Pracownia Mechaniki Analitycznej i Teorii Pola
p.o. Kierownika Pracowni:

Dr hab. Wasyl Kowalczuk


english
version

Pracownicy na etatach naukowych:
dr hab. Zbigniew Banach, prof. IPPT PAN
pokój 115, tel. wew. 175,
e-mail: zbanach at ippt.pan.pl
dr hab. inż. Wiesław Larecki
pokój 115, tel. wew. 175,
e-mail: wlarecki at ippt.pan.pl
dr hab. Wasyl Kowalczuk
pokój 114, tel. wew. 135,
e-mail: vkoval at ippt.pan.pl
Pracownicy inżynieryjno-techniczni z doktoratem:
dr Barbara Gołubowska
pokój 117, tel. wew. 430,
e-mail: bgolub at ippt.pan.pl
dr Agnieszka Martens
pokój 117, tel. wew. 430,
e-mail: amartens at ippt.pan.pl
dr Ewa Eliza Rożko
pokój 116, tel. wew. 433,
e-mail: erozko at ippt.pan.pl
Pracownicy emerytowani:
prof. dr hab. Jan Jerzy Sławianowski
pokój 114, tel. wew. 135,
e-mail: jslawian at ippt.pan.pl
dr hab. Andrzej Trzęsowski
pokój 116, tel. wew. 433,
e-mail: atrzes at ippt.pan.pl
dr Ryszard Wojnar
pokój 116, tel. wew. 433,
e-mail: rwojnar at ippt.pan.pl

Tematyka prowadzonych badań:
  • Nieliniowa dynamika układów ciągłych i dyskretnych.

  • Mechanika hamiltonowska - podstawy geometryczne, symetrie, całkowalność i chaos.

  • Mechanika ośrodków z mikro- i nanostrukturą.

  • Nieliniowa teoria transportu, termodynamika ośrodków ciągłych.

  • Metody wariacyjne, symetrie i prawa zachowania.

  • Elektrodynamika nieliniowa, uogólnione nieliniowości typu Borna-Infelda, teorie z cechowaniem, defekty.

  • Relatywistyczna teoria ośrodków ciągłych z aspektami astrofizyki.

  • Kwantowe i statystyczne podstawy teorii ośrodków, gazy i ciecze kwantowe, gaz fononowy.


Najważniejsze publikacje z ostatnich lat (2008-2017):
Zespół Badawczy Mechaniki Analitycznej
(Sławianowski, Gołubowska, Kowalczuk, Martens, Rożko)
Zespół Badawczy Transportu Ciepła i Radiacji
(Banach, Larecki)

2017:

  • Sławianowski J.J., Kovalchuk V., Gołubowska B., Martens A., Rożko E.E., Mechanics of affine bodies. Towards affine dynamical symmetry, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, ISSN: 0022-247X, DOI: 10.1016/j.jmaa.2016.08.042, Vol.446, pp.493-520, 2017 (35 pkt)

  • Sławianowski J.J., Kovalchuk V., Gołubowska B., Martens A., Rożko E.E., Quantized mechanics of affinely-rigid bodies, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.4501, Vol.40, No.18, pp.6900-6918, 2017 (25 pkt)

2017:

  • Banach Z., Larecki W., Entropy-based mixed three-moment description of fermionic radiation transport in slab and spherical geometries, KINETIC AND RELATED MODELS, ISSN: 1937-5093, DOI: 10.3934/krm.2017035, Vol.10, No.4, pp.879-900, 2017 (40 pkt)

  • Banach Z., Larecki W., Kershaw-type transport equations for fermionic radiation, ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK - ZAMP, ISSN: 0044-2275, DOI: 10.1007/s00033-017-0847-z, Vol.68, No.4, pp.100-1-100-24, 2017 (35 pkt)

2016:

  • Gołubowska B., Some aspects of affine motion and nonholonomic constraints. Two ways to describe homogeneously deformable bodies, ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, ISSN: 0044-2267, DOI: 10.1002/zamm.201400192, Vol.96, No.8, pp.968-985, 2016 (30 pkt)

  • Sławianowski J., Rożko E.E., Continuous Media with Microstructure 2, rozdział: Affinely Rigid Body and Affine Invariance in Physics, Springer International Publishing, Switzerland, Bettina Albers and Mieczysław Kuczma (Eds.), pp.95-118, 2016

