stick condition. 

3 
Parameter sensitivity analysis 
For linear (and some nonlinear) problems assessment of the 
response 1-st order sensitivity to parameter variation means 
finding the response gradient with respect to the parameter. 
However, for complex problems involving inequality 
constraints (such as those due to contact and friction) the 
sensitivity information carried by the gradient is limited. In 
fact, this class of problems is inherently nonlinear and 
nondifferentiable, and a more sophisticated mathematics 
leading to Gateaux differentials (directional derivatives) is 
needed to properly address the sensitivity problem. In this paper 
just one parameter (the coefficient of friction) is considered so 
that the sensitivity results based on the gradient information 
are believed to be useful provided they are interpreted with 
sufficient care as explained later in this section. 

With h as any parameter entering the theory we consider 
a functional whose sensitivity with respect to the parameter is 
to be assessed, in the form 

q) = ~[s(h),  il(h); h] (69) 

the dependence of q5 on its argument (but not of the stress 
deviator s and Cl on h) assumed known. In the present 
'non-shape' sensitivity considerations h may be taken as one 
of the following parameters: n, y, % #, e in all or some 
integration points in the region analysed. For brevity, we confine 
ourselves to deriving sensitivity equations for just one 
parameter h - a more general case of sensitivity defined as the 
directional derivative with respect to a vector of the parameters 
directly follows the pattern set by the simple discussion. 

Employing the so-called direct differentiation method we 
differentiate Eq. (69) with respect to h to get the functional 
sensitivity as 

dcP 3~0 g~ds  8 q)d~l 
dh- -- •h + - ~ s ~  + ~3~ d-h (70) 

in which 8q)lOh, 8cPlOs and 8@/8~ 1 can be routinely (i.e. by 
a simple function evaluation) obtained for the given solution 

(i 1, s) while dsldh can be expressed as, cf. Eq. (2) 

ds dsdil ~ ,~.dil ~8#*dil 
dh -- dildh = z# t ~  + z - - ~ - ~  + Bil (71) 

Therefore, for the known solution (i 1, s), only dilldh needs to 
be obtained from additional considerations in order to 
determine dq)/dh. To this aim we consider first the non-contact 
problem, i.e. 

K[#* (il, h)]il(h) = Q(h) (72) 

The formulation can be extended by allowing the right-hand 
side vectors depend additionally on i 1 (h) - it has not been done 
here in the interest of brevity only. 

Differentiating Eq. (72) with respect to h gives 

dK dil dQ 
~il+K~- dh (73) 

dK dK d#* dK I/d# * d#* dq~ 
(74) 

. dK .'~d#*dil dQ d K d # * .  
K + ~ q J  ~qq ~-~- ~-~ d,*dh q 

(75) 

k dil dQ d K d # * .  
~ = ~  d~, dh q (76) 

By using the definition of the residual given in Eq. (18) we obtain 

dR 
dil ~ q~q(h) K T ~  - -  (77) 

in which the notation on the right-hand side is meant to indicate 
that the derivative should be computed under the assumption 
of the velocities i 1 independent of the parameter h. As 
a consequence, the right-hand side vector can be computed 
provided the primary (equilibrium) problem has been solved; 
the velocity sensitivity vector dilldh then follows by solving 
Eq. (77) which is linear and does not require iteration. Clearly, 
the latter property has fundamental significance in terms of 
computational efficiency. 

The right-hand side vector in Eq. (77) can be presented more 
explicitely by noting that 

dK 
- j 2BrBdl2 (78) 

dp* a 

d#* 8#*dil 8#* 
- -  - -  f -  ( 7 9 )  

dh 8i l dh Oh 

The DDM based sensitivity Eq. (77) can be extended to 
account for contact and friction effects by observing Eq. (64). 
Before doing this we have to point out again that an obvious 
difficulty in effective computation of the sensitivity gradient in 
such a case is that problems with unilateral constraints are 
generally non-differentiable and only directional derivatives 
exist. This is definitely a complication which apparently 



invalidates the standard sensitivity technique based upon the 
straightforward differentiation of the problem equations with 
respect to the parameter on hand. However, as results from 
the theoretical discussion of Bendsoe et al. (1985) the kinematic 
variables are not differentiable with respect to the parameter 
only if some active constraints are associated with zero reactions 
forces - a situation which can hardly be expected in finite 
element analysis of large-scale problems. Thus, we effectively 
assume differentiability of the response - even if it is 
theoretically unsatisfactory the results are believed to be correct 
within the general finite element accuracy. 

