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T. G. ZIELIŃSKI, F. CHEVILLOTTE, E. DECKERS. “Sound absorption of plates with micro-slits backed with air cavities: Analytical
estimations, numerical calculations and experimental validations.” Applied Acoustics, Vol. 146, pp. 261-279 (2019).
DOI: 10.1016/j.apacoust.2018.11.026

Sound absorption of plates with micro-slits backed with air cavities:
Analytical estimations, numerical calculations and experimental validations
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Abstract

This work discusses many practical and some theoretical aspects concerning modelling and design of plates with micro-slits, involving
multi-scale calculations based on microstructure. To this end, useful mathematical reductions are demonstrated, and numerical computations
are compared with possible analytical estimations. The numerical and analytical approaches are used to calculate the transport parameters
for complex micro-perforated (micro-slotted) plates, which allow to determine the effective properties of the equivalent fluid, so that at the
macro-scale level the plate can be treated as a specific layer of acoustic fluid. In that way, the sound absorption of micro-slotted plates
backed with air cavities can be determined by solving a multi-layer system of Helmholtz equations. Two such examples are presented in the
paper and validated experimentally. The first plate has narrow slits precisely cut out using a traditional technique, while the second plate –
with an original micro-perforated pattern – is 3D-printed.
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1 Introduction

Microperforated panels (MPPs) and microslit absorbers (MSAs)
originate from the sixties of the last century, as robust sound ab-
sorbers for harsh environments, replacing more traditional sound
absorbing materials such as porous materials. Nowadays, they find
many applications ranging from food courts and clean rooms for
micro-electronics to launcher fairings [1]. Within these materials,
the perforations are in the sub-millimeter size, ensuring energy dis-
sipation of the sound wave into heat by mainly viscous losses; ther-
mal losses are in general low, due to the simple pore geometries
involved.

MPPs and MSAs are applied in many configurations: backed by
an acoustic layer, backed by Helmholtz resonators [2], in multiple
layer configurations [3], backed by porous materials [4, 5], in het-
erogeneous combinations of MPPs [6], etc. Usually, the perforated
or micro-slotted plates in acoustic treatments can be considered as
rigid, however, some applications and/or conditions require poroe-
lastic models for perforated plates [7–9].

The well-known theory by Maa [10] allows to predict the sound
absorption of a panel with circular micro-perforations considering
low perforation rates. For higher perforation rates, interaction ef-
fects between the different pores have to be accounted for, e.g.,
see [11]. The absorption of MSAs has amongst others been stud-
ied in [12–15]. These models apply a length correction due to the
flow distortion around the aperture.

MPPs or MSAs can be modelled as rigid-frame porous media.
It is obvious when recalled that advanced porous models were,
in fact, originally derived from the theory of sound propagation
through a rigid matrix with parallel cylindrical pores normal to the
surface, by introducing physically measurable microstructural pa-
rameters in order to achieve extensions to pores of arbitrary ori-
entation and cross-section [16]. The well-established rigid-frame
porous models were applied for perforated plate absorbers, e.g.,
in [17–19]. In this case, the micro-perforated panel is represented
as a complex fluid: the complex densities accounts for the iner-
tial and viscous losses, whereas the complex density accounts for
the thermal losses. As indicated in [17], the perforation ratio can
take values between 1 and 80%. However, in practice, when using
simple pore geometries, it is difficult to achieve high perforation
ratios. The length correction due to the flow distortion is in this
case accounted for by modifying the tortuosity α∞.

While the works mentioned above consider circular or slitted
perforations, a correction factor has to be applied to account when
other pore geometries are considered. For other, simple pore ge-
ometries analytical solutions can be obtained [20, 21]. Some an-
alytical and numerical validations are given in [22]. Recently, in
[23], a general formula for the length correction was proposed,
shown to be valid for any shape, except for very narrow slits.

It seems that modern technologies should allow to manufacture
sound absorbing porous materials of designed and possibly opti-
mised micro-geometry [24]. However, the potential of acoustic
treatments based on MPPs and MSAs seems to be still important
in many applications. Moreover, Attenborough [25] has recently
shown that simple slanted microslits can reproduce the behaviour
of many complex microstructures.