  • Sławianowski J.J., Schroeck Jr. F.E., Martens A., Why must we work in the phase space?, IPPT Reports on Fundamental Technological Research, 1, pp.1-162, 2016

2016:

  • Larecki W., Banach Z., Two-field radiation hydrodynamics in n spatial dimensions, JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, ISSN: 1751-8113, DOI: 10.1088/1751-8113/49/12/125501, Vol.49, No.12, pp.125501-1-23, 2016 (25 pkt)

  • 2015:

    • Martens A., Test affinely-rigid bodies in Riemannian spaces and their quantization, ACTA PHYSICA POLONICA B, ISSN: 0587-4254, DOI: 10.5506/APhysPolB.46.843, Vol.46, No.4, pp.843-862, 2015 (15 pkt)

    • Sławianowski J.J., Kovalchuk V., Selected Topics in Applications of Quantum Mechanics, rozdział: Classical or Quantum? What is Reality?, prof. Mohammad Reza Pahlavani (Ed.), InTech, Rijeka, pp.3-35, 2015

    2015:

  • Banach Z., Dispersion relation governing the propagation of wave pulses in a mixture of interacting longitudinal and transverse phonon gases, WAVE MOTION, ISSN: 0165-2125, DOI: 10.1016/j.wavemoti.2015.05.008, Vol.58, pp.203-221, 2015 (30 pkt)

  • 2014:

    • Gołubowska B., Kovalchuk V., Sławianowski J.J., Constraints and symmetry in mechanics of affine motion, JOURNAL OF GEOMETRY AND PHYSICS, ISSN: 0393-0440, DOI: 10.1016/j.geomphys.2014.01.012, Vol.78, pp.59-79, 2014 (25 pkt)

    • Rożko E.E., Gobcewicz E., Quantization of systems with internal degrees of freedom in two-dimensional manifolds, REPORTS ON MATHEMATICAL PHYSICS, ISSN: 0034-4877, DOI: 10.1016/S0034-4877(14)60048-3, Vol.73, No.3, pp.325-343, 2014 (20 pkt)

    • Rożko E.E., Sławianowski J.J., Essential Nonlinearity in Field Theory and Continuum Mechanics. Second- and First-Order Generally-Covariant Models, JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, ISSN: 1312-5192, DOI: 10.7546/jgsp-34-2014-51-76, Vol.34, pp.51-76, 2014 (9 pkt)

    2014:

  • Banach Z., Larecki W., Ruggeri T., Dispersion relation in the limit of high frequency for a hyperbolic system with multiple eigenvalues, WAVE MOTION, ISSN: 0165-2125, DOI: 10.1016/j.wavemoti.2014.03.008, Vol.51, pp.955-966, 2014 (25 pkt)

  • Larecki W., Banach Z., Influence of nonlinearity of the phonon dispersion relation on wave velocities in the four-moment maximum entropy phonon hydrodynamics, PHYSICA D-NONLINEAR PHENOMENA, ISSN: 0167-2789, DOI: 10.1016/j.physd.2013.10.006, Vol.266, No.1, pp.65-79, 2014 (35 pkt)

  • 2013:

    • Martens A., Test rigid bodies in Riemannian spaces and their quantization, REPORTS ON MATHEMATICAL PHYSICS, ISSN: 0034-4877, Vol.71, No.3, pp.381-398, 2013 (15 pkt)

    • Popov A., Kovalchuk V., Parametric representation of wave propagation in non-uniform media (both in transmission and stop bands), MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.2687, Vol.36, No.11, pp.1350-1362, 2013 (25 pkt)

    • Sławianowski J.J., Kovalchuk V., Advances in Quantum Mechanics, rozdział: Schroedinger equation as a hamiltonian system, essential nonlinearity, dynamical scalar product and some ideas of decoherence, Prof. Paul Bracken (Ed.), InTech, Rijeka, pp.81-103, 2013

    2013:

  • Banach Z., Larecki W., Spectral maximum entropy hydrodynamics of fermionic radiation: a three-moment system for one-dimensional flows, NONLINEARITY, ISSN: 0951-7715, DOI: 10.1088/0951-7715/26/6/1667, Vol.26, No.6, pp.1667-1701, 2013 (35 pkt)

  • 2012:

    • Gołubowska B., Kovalchuk V., Martens A., Rożko E.E., Sławianowski J.J., Some strange features of the Galilei group, JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, ISSN: 1312-5192, DOI: 10.7546/jgsp-26-2012-33-59, Vol.26, pp.33-59, 2012

    • Sławianowski J.J., Mesurements in Quantum Mechanics, rozdział: Order of time derivatives in quantum-mechanical equations, InTech Europe, pp.57-74, 2012

    • Sławianowski J.J., Gołubowska B., Rożko E.E., SO(4,R), related groups and three-dimensional two-gyroscopic problems, ACTA PHYSICA POLONICA B, ISSN: 0587-4254, DOI: 10.5506/APhysPolB.43.19, Vol.43, No.1, pp.19-49, 2012 (20 pkt)

    • Sławianowski J.J., Kovalchuk V., Martens A., Gołubowska B., Rożko E.E., Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, ISSN: 1531-3492, DOI: 10.3934/dcdsb.2012.17.699, Vol.17, No.2, pp.699-733, 2012 (30 pkt)

    • Sławianowski J.J., Kovalchuk V., Martens A., Gołubowska B., Rożko E.E., Generalized Weyl-Wigner-Moyal-Ville formalism and topological groups, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.1531, Vol.35, pp.17-42, 2012 (25 pkt)

    • Vassilev V.M., Djondjorov P.A., Hadzhilazova M.T., Mladenov I.M., Sławianowski J.J., Mechanics and Nanomaterials and Nanotechnology, Series in Applied Mathematics, rozdział: Equilibrium shapes of fluid membranes and carbon nanostructures, Institute of Mechanics Bulgarian Academy of Sciences, 3, pp.153-184, 2012

    2012:

  • Banach Z., Larecki W., One-dimensional maximum entropy radiation hydrodynamics: three-moment theory, JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, ISSN: 1751-8113, DOI: 10.1088/1751-8113/45/38/385501, Vol.45, No.38, pp.385501(1-24), 2012 (30 pkt)

  • 2011:

    • Sławianowski J.J., Mathematical Methods in Continuum Mechanics, A Series of Monographs Technical University of Łódź, rozdział: Symmetries and Constraints in Mechanics of Continua, Technical University of Łódź Press, K. Wilmański, B. Michalak, J. Jędrysiak (Eds.), pp.195-211, 2011

    • Sławianowski J.J., Kovalchuk V., Martens A., Gołubowska B., Rożko E.E., Mechanics of systems of affine bodies. Geometric foundations and applications in dynamics of structured media, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.1462, Vol.34, pp.1512-1540, 2011 (25 pkt)

    • Sławianowski J.J., Kovalchuk V., Martens A., Gołubowska B., Rożko E.E., Quasiclassical and Quantum Systems of Angular Momentum. Part I. Group Algebras as a Framework for Quantum-Mechanical Models with Symmetries, JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, DOI: 10.7546/jgsp-21-2011-61-94, Vol.21, pp.61-94, 2011

    • Sławianowski J.J., Kovalchuk V., Martens A., Gołubowska B., Rożko E.E., Quasiclassical and Quantum Systems of Angular Momentum. Part II. Quantum Mechanics on Lie Groups and Methods of Group Algebras, JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, DOI: 10.7546/jgsp-22-2011-67-94, Vol.22, pp.67-94, 2011

    • Sławianowski J.J., Kovalchuk V., Martens A., Gołubowska B., Rożko E.E., Quasiclassical and Quantum Systems of Angular Momentum. Part III. Group Algebra su(2), Quantum Angular Momentum and Quasiclassical Asymptotics, JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, DOI: 10.7546/jgsp-23-2011-59-95, Vol.23, pp.59-95, 2011

    2011:

  • Larecki W., Banach Z., Entropic derivation of the spectral Eddington factors, JOURNAL OF QUANTITATIVE SPECTROSCOPY AND RADIATIVE TRANSFER, ISSN: 0022-4073, DOI: 10.1016/j.jqsrt.2011.06.011, Vol.112, No.15, pp.2486-2506, 2011 (30 pkt)

  • 2010:

    • Kovalchuk V., On classical dynamics of affinely-rigid bodies subject to the Kirchhoff-Love constraints, SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS SIGMA, ISSN: 1815-0659, DOI: 10.3842/SIGMA.2010.031, Vol.6, No.031, pp.1-12, 2010

    • Martens A., Sławianowski J.J., Affinely-rigid body and oscillatory dynamical models on GL(2,R), ACTA PHYSICA POLONICA B, ISSN: 0587-4254, Vol.41, No.8, pp.1847-1880, 2010 (20 pkt)

    • Rożko E.E., Quantization of affinely-rigid bodies with degenerate dimension, REPORTS ON MATHEMATICAL PHYSICS, ISSN: 0034-4877, DOI: 10.1016/S0034-4877(10)00007-8, Vol.65, No.1, pp.1-15, 2010 (13 pkt)

    • Sławianowski J.J., Geometric nonlinearities in field theory, condensed matter and analytical mechanics, CONDENSED MATTER PHYSICS, ISSN: 1607-324X, Vol.13, No.4, pp.43103:1-19, 2010 (13 pkt)

    • Sławianowski J.J., Gołubowska B., Motion of test bodies with internal degrees of freedom in non-euclidean spaces, REPORTS ON MATHEMATICAL PHYSICS, ISSN: 0034-4877, Vol.65, No.3, pp.379-422, 2010 (13 pkt)

    • Sławianowski J.J., Kovalchuk V., Schrödinger and related equations as Hamiltonian systems, manifolds of second-order tensors and new ideas of nonlinearity in quantum mechanics, REPORTS ON MATHEMATICAL PHYSICS, ISSN: 0034-4877, DOI: 10.1016/S0034-4877(10)00008-X, Vol.65, No.1, pp.29-76, 2010 (13 pkt)

    • Sławianowski J.J., Kovalchuk V., Gołubowska B., Martens A., Rożko E.E., Quantized excitations of internal affine modes and their influence on Raman spectra, ACTA PHYSICA POLONICA B, ISSN: 0587-4254, DOI: 10.5506/APhysPolB.41.165, Vol.41, No.1, pp.165-218, 2010 (20 pkt)

    2010:

  • Larecki W., Banach Z., Consistency of the phenomenological theories of wave-type heat transport with the hydrodynamics of a phonon gas, JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, ISSN: 1751-8113, DOI: 10.1088/1751-8113/43/38/385501, Vol.43, No.38, pp.385501-1-24, 2010 (27 pkt)

  • 2009:

    • Kovalchuk V., Rożko E.E., Classical models of affinely-rigid bodies with "thickness" in degenerate dimension, JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, ISSN: 1312-5192, DOI: 10.7546/jgsp-14-2009-51-65, Vol.14, pp.51-65, 2009

    2009:

  • Banach Z., Larecki W., Zajączkowski W., Stability analysis of phonon transport equations derived via the Chapman-Enskog method and transformation of variables, PHYSICAL REVIEW E, ISSN: 1539-3755, DOI: 10.1103/PhysRevE.80.041114, Vol.80, No.4, pp.41114-1-14, 2009 (32 pkt)

  • 2008:

    • Kovalchuk V., Sławianowski J.J., Hamiltonian systems inspired by the Schrödinger equation, SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS SIGMA, ISSN: 1815-0659, DOI: 10.3842/SIGMA.2008.046, Vol.4, pp.46-54, 2008

    • Martens A., Quantization of two-dimensional affine bodies with stabilized dilatations, REPORTS ON MATHEMATICAL PHYSICS, ISSN: 0034-4877, Vol.62, No.2, pp.145-155, 2008 (13 pkt)

    2008:

  • Banach Z., Larecki W., Modified Chapman-Enskog moment approach to diffusive phonon heat transport, PHYSICAL REVIEW E, ISSN: 1539-3755, DOI: 10.1103/PhysRevE.78.061137, Vol.78, No.6, pp.61137-1-18, 2008 (32 pkt)

  • Banach Z., Larecki W., Chapman-Enskog method for a phonon gas with finite heat flux, JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, ISSN: 1751-8113, DOI: 10.1088/1751-8113/41/37/375502, Vol.41, No.37, pp.375502-1-18, 2008 (27 pkt)

  • Banach Z., Larecki W., Kawashima condition for a hyperbolic moment model of phonon hydrodynamics, INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, DOI: 10.1504/IJDSDE.2008.023003, Vol.1, No.4, pp.263-275, 2008 (2 pkt)

  • Copyright by Wasyl Kowalczuk, 2017