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Świȩtokrzyska 21, 00-049 Warsaw, Poland

(e-mails: jslawian@ippt.gov.pl vkoval@ippt.gov.pl)

(Received September 24, 2001 — Revised December 27, 2001 )

Discussed is the Klein-Gordon-Dirac equation, i.e. a linear differential equation
with constant coefficients, obtained by superposing Dirac and d’Alembert opera-
tors. A general solution of KGD equation as a superposition of two Dirac plane
harmonic waves with different masses has been obtained. The multiplication rules
for Dirac bispinors with different masses have been found. Lagrange formalism has
been applied to receive the energy-momentum tensor and 4-current. It appears, in
particular, that the scalar product is a superposition of Klein-Gordon and Dirac
scalar products. The primary approach to canonical formalism is suggested. The
limit cases of equal masses and one zero mass have been calculated.
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1. Introduction

The problem has originally arisen from the paper [1] and the more later one [2], where
the Klein-Gordon-Dirac equation (KGD), i.e. a linear differential equation with constant
coefficients, obtained by superposing Dirac and d’Alembert operators, appears from the
U(2,2)-ruled gauge model of spinorial geometrodynamics in a natural and logical way.
Another kind of motivation for this seemingly strange idea comes from the standard
model of electroweak interactions with its mysterious pairing of fundamental fermions.

Let us consider the density of the Klein-Gordon-Dirac Lagrangian in the form

£ = ugµν∂µΨ∂νΨ +
vi

2
(
Ψγµ∂µΨ − ∂µΨγµΨ

)− wΨΨ , (1)

where gµν is the metric tensor, which in special-relativistic limit equals ηµν , i.e. the
flat metric tensor on space-time manifold M with signature (+,−,−,−) and constant
coefficients, Ψ = Ψ+γ0 introduces the rule of Dirac conjugation of bispinors and u, v, w
are some real constants.

[1]
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Since the density of common Dirac Lagrangian

£ =
i

2
(
Ψγµ∂µΨ − ∂µΨγµΨ

)−mΨΨ

contains only the first order derivatives from Ψ, Ψ , the action S =
∫

£d4x can have
neither minimum nor maximum and the principle of the least action δS = 0 defines only
a stationary point but not the extremum of the action integral [4]. In our opinion, adding
d’Alembert operator into common Dirac theory is not only interesting by itself, but may
also help to solve these difficulties, while deducing Dirac equation from the variation
principle.

2. KGD equation of motion

Lagrange equations of motion for KGD Lagrangian take the following form:

viγµ∂µΨ − wΨ = ugµν∂µ∂νΨ , vi∂µΨγµ + wΨ = −ugµν∂µ∂νΨ . (2)

As it has already been said in [1], such an equation does not correspond to any
irreducible representation of Poincaré group, and in this sense it is not admitted by
Wigner-Bargmann classification as a relativistic wave equation for elementary particles.
Nevertheless, there are no principle obstacles against considering a continuous dynamical
system ruled by the KGD equation.

In the momentum representation
(
Ψ (x) =

∫
e−ipµxµ

ϕ (p) dp
)

we obtain the equation
of motion as follows,

vγµpµϕ (p)− wϕ (p) = −ugµνpµpνϕ (p) .

Since gµνpµpν = p2, and in the case when v 6= 0, we may change the form of this
equation into

γµpµϕ (p) = mϕ (p) , (3)

which formally looks like Dirac equation with mass m2 = p2 =
(

w−up2

v

)2

. Thus, we may
write that the general solution of KGD equation is a superposition of two Dirac plane
harmonic waves with masses

m± =
1√
2 |u|

√
v2 + 2uw ± |v|

√
v2 + 4uw . (4)

For the existence of real non-negative (non-tachyonic situation) solutions for m2 we
should have (v2 +4uw ≥ 0)∧ (v2 +2uw ≥ 0), i.e. (uw ≥ 0, ∀v)∨ (

uw < 0, v2 ≥ 4 |uw|) .
To complete our consideration we would like to add the analysis of such a situation

given by J. J. SÃlawianowski in [1]. The appearance of two mass shells in a general solution
of KGD equation does not have to be so embarrassing as it could seem, for the following
reasons:

1) If the splitting of masses m+−m− is large, then, in normal conditions, it may be dif-
ficult to excite the m+-states, because the frequency spectrum of external perturbations
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will have to contain frequencies of the order (m+−m−)c2

h , e.g. if u → 0, then m− → |w|
|v| ,

m+ →∞ (compare this with the idea of Pauli-Villars-Rayski regularization [3]).
2) It is not excluded that superposition of states with two masses might be just

desirable, e.g. one could try to explain in this way the mysterious kinship between heavy
leptons and their neutrinos, or the corresponding pairing between quarks. If there is no
algebraic term, w = 0, then m− = 0, m+ = |v|

|u| . Thus, in spite of a purely differential
character of KGD equation, massive states appear and are paired with the massless ones.