Given the wide range of models, correction factors and lengths
available in literature, the aim of this paper is to discuss many
practical and some theoretical aspects concerning the modelling

of plates with geometrically complex micro-slits to support their
design. In this paper, a rigid frame equivalent fluid representation
is used. Different practical ways to arrive at their effective prop-
erties are explained and compared, namely: (a) simple, analytical
models, relying on the hydraulic radius, as well as (b) multi-scale
calculations based on microstructure. Where useful, mathematical
reductions are demonstrated. The different approaches are com-
pared for two examples and validated experimentally. Guidelines
to model such materials are given. The slit pattern for a thin plate
in the first example was designed in order to include local elastic
resonators of squared shape, although the present work is limited
only to modelling of rigid plates and a consideration of elastic res-
onators should involve another research. The choice of perforation
pattern for the second example was casual, but driven by two aims:
(1) to have a non-typical pattern where slits are linked with larger
openings, and (2) to allow for a quick cheap manufacturing of sam-
ple using a budget 3D-printer.

The outline of the paper is as follows. In Section 2.1 the well-
established semi-phenomenological models for fluids equivalent to
sound absorbing rigid porous media are briefly recalled. These
models are based on the so-called transport parameters which can
be determined from microstructure. The approach is discussed in
Sections 2.2 and 2.3. In Section 2.2 a brief outline on numeri-
cal calculations of transport parameters is given, while Section 2.3
discusses some analytical estimations for transport parameters of
micro-perforated or micro-slotted plates. In Section 2.4 a macro-
scale double-layered model of a micro-slotted plate with an air
cavity behind is discussed (the plate forms a thin equivalent-fluid
layer coupled to a layer of air) with respect to sound absorption
achieved in case of such arrangements. All of the above is demon-
strated with two examples of micro-slotted plates backed with air
cavities of various sizes, namely: (1) in Section 3 – a square plate
with a uniform pattern of narrow micro-slits, and (2) in Section 4
– a 3D-printed disc-shape plate with separated patterns of slightly
wider micro-perforations. Experimental validations with respect
to the acoustic absorption coefficient are provided for both exam-
ples. Although the optimisation of perforation patterns exceeds the
scope of this paper, a simple optimisation case (for slits) is briefly
discussed in Section 5.

2 Modelling

2.1 Equivalent-fluid approach and semi-phenome-
nological models

Many sound absorbing porous materials with open porosity and
sufficiently stiff skeleton (i.e., solid frame) can be modelled us-
ing the so-called equivalent-fluid approach, in which a rigid-frame
porous medium is substituted by an effective fluid equivalent to it
on the macroscopic level. The equivalent fluid is substantially dif-
ferent from the fluid in pores, even for materials with very high
porosities (which is, in fact, a common feature of the majority of
light sound-absorbing materials used in acoustic treatments). On
the macro-scale level, the sound propagation and absorption is de-
termined in some frequency range by solving a boundary value
problem based on the Helmholtz equation defined on a domain of
equivalent fluid. Such an approach is feasible for acoustic wave
propagation characterised by wavelengths significantly larger than
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the characteristic dimensions of micro-geometry of porous me-
dia, so that the so-called separation of scales (macro vs. micro) is
valid. Provided that these three assumptions are satisfied (i.e., the
open porosity, not too short waves, and motionless solid frame),
the equivalent fluid models can be used for media with micro-
geometry of almost any shape, that is, not only foams and other
cellular or skeletal materials but also fibrous or granular media with
open porosity and rigid fibres or grains.

In particular, micro-slotted plates can also be treated as porous
media with rigid frame. Such plates are usually made up of stiff
solids (e.g., metals). On the other hand, they are usually thin which
may provoke some elastic behaviour [7, 8], especially around the
plate natural frequencies. It is because the efficient sound ab-
sorbing configurations consist of a micro-slotted plate (or plates)
backed by an air cavity (or with air cavities between the plates).
Acoustic waves penetrate such double- or multi-layer media and
their energy can be dissipated not only on slits but also trapped
inside the cavities. The slits in plates are narrow and usually in
the form of straight channels with flat parallel walls. They can be
simply small holes as in micro-porous plates often used in narrow-
band mufflers or silencers operating in high temperature condi-
tions. The slits form an open porosity pattern and (outside of the
elastic plate resonances) micro-slotted plates can be modelled as
other rigid porous media using the equivalent fluid approach. Thus,
thin layers of effective fluids equivalent to micro-slotted plates are
coupled with backing layers of air (which is also the pore-fluid
since it fills the slits) and the Helmholtz problem must be solved
for such multi-layer configurations.