By analogy to Eq. (77) the sensitivity equation reads now 

dq 
(K r + K, + Kf) ~-~ = d [R + R~ + RS] ]~l~q(h) (8o) 

which can be effectively used to compute sensitivity of any 
functinal via Eq. (70). In the above equation the following 
notation was used 

R~ = ~ -- eA(~)~ngflAt (81) 
~es, 

R i = ~ -- #eA~r (82) 
s~S a 

In the context of the sensitivity analysis the question arises 
whether the actual tangent matrix K r or the stiffness matrix K, 
Eq. (17) should be used for finding dilldh by Eq. (77). Using 
Eq. (80) as it is written above has the great advantage of resulting 
in the non-iterative solution for dit/dh. However, as indicated 
in Sect. 2 the tangent matrix K r may quite often be unavailable 
because of the equilibrium iteration algorithm based on K; 
Eq. (80) should then be rewritten as 

dq 
(K + K, + K f ) -~=d  [R + R~ + Rf]lq,q(h~--K ~h (83) 

for which the direct iteration scheme reads 

(K + K~ + Kf) dq~_~+~) d _ f (d i l  (j) 
-- dh [R + R~ + Rf]lqr ) dh 

(84) 

We thus obtain the sensitivity equation which is an 
alternative to Eq. (80). It removes some drawbacks of Eq. (80) 
(K r in practical applications is frequently nearly singular) at 
the cost of having to iterate to find ditldh. 

By specifying the parameter h we can readily derive explicit 
expressions for the right-hand side vector in Eq. (80) or Eq. (81). 

Observing that 

dt+~g~ @~dx s [dtx~ tdd~] 

[-dtx, O)AtA~ ~ l  =nL +(1 - (85) 

we obtain the respective non-zero terms as follows: 

for h = / t  

dR~ = ~ _ ~ASn~nFd% d~2] } 
d# ,+atq,~q(~) scSA ( [_d~ + ( 1 - O ) A t A  e OAt 

(86) 

dRf = - E eA~ eTt'gsOat- E eA~ ~);t' 
d# t+a,q@ q(/~) ssSa seSa 

dr" 
"<~nFd%l. Ld# + (1-O)AtA~]}OAt (87) 

for h=~  

dR~ = - ~, A S n g s O A t -  Z A~ ~),n 
de ,+~,q@q(~) ,esa ,eSa 

d r. 
�9 ~nF L de +(1 -O)AtA~-~]}OAt (88) 

dRi = ~ -- #A~)~t'g~0At -- ~ #A~)~t' 
de ,+a,q@q(~) ,esa ,es~ 

�9 ~nF d'x' d'7] } { L & + (1 - 0)AtA ~ OAt (89) 

forh =7 

~ qr = / 1 /~  \(lIt0-1 \ 
(9O) 

f o r h = n  

(91) 

The assumption made above that each of the parameters is 
the same at every integration point or node can obviously be 
removed so that sensitivity can easily be analysed with 
respect to a parameter defined at just one point in system, for 
instance. We also note that in accordance with the assumption 
of Sect. 3 the vectors n and t' are considered independent of h. 

Having solved Eq. (80) or Eq. (84) for d'+aYt,/dh the updating 
of dx/dh follows according to 

d'+a~x' d% [ tdd~ ~ d'+aYl, 7 
dh - dh ~-At ( 1 - 0 )  + 0 ~ - - J  (92) 

Both dt+aYt/dh and dt+a'xs/dh have to be stored for the next 
step computations. 

4 
Example - stretching of circular blank with hemispherical punch 
The stretching of a thin circular, isotropic sheet with 
a hemispherical punch is considered. 

The geometrical configuration of the problem, tools 
geometry, deformed sheet shape at the punch travel of 1.17 
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MODEL: SEN381 t 

] / /Symmetry axis 

PUNCH 

~ 1 o-,.Limits of no-contact 
[ area 

Y~ '.~_ 1.06" _--- 

2.2" 

Fig. 3. Hemispherical punch stretching problem. Tools geometry. 
Deformed shape and nodal points numbers 

inches and its node numbers are shown in Fig. 3. Limits of the 
no-contact area are marked in this figure as well. The blank has 
the initial overall radius of 2.2 inches. The coefficient of friction 
for the basic problem is # --- 0.04. 

50 uniformly distributed axisymmetric shell elements are 
used for the analysis, Ofiate and Agelet (1992). The finite 
element program MFP2D described by Ofiate and Agelet (1992) 
and extended by the second author of this paper is employed. 

The uniaxial stress-strain curve for the matrix material is 
given by 

ton 
a = 5 . 4 + 2 7 . 8 e  ~176 in  2' f o r  ~=<0.36 (93) 

ton  
a = 5.4 + 24.4~ ~176 for ~ > 0.36 (94) 

i n  2 ' 

In Fig. 4(c) sensitivity of the horizontal nodal velocities with 
respect to the friction coefficient calculated by using the direct 
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Fig. 4a-d. Hemispherical punch stretching problem, a deformed shape of the shell at the punch travel of 1.17 inches, b sensitivity of the 
nodal vertical velocities with respect to the friction coefficient at qiy = 1.17", calculated by DDM, c sensitivity of the nodal horizontal velocities 
with respect to the friction coefficient at qly = 1.17", calculated by DDM, d sensitivity of the nodal rotational velocities with respect to the 
friction coefficient at qly = 1.17", calculated by DDM 



differentiation method (DDM) for punch travel of ql; = 1.17 
inches is presented. Sensitivity values corresponding to the 
sheet node numbers given in the previous figure are shown. One 
can observe that the maximal sensitivity of/Ix with respect to 
friction corresponds to the nodal point number  7 being in 
contact with the punch surface. Also a negative sensitivity area 
in the no-contact zone can be observed. Increasing the value 
of the friction coefficient results in decreasing horizontal 
velocity in this area as a compensation of the opposite effect 
occuring over the punch surface. 

A remarkable fact is that no finite difference sensitivity 
solution (out of many attempted) has resulted in a reliable 
approximation of the sensitivity values. Small parameter 
perturbations have resulted in excessive round-off errors, as 
the velocities fields for basic and disturbed solutions, 
respectively differ very little, while larger perturbations have 
induced unacceptable truncation errors. Thus, once again, and 
similarly as in the sensitivity analysis of linear systems, Haftka, 
Gurdal (1992) the so-called analytical approach to sensitivity 
appears not only more cost-effective but the only reliable 
way of assessing sensitivity. 

In Fig. 4 the following additional information is presented: 
(a) deformed shape of the shell at the punch travel qlz of 1.17 
inches, (b) sensitivity of the nodal vertical velocities with respect 
to the friction coefficient at qle -- 1.17", (d) sensitivity of 
the nodal rotational velocities with respect to the friction 
coefficient at q~y = 1.17". 

Sensitivity of the horizontal nodal velocities with respect to 
the friction coefficient calculated by the direct differentiation 
method (DDM) for three increasing punch travels qty is 
presented in Fig. 5. As expected, the results indicate that the 
response sensitivity decreases with the process development. 
The greatest sensitivity is observed at the beginning of the 
process. The sensitivity solution has been obtained using the 
tangent rather than secant stiffness matrix as described in 
Sect. 3. The solution, generally less stable than that obtained 
with the secant stiffness matrix, has not converged at early stages 
of the process so that the latter had to be employed initially. 
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Fig. 5. Hemispherical punch stretching problem. Sensitivity of the 
horizontal velocity component against friction by direct differentiation 
method (DDM) for different punch travels 
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Fig.& Hemispherical punch stretching problem. Re-defined sensitivity 
of the horizontal velocity component against friction by direct 
differentiation method (DDM) 

A useful way of presenting the results is by re-defining the 
sensitivity variable to a non-dimensional form as # /~ ,  dglJd #, 
Fig. 6. Such values provide an interesting information indicating 
the relative functional (i.e. the appropriate velocity component) 
change due to the relative change of the system parameter. 

5 
Conclusions 
1. In the paper an important, but so far very rarely treated in 

the computational mechanics literature, area of nonlinear 
parameter sensitivity studies has been identified and 
discussed. 

2. A practical approach to the sensitivity analysis for contact/ 
friction problems has been developed and tested numerically. 

3. The method can easily be implemented into existing finite 
codes provided they are available in the source form. 

4. For effective optimization, reliability and identification of 
nonlinear systems with unilateral constraints further studies 
on sensitivity formulations appear urgently 
needed-non-differentiable problems for which only 
directional derivatives exist deserve special attention. 
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