3) For special values of u, v, w, i.e. when v2 + 4uw = 0, the mass gap vanishes,
m− = m+ = |w|

|u| , and KGD equation is exactly reduced to the common Dirac equation.
Thus, for the solution of Dirac equation we may write the expansion in eigenfunctions

in accordance with the superposition principle in the following form:

Ψ (x) =
∑

s=1,2

∫
dµ (m,p)

(
e−ipxus,m

p as,m
p + eipxvs,m

p b+s,m
p

)
(5)

+
∑

s=1,2

∫
dµ (M, p)

(
e−ipxus,M

p as,M
p + eipxvs,M

p b+s,M
p

)
,

Ψ (x) =
∑

r=1,2

∫
dµ (m,p)

(
eipxur,m

p a+r,m
p + e−ipxvr,m

p br,m
p

)
(6)

+
∑

r=1,2

∫
dµ (M, p)

(
eipxur,M

p a+r,M
p + e−ipxvr,M

p br,M
p

)
,

where M = m+, m = m−, the normalized measure of these integrals is dµ (m,p) =
md3p

(2π)3Em
p

, where the energy Em
p = p0 =

√
m2 + p2; us,m

p , vr,m
p are the amplitudes of

plane harmonic waves with positive and negative frequencies (Dirac bispinors), which we
may write in the common form:

us,m
p =

1√
2m

(
m + Em

p

)
( (

m + Em
p

)
ωs

σp ωs

)
,

vr,m
p =

1√
2m

(
m + Em

p

)
(

σp ωr(
m + Em

p

)
ωr

)
,

where ωs is Dirac 3-spinor, which satisfies the normalization condition ω+sωr = δsr.
The multiplication rules for Dirac bispinors with the same mass (m or M) are as

follows (the second table of multiplication rules can be received by substituting m with
M):

us,m
p vs,m

p us,m
−p vs,m

−p

(u)r,m
p δrs 0 1

mEm
p δrs − 1

mpAσrs
A

(v)r,m
p 0 −δrs 1

mpAσrs
A − 1

mEm
p δrs

u+r,m
p

1
mEm

p δrs 1
mpAσrs

A δrs 0

v+r,m
p

1
mpAσrs

A
1
mEm

p δrs 0 δrs

, (7)
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where pAσrs
A are elements of the matrix

(
pz

px + ipy

px − ipy

−pz

)
, which is given as a

scalar product of Dirac vector-matrix σ and the 3-momentum p.
For bispinors with different masses m and M we may write the multiplication rule

tables in the following way:

us,M
p vs,M

p us,M
−p vs,M

−p

(u)r,m
p Aδrs −BpAσrs

A Cδrs −DpAσrs
A

(v)r,m
p BpAσrs

A −Aδrs DpAσrs
A −Cδrs

u+r,m
p Cδrs DpAσrs

A Aδrs BpAσrs
A

v+r,m
p DpAσrs

A Cδrs BpAσrs
A Aδrs

(8)

and
us,m

p vs,m
p us,m

−p vs,m
−p

(u)r,M
p Aδrs BpAσrs

A Cδrs −DpAσrs
A

(v)r,M
p −BpAσrs

A −Aδrs DpAσrs
A −Cδrs

u+r,M
p Cδrs DpAσrs

A Aδrs −BpAσrs
A

v+r,M
p DpAσrs

A Cδrs −BpAσrs
A Aδrs

, (9)

where the coefficients are as follows:

A =
(m + p0) (M + P0)− p2

2
√

mM
√

(m + p0) (M + P0)
> 0, B =

M + P0 −m− p0

2
√

mM
√

(m + p0) (M + P0)
≥ 0,

C =
(m + p0) (M + P0) + p2

2
√

mM
√

(m + p0) (M + P0)
> 0, D =

M + P0 + m + p0

2
√

mM
√

(m + p0) (M + P0)
> 0,

and p0 = Em
p , P0 = EM

p . In the case of equal masses m = M we obtain limit values:

A = 1 , B = 0 , C =
1
m

Em
p , D =

1
m

.

3. Lagrange formalism

To apply Lagrange formalism we calculate the following derivatives:

∂£
∂Ψ,µ

= ugµλΨ ,λ +
vi

2
Ψγµ,

∂£
∂Ψ ,µ

= ugµλΨ,λ − vi

2
γµΨ .

Then the energy-momentum tensor and 4-current have the following forms:

tµν = Ψ ,ν
∂£

∂Ψ ,µ

+
∂£
∂Ψ,µ

Ψ,ν−£δµ
ν = ugµλ

(
Ψ ,λΨ,ν + Ψ ,νΨ,λ

)
+

vi

2
(
ΨγµΨ,ν − Ψ ,νγµΨ

)
, (10)

jµ = i

(
Ψ

∂£
∂Ψ ,µ

+
∂£
∂Ψ,µ

Ψ

)
= uigµλ

(
ΨΨ,λ − Ψ ,λΨ

)
+ vΨγµΨ,ν . (11)
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The term £δµ
ν may be reduced with the help of KGD equation to the 4-divergence,

but the density of Lagrangian is determined only to the accuracy of the 4-divergence of
space coordinates and time function, so we may neglect this term. This is in accordance
with the fact, that the density of Dirac Lagrangian on the solutions of Dirac equation
equals 0 [4, 5]. Then we may receive the forms of Hamiltonian, the 3-momentum and
total charge from (10–11):

H =
∫

t00d
3x =

∫ {
2uΨ ,0Ψ,0 +

vi

2
(
Ψ+Ψ,0 − Ψ+

,0Ψ
)}

d3x , (12)

Pi =
∫

t0id
3x =

∫ {
u

(
Ψ ,0Ψ,i + Ψ ,iΨ,0

)
+

vi

2
(
Ψ+Ψ,i − Ψ+

,i Ψ
)}

d3x , i = 1, 3 , (13)

Q =
∫

j0d3x =
∫ {

ui
(
ΨΨ,0 − Ψ ,0Ψ

)
+ vΨ+Ψ

}
d3x . (14)

From the form of total charge Q(ψ) = 〈ψ | ψ〉 we may write the rule of the scalar
product of two different wave functions ψ(x) and ϕ(x),

〈ψ | ϕ〉 =
1
4

[Q(ψ + ϕ)−Q(ψ − ϕ)− iQ(ψ + iϕ) + iQ(ψ − iϕ)] (15)

= ui

∫ (
ψϕ,0 − ψ,0ϕ

)
+ v

∫
ψ+ϕd3x = u 〈ψ | ϕ〉KG + v 〈ψ | ϕ〉D ,

which is the superposition of Klein-Gordon and Dirac scalar products.

4. Canonical formalism

Now if we define the field momenta πΨ and πΨ in accordance with Hamilton formalism
as:

πΨ =
∂£
∂Ψ,0

= uΨ ,0 +
vi

2
Ψ+, πΨ =

∂£
∂Ψ ,0

= uΨ,0 − vi

2
γ0Ψ ,

we may find the same form of Hamiltonian as in (12) with the help of the formula

H =
∫ {

πΨΨ,0 + Ψ ,0πΨ −£
}

d3x .

After the substitution of Ψ and Ψ in (12), the 3-momentum (13) and total charge
(14) by their expansion in plane harmonic waves, we obtain them as expressed by the
terms of the amplitudes as,m

p , a+s,m
p and bs,m

p , b+s,m
p :

H =
∫

d3p

(2π)3
∑

s

{F (
a+s,m
p as,m

p − bs,m
p b+s,m

p

)
+ G(M, M) + I [(m,M) + (M, m)]}

+
∫

d3p

(2π)3
∑
r,s

pAσrs
A {J

(
a+r,m
p b+s,m

−p − br,m
p as,m

−p

)
+ K(M, M) + L [(m, M) + (M, m)]},

(16)
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P =
∫

d3p

(2π)3
p

∑
s

{N (
a+s,m
p as,m

p − bs,m
p b+s,m

p

)
+ O(M,M) + R [(m,M) + (M, m)]}

+
∫

d3p

(2π)3
∑
r,s

S(a+r,m
p b+s,M

−p − br,m
p as,M

−p − a+r,M
p b+s,m

−p + br,M
p as,m

−p ), (17)

Q =
∫

d3p

(2π)3
∑

s

{T (
a+s,m
p as,m

p + bs,m
p b+s,m

p

)
+ V (M, M) + U [(m,M) + (M,m)]}

+
∫

d3p

(2π)3
∑
r,s

W (a+r,m
p b+s,M

−p + br,m
p as,M

−p − a+r,M
p b+s,m

−p − br,M
p as,m

−p ), (18)

where (•, •) means the same term as the previous one but with different masses and the
coefficients are as follows:

F = m(2mu + v) , G = M(2Mu + v) , I = mM

(
2Au +

Cv

2
Em

p + EM
p

Em
p EM

p

)
,

J = 2mu , K = 2Mu , L = mM

(
2Du +

Bv

2
Em

p − EM
p

Em
p EM

p

)
,

N =
m (2mu− v)

Em
p

, O =
M (2Mu− v)

EM
p

,

R =
mM

(
Au

[
Em

p + EM
p

]− Cv
)

Em
p EM

p
, S =

mM
(
Du

[
Em

p − EM
p

]−Bv
)

Em
p EM

p
,

T =
m (2mu + v)

Em
p

, V =
M (2Mu + v)

EM
p

,

U =
mM

(
Au

[
Em

p + EM
p

]
+ Cv

)

Em
p EM

p
, W =

mM
(
Du

[
Em

p − EM
p

]
+ Bv

)

Em
p EM

p
.

In the case of equal masses m = M = |w|
|u| when u, v, w have special values, i.e.

v2 + 4uw = 0, we may obtain the limit values for Hamiltonian, 3-momentum and total
charge:

H = 4m (2mu + v)
∫

d3p

(2π)3
∑

s

(
a+s,m
p as,m

p − bs,m
p b+s,m

p

)
(19)

+ 8mu

∫
d3p

(2π)3
∑
r,s

pAσrs
A

(
a+r,m
p b+s,m

−p − br,m
p as,m

−p

)
,

P = 4m (2mu− v)
∫

d3p

(2π)3
p

Em
p

∑
s

(
a+s,m
p as,m

p + bs,m
p b+s,m

p

)
, (20)

Q = 4m (2mu + v)
∫

d3p

(2π)3 Em
p

∑
s

(
a+s,m
p as,m

p + bs,m
p b+s,m

p

)
. (21)
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We may consider another limit case when w = 0, and therefore, m = 0, M = |v|
|u| .

In this case all coefficients in (16–18), except of G,K, O, V, are equal to 0 and then the
Hamiltonian, the 3-momentum and the total charge contain only terms which describe
the states with mass M , and have the same form as (20–21), but with the following
substitutions of coefficients before the integrals:

4m(2mu + v) → 4M(2Mu + v) , 8mu → 8Mu , 4m(2mu− v) → 4M(2Mu− v) .

5. Conclusions

After the quantization we may consider as,•
p , a+s,•

p and bs,•
p , b+s,•

p as operators of
creation and annihilation of a particle with the m or M, 3-momentum p and spin s:
âs,•
p , â+s,•

p and b̂s,•
p , b̂+s,•

p . We may find the commutation laws for these operators from
the form of Hamilton operator, the 3-momentum operator and the total charge operator
(as in [4]), which are obtained from (16–18) by substitution as,•

p , a+s,•
p (bs,•

p , b+s,•
p ) with

operators âs,•
p , â+s,•

p (̂bs,•
p , b̂+s,•

p ). The eigenvalues of operators â+s,•
p âs,•

p and b̂+s,•
p b̂s,•

p

are equal to the positive numbers Ns,•
p and N

s,•
p , which are the numbers of particles

and anti-particles with mass m or M , 3-momentum p and spin s. From the condition of
positivity of the energy (the eigenvalue of Hamilton operator) and the conservation law
of total charge (18) we may receive anti-commutation laws for the following operators
(the second set with M instead of m):

{âr,m
p , â+s,m

p } = δrs, {b̂s,m
p , b̂+s,m

p } = δrs. (22)

This means that we may consider the particles described by KGD wave function (6) as
fermions. There arises the question: “Why our wave function does not describe any
bosons in spite of the fact that our KGD equation contains Klein-Gordon term?” One
of possible answers may be that the wave function (6) is not complete because we have
obtained our equation (3) with the essential restriction v 6= 0, which means that any
proper passage from (1) to Klein-Gordon Lagrangian is impossible. We hope to complete
this theory in future papers.

In spite of dealing with the superposition of d’Alembert and Dirac operators, our
model has nothing to do with the supersymmetric mixing of spinors and bosons. It is
based on the U(2, 2)-gauge formulation of gravitation. The last programme is a modifi-
cation of the Poincaré-gauge theory of gravitation, simply the Poincaré group (or rather
its SL(2,C)×R4-covering) is replaced by the SU(2, 2)-covering of the conformal group.
Similarity to the Seiberg-Witten model is superficial.
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