Metamaterials are understood as artificial media with uncommon electromagnetic properties. They offer new possibilities in searching for materials not available in nature. Research on metamaterials, on their complex - linear and nonlinear - interactions with externally incident light beams and wave packets, and on their various optoelectronic, photonic and plasmonic applications, is recently under an accelerating progress. More information on recent research on metamaterials, and on their principal inventors as well, may be found in the community perspective comments: *Pioneers in metamaterials: John Pendry and Victor Veselago*, written by Allan Boardman in Journal of Optics 13, 020401 (2011), and in publications referenced therein.

The idea of composing photonic structures from metamaterials, stimulated by expectations of their counterintuitive optical responses and exploitation of their other uncommon properties, has been under investigations only for a few years. Thus, many interesting phenomena are still waiting for exploration. What is the most straightforward way of research on the light-metamaterial interactions? It seems that the best way is to directly replace one dielectric component of any photonic structure by its metamaterial counterpart and to check, by theoretical analyses, numerical simulations and, finally, by direct experimental processes of nanovisualisation, what happens when such the replacement takes place. Always several new, counterintuitive outcomes appear.

A number of examples of such new phenomena can be found in publications within this range, from the metamaterial slab optical response yielding subwavelength imaging - commonly understood as the “super lens” action - through such the lens plasmon polaritonic realizations - obtained by the right choice of composite nanoparticle lattices - to the unpredictable deformations or even annihilation of an optical image - known, within transformation optics, as the “optical illusions”.

Topics investigated recently in the Research Group of Nanophotonics are well suited to this goal, as they are covering several phenomena of optical interactions with photonic, plasmonic and nano-meta-material structures, such as:

- spin and orbital angular momentum of photons,
- cross-polarization coupling at nanostructures,
- higher-order HG and LG optical wave packets,
- vortex generation, propagation and splitting,
- normal modes of planar photonic structures,
- nonlinear propagation of beams and pulses,
• optical Kerr effects, solitons and bistability,
• plasmon concentrators and switches,
• resonances at nano-meta-structures,
• near field optical nanovisualisation,
• optical trapping of nanoobjects.

One example of the research outcome of this type - on optical vortices - is given below.

prof. Wojciech Nasalski

*) written on the grounds of:
optical vortex excitation, propagation and splitting
photon angular momentum conservation
at a dielectric isotropic interface

excitation and splitting of optical vortices induced by the cross-polarisation
between orthogonal components of elegant Laguerre-Gaussian vector beams;
bbeams of the left and right circular polarization are incident obliquely on a
planar interface; beam radii are sub-paraxial of the order of one wavelength


Incidence of the eLG_{2,4} beams of CL and CR polarization. Phase distribution
of the reflected beam at the interface (a) for CL polarization of the incident
beam and CR polarization the reflected eLG_{3,2} beam component with the
total topological charge equal to 4-2, (b) for CR polarization of the incident
beam and CL polarization the reflected eLG_{1,6} beam component with the
total topological charge equal to 4+2. In both cases of the incidence (CL and
CR) polarization the total (spin + orbital) angular momentum per the
reflected photon is equal to that of the incident photon: 3\hbar (a) and 5\hbar (b).

Vortex phase evolution during propagation of the reflected CR polarized
beam of the eLG_{3,2} shape. The beam phase spectrum is shown in the
interface plane for different incident beam waist positions placed at z/z_0=:
(a) -1.0, (b) -0.5, (c) -0.1; z/z_0=0.0 means a beam waist position at the
interface, as shown in the above fig. (a); z and z_0 state the propagation
distance and the diffraction length of the reflected eLG beam, respectively.