The equivalent fluid approach is used by a family of semi-
phenomenological models based on theoretical developments by
Johnson et al. [26], Champoux and Allard [12, 19, 27], Pride et
al. [28], and Lafarge et al. [29–31]. Three models are usually
distinguished, namely: (1) JCA – the Johnson-Champoux-Allard
model, (2) JCAL – the Johnson-Champoux-Allard-Lafarge model,
(3) JCAPL – the Johnson-Champoux-Allard-Pride-Lafarge model.
The JCA model requires 5 parameters (usually referred to as the
transport parameters), namely: the (open) porosity φ, the (inertial)
tortuosity α∞, the (viscous) permeability k0, and the viscous and
thermal characteristic lengths, Λ and Λ′. JCAL and JCAPL are
enhanced versions of the original JCA model and they require ad-
ditional transport parameters of the porous material.

Since on the macroscopic level the Helmholtz equation is used
for the domain of the effective fluid equivalent to a porous mate-
rial, the effective speed of sound is required. It is in a standard
way related to the corresponding effective density and bulk modu-
lus. The effective density (or characteristic impedance) is usually
also required to apply the Neumann or Robin boundary conditions.
All these effective properties are complex-valued functions of fre-
quency (to take into account the dispersion and wave attenuation
in porous media).

Let f and ω = 2πf be the frequency and angular frequency,
respectively. The frequency-dependent, complex-valued effective
density %eff(ω) is related to the real density of pore-fluid %f as fol-
lows:

%eff(ω) =
%fα(ω)

φ
, (1)

where φ is the porosity, and α(ω) is the frequency-dependent and
complex-valued function of dynamic viscous tortuosity. It depends
on the kinematic viscosity of pore-fluid νf, as well as on some

transport parameters, namely: the porosity φ, the tortuosity fac-
tor α∞, the viscous characteristic length Λ, the (static) viscous
permeability k0 (or alternatively, the static flow resistivity σ0). In
case of JCAPL model, yet another transport parameter is required,
namely, the static viscous tortuosity α0.

The frequency-dependent, complex-valued effective bulk mod-
ulus Keff(ω) is related to the real bulk modulus of pore-fluid Kf =
γf Pf in the following way

Keff(ω) =
Kf

φβ(ω)
, where β(ω) = γf −

γf − 1

α′(ω)
. (2)

Here: φ is the porosity, γf is the ratio of specific heats for the pore-
fluid, Pf is the ambient mean pressure, and α′(ω) is the frequency-
dependent and complex-valued function of dynamic thermal tor-
tuosity. This function depends of the kinematic viscosity of pore-
fluid νf, and its Prandtl number Nf, as well as on some transport
parameters, namely: on the porosity φ and thermal characteristic
length Λ′ – in case of JCA model, and additionally also on the
static thermal permeability k′0 – in case of JCAL model, and yet
on another parameter, namely, the static thermal tortuosity α′0 – in
case of JCAPL model.

As pointed out above, the semi-phenomenological models JCA,
JCAL and JCAPL provide formulas for the viscous and thermal
dynamic tortuosity functions, α(ω) and α′(ω), respectively. These
formulas (see, for example [19, 32]) are recalled in Appendix A in
the form suitable for the most elaborated JCAPL model, however,
they can be easily reduced to JCA or JCAL versions using model
transitions discussed in Appendix B.

2.2 Numerical calculations of transport parame-
ters

In general case of materials with open porosity, all transport pa-
rameters (for the most enhanced JCAPL model) can be determined
from their microstructure by solving three uncoupled problems de-
fined on the fluid domain of a representative porous microstructure,
namely:

1. the Stokes’ flow problem (the linearised steady viscous in-
compressible flow) – to determine the static viscous perme-
ability and tortuosity, k0 and α0;

2. the Poisson problem (the re-scaled steady-state heat transfer)
– to determine the static thermal permeability and tortuosity,
k′0 and α′0;

3. the Laplace problem (the re-scaled electric conductivity prob-
lem) – to determine the classic (inertial) tortuosity parameter
and the viscous characteristic length, α∞ and Λ.

The porosity φ is known a priori as the main feature of micro-
geometry. Also the thermal characteristic length Λ′ is computed
from the micro-geometry: as the doubled ratio of the volume of
fluid domain to the surface of solid walls encompassing it (i.e., the
doubled volume of pores to their surface).

Such microstructure-based approach for modelling of sound ab-
sorbing open-porosity media have been applied by many authors,
in particular, for granular media [33–35], for (modelled in 2D)
hexagonal porous structures with solid fibres (or ligaments) [36],
for open-cell aluminium foams [37, 38], and more recently for
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polymeric foams [39], and (ceramic) open foams with spheri-
cal pores [40]. Chevillotte et al. [41] studied a link between
microstructure and acoustical macro-behavior of double porosity
foams, and in [42] and [43] the microstructure-based approach was
applied for 3D representations of fibrous materials. In most of
these works theoretical background is recalled or more thoroughly
discussed. Here, a concise theoretical discussions are presented
in Appendix C and Appendix D, where also some important sim-
plifications and reductions valid for porous media with patterns of
straight flat-walled perforations are formally derived.

The micro-slotted plates can be treated as a very specific case
of open-porosity media with “pores” in the shape of straight slits
(channels) with flat walls parallel to the direction of viscous flow
and wave propagation. These geometrical features have a strong
influence for transport parameters. The theoretical derivations
(see Appendix C and Appendix D) and investigations presented
in this work confirmed that from solutions of the problems listed
above, the following identities are observed for transport parame-
ters: k0 = k′0, α0 = α′0, and Λ′ = Λ. Moreover, the (inertial)
tortuosity parameter is computed as α∞ = 1 (the slits are straight,
not tortuous, and the flow distortion at inlet/outlet is neglected).

2.3 Analytical estimations of transport parameters
for perforated plates

For perforated plates the porosity can be simply determined as:

φ =
As

Ap
, (3)

where As is the area of flat-walled slit or micro-pore openings, and
Ap is the total area of plate.

Since the slits pass through plate as straight, narrow channels
with flat parallel walls, the tortuosity α∞ is 1 (as formally shown
in Appendix D), and therefore, the thermal parameters are equal to
their viscous counterparts, namely, k′0 = k0 and Λ′ = Λ (this will
be confirmed in this work using numerical calculations). In prac-
tice, however, α∞ = 1 can be used only as an approximation, since
for perforated plates the flow is distorted at the slit or pore opening,
and usually some corrections are needed as discussed at the end of
this Section. Finally, for perforated plates the permeabilities and
characteristic lengths can be related to the so-called hydraulic ra-
dius Rh. In particular, both characteristic lengths are equal to it,
since in general, the thermal characteristic length is defined as the
doubled volume of pore-fluid to the surface of solid walls which is
a generalisation of hydraulic radius.

The hydraulic radius is a measure of a channel flow efficiency,
and it is a function of the shape of the channel (pipe or river, etc.)
in which the fluid is flowing. It is calculated from the following
formula

Rh =
2As

Pw
, (4)

where As is the cross-sectional area of the flow (i.e., in the present
context the area of slit, as defined above), while Pw is the so-called
wetted perimeter. It is defined as the length of all border elements
of the channel cross-section that are in contact with the fluid. In-
stead of giving a generic mathematical formula for this parameter
its calculation is explained by illustrations in Figure 1.

One should be aware of the fact that some authors (see
Wikipedia [44]) define the hydraulic radius asAs/Pw, which would

As
Pw

As

Pw

Pw

As

Rh

Figure 1: Wetted perimeter

mean that for a circular channel it is not equal to the channel ra-
dius. In the definition (4) assumed here (and by many authors, see
for example [19]), this value is doubled so it is equal to the chan-
nel radius in the case of circular cross sections (see Figure 1), and
moreover, it is now half the hydraulic diameter, i.e.: Rh = Dh/2;
the hydraulic diameterDh is always defined asDh = 4As/Pw [45].

Regarding what has been stated above (and also recalling some
formulas from Appendix B), the following analytical estimations
of transport parameters for micro-porous plates could be proposed:

α∞ = 1 , or with a correction α∞ > 1 , (5)

see formula (9) and the discussion below,

Λ = Λ′ = Rh , (6)

and

k0 = k′0 =
φR2

h

8
, α0 = α′0 =

5

4
. (7)

For regular perforations with identical circular holes, Rh equals
to the hole radius. Notice also that when a corrected value of
tortuosity is applied (i.e., α∞ > 1) the viscous static tortuosity
α0 = α∞(1 + 1

4α∞) > α′0 = 5
4 , see formula (B.2).

The formulas (7) for transport parameters imply that the per-
forated plate can be modelled as a porous medium with straight
pores (channels) using the JCA model, and moreover, there are in
fact only two model parameters (2 degrees of freedom), namely, φ
and Rh.

There are, however, two drawbacks concerning these standard
analytical estimations. Firstly, they are valid for typical micro-
porous plates with circular holes or other openings of similar shape
proportions. In case of plates with narrow micro-slits (instead
of round perforations) the correct permeability estimations can be
predicted by the following formula:

k0 = k′0 =
φR2

h

12
; and then: α0 = α′0 =

7

6
, (8)

which results from formula (B.3) recalled in Appendix B. For reg-
ular slit patterns (i.e., when all slits have the same width), Rh ap-
proximately equals the slit width (and Λ = Λ′ = Rh as before).
Notice again that when a corrected value of tortuosity is applied
(i.e., α∞ > 1) the viscous static tortuosity α0 = α∞(1 + 1

6α∞) >
α′0 = 7

6 , see formula (B.2).
The second inaccuracy arises from the distortion of the flow in-

duced by the perforations which involves additional viscous effects
at the plate surface around openings where the flow bends around.
There is also another phenomenon related to the motion of air in-
side and directly outside of the perforation, which involves the in-
ertial loading associated to the sound radiation at the perforation
and to the distortion of the acoustic flow at the plate surface, which
virtually makes the air heavier and more difficult to move inside
the perforation [17]. In order to account for these phenomena, the
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tortuosity of the perforated plate must be corrected according to the
media in which the perforated radiates [17]. The correction can be
done by introducing the correction lengths (due to the additional
viscous effects and the acoustic radiation which involves the air
cylinder longer than the perforation neck). Due to the low porosity
of the perforated plates, this is the main parameter for modelling
perforated plates. Concerning the tortuosity, we can estimate it
from the sound radiation of a perforation [20].

When the medium on both sides of the perforated plate is air, the
following static (i.e., frequency-independent) correction for tortu-
osity can be applied [17]:

α∞ = 1 + 2
εc

`p
. (9)

Here, εc is a correction length, while `p is the thickness of the plate.
For regular circular perforations the correction length depends on
the perforation radius r and the perforation rate, which is equal to
the porosity φ. A few specific models are recalled in [17], namely,
a model by Allard [12]

εc = 0.48
√
πr2
(

1− 1.14
√
φ
)

for
√
φ < 0.4 , (10)

or a Beranek model [46]

εc = 0.48
√
πr2
(

1− 1.47
√
φ+ 0.47

√
φ3
)
. (11)

These models are considered as some specific or enhanced cases
of models proposed by Ingard [20]. Recently, Jaouen and Chevil-
lotte [23] have proposed a general formula for any shape (except
very narrow slits):

εc = 0.82r
(

1− 1.33
√
φ− 0.07

√
φ2 + 0.40

√
φ3
)

(12)

where r is the radius of circular perforation or the hydraulic radius
for other shapes.

2a0

2b0
r

2a0

2b0

2ξa0

2ηb0

2a0

2ξa0

Figure 2: Perforations and slits

As a matter of fact, for circular or rectangular perforations in
rectangular patterns (see Figure 2), the length correction εc (on
each side of the plate) can be found using an infinite sum of modes
(see [20] and the corrected formulas in [23] and [32] where the
derivations are also recalled). For rectangular perforations like in
Figure 2 (middle), the length correction is given by:

εc =

∞∑
m=1

γm0

m/a0
+

∞∑
n=1

γ0n

n/b0
+

∞∑
m=1

∞∑
n=1

2γmn√(
m/a0

)2
+
(
n/b0

)2
(13)

where

γmn =
2ξη

π

[
sin(mπξ)

mπξ

sin(nπη)

nπη

]2

(14)

and ξ ∈ (0, 1), η ∈ (0, 1) (see Figure 2) are the perforation rates in
the mutually orthogonal directions. (Now, they can be fairly differ-
ent. Notice also that now the porosity φ = ξ η.) Here, remember
that lim

x→0
sin(x)/x = 1. For long narrow slits ηb0 ≈ b0 and η ≈ 1,

see pattern shown in Figure 2 (right), and then

εc =

∞∑
m=1

γm0

m/a0
=

2ξa0

π

∞∑
m=1

1

m

[
sin(mπξ)

mπξ

]2

. (15)

Moreover, here again ξ = φ.

2.4 Sound absorption of a plate with micro-slits
backed with an air cavity

Sound absorption of (usually thin) micro-slotted or micro-porous
plates makes sense only when they are parts of a larger (double or
multi-layer) system. The most common, simple and quite effective
solution is when a micro-porous (or micro-slotted) plate is backed
with an air cavity. From the modelling perspective a double-layer
system is formed, which consists of a thick backing layer of air and
a much thinner layer of an effective fluid equivalent to the micro-
porous plate (see Figure 3). The frequency-dependent effective
properties of the fluid layer equivalent to micro-porous plate are
determined in the way thoroughly discussed in previous Sections.
Obviously, the shape and size of pores or slits, and the size of back-
ing cavity `c can be adjusted in design to better confront expected
noise conditions.

`c `p

` = `c + `p

plane harmonic
acoustic wave
(in the air)

layer 1

air cavity

layer 2

micro-
porous
plate

slit

rigid
wall

Figure 3: A double-layer configuration: a micro-slotted plate backed with
an air cavity

For plane wave propagation at normal incidence, the sound ab-
sorption for a multi-layered system composed of various media
is assessed in the same way as for a single material layer by de-
termining the acoustic absorption coefficient defined as: A(ω) =

1 − |R(ω)|2, where R(ω) = Zs(ω)−Zf
Zs(ω)+Zf

is the reflection coefficient
found for the layer of material (set on a rigid wall) or the whole
double-layer (as in Figure 3) or multi-layer system (in general),
with Zs(ω) being the surface acoustic impedance on the free sur-
face (in particular, on the external surface of micro-porous plate)
and Zf the characteristic impedance of fluid adjacent to it, which
obviously happens to be the same as the fluid inside slits or pores,
and in cavities. The complex-valued reflection coefficient R(ω)
describes the ratio between the amplitudes (energies) of the out-
going reflected waves to the incident ones, so that the real-valued
absorption coefficientA(ω) assesses the amount of acoustic energy
dissipated inside the material or multi-layered system of particular
thickness `.
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The (surface) acoustic impedance Zs(ω) – required in sound ab-
sorption calculations – is defined by the ratio of acoustic pressure
to particle velocity (on a particular surface). Therefore, in gen-
eral, for a multi-layered configuration of various media a coupled
Helmholtz problem must be solved using, for example, the well-
known Transfer Matrix Method (TMM) [47]. On the other hand,
the closed analytical formulas for the acoustic pressure, velocity
and (finally) impedance in such double-layer configuration as the
one shown in Figure 3 can be found, for example, in [48].

3 Investigations for a square micro-slot-
ted plate

A square plate with thickness 4 mm and a regular (3 × 3) array of
micro-slit cells was designed and manufactured [49], see Figure 4.
The micro slits inside each cell have the same pattern which forms
a substructure in the plate. The shape and dimensions of micro-
slit pattern are specified in Figure 4. The slit size is everywhere
0.3 mm.

Pattern dimensions:
cell size = 11.5 mm × 11.5 mm
slit size = 0.3 mm
d1 = 3.60 mm
d2 = 2.70 mm
d3 = 3.50 mm
d4 = d2 + d3 = 6.20 mm

d1 d2 d3

d4

d1

d2

d3

d4

Figure 4: A square micro-slotted plate and the dimensions of slit pattern

During experimental testing the plate was set into a square
impedance tube. The edge of tube’s cross-section is 34.5 mm
which is 3 times the size of a single micro-slit cell. The square
plate is slightly larger than the size of tube’s cross section, there-
fore, the plate edges were in fact clamped.

Table 1 shows the transport parameters determined for a sin-
gle (11.5 mm×11.5 mm) square cell with the micro-slit pattern, as
shown in Figure 4. Obviously, the same transport parameters are
for the whole (34.5 mm×34.5 mm) square plate since it is fully tiled
with a regular dense array of identical micro-slit cells. Calculations
were done analytically using the formulas for transport parameters
as discussed in Section 2.3, as well as numerically using the Finite
Element Method to solve the adequate boundary value problems

defined for the fluid domain of a single micro-slit cell. The numer-
ical calculations were carried out for three problems (the Stokes
flow, the Laplace problem, and the Poisson), however, as expected,
the results for viscous and thermal permeabilities were numerically
the same, although the viscous permeability was computed from
the solution of Stokes’ flow, whereas the thermal one was deter-
mined from the solution of Poisson problem. The same can be said
about the static viscous and thermal tortuosities, namely, the same
results are obtained from the steady viscous flow described by the
Stokes’ equation, as from the re-scaled thermal problem described
by the Poisson’s equation. The tortuosity parameter determined
numerically from the solution of Laplace problem was 1.00 and
the viscous characteristic length was equal to the thermal charac-
teristic length computed as the double ratio of the total volume of
slit to the surface of slit walls. Therefore, in fact only the Poisson
problem needs to be solved (in order to determine the permeabil-
ities and static tortuosities), since the porosity and characteristic
lengths are determined directly from the micro-geometry, and the
(inertial) tortuosity is 1. On the other hand, the analytical estima-
tions involved also the tortuosity correction, so that α∞ > 1. Two
analytical estimations are compared: the one using formulas (7)
ideal for circular perforations, and the other using formulas for nar-
row slits (8). The corrected tortuosity was in both cases computed
using formula (9), however, in the first case, the length correction
was estimated as (12) with r = Rh, and in the second case, the
estimation (15) was used with ξ = φ and 2a0 = Rh.

Table 1 compares the results of numerical calculations with the
analytical approximations. In case of the investigated square plate,
there is some noticeable difference in the numerical and analyti-
cal results for permeabilities when the formula for round (circular)
perforations is used, while as expected, the formula for slits gives
a prediction close to the numerical result. The analytical (inertial)
tortuosity corrections entails also a significant increase in values
of the static viscous tortuosity, while the static thermal tortuosity
remains unaffected. The numerical result for the static (viscous or
thermal) tortuosity is somehow in between the analytical estima-
tions of static thermal tortuosity for slits and circular perforations,
namely: 7

6 < 1.212 < 5
4 .

The transport parameters – obtained from two analytical esti-
mations and the numerical calculations – were used to determine
the effective properties of the equivalent fluid. Then, the acous-
tic absorption of the micro-slotted plate backed with an air cavity
was computed for two cavity sizes, namely: 30 mm and 53 mm.
Figure 5 compares these results with measurements done in the
impedance tube. The following is observed:

• the standard analytical estimation (which is the one assum-
ing circular perforations and without the tortuosity correction,
i.e., α∞ = 1 and α0 = α′0 = 5

4 ) is significantly worse than
other results;

• the numerical results are quite accurate (i.e., with only small
discrepancies from the experimental curves) and they are al-
most the same as the analytical estimations for slits without
the tortuosity corrections (i.e., when α∞ = 1 and α0 = α′0 =
7
6 );

• a slight improvement is still gained when the tortuosity cor-
rection is also applied (i.e., for α∞ = 1.105 and α0 = 1.308);
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Table 1: Transport parameters for the micro-slit cell: analytical estimations and numerical calculations using the Finite Element Method

Transport parameters Analytical estimations Numerical
Parameter Symbol Unit for circles for slits calculations

porosity φ % 7.667 7.667 7.667
permeabilities k0 = k′0 10−10 m2 8.340 5.552 5.751

inertial tortuosity α∞ – 1.077 1.105 1.00
static viscous tortuosity α0 – 1.367 1.308 1.212
static thermal tortuosity α′0 – 1.25 1.167 1.212

characteristic lengths Λ = Λ′ mm 0.295 0.295 0.295
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Figure 5: Acoustic absorption for the square plate with micro slits backed
with an air cavity (30 mm or 53 mm thick): measurements and the results
based on the analytical estimations and numerical calculations of transport
parameters

• the cavity resonance at 3.5 kHz (for the case of larger air cav-
ity) is very well represented in the model;

• the experimental resonances at about 2.7 kHz (smaller air cav-
ity) or 2.8 kHz (larger air cavity) are related to elastic be-
haviour of square plate, and therefore, they are not present
in the model.

4 Investigations for a circular micro-per-
forated plate

4.1 Circular plate design
A CAD model of a circular plate with diameter 63.5 mm and thick-
ness 12 mm was created with a pattern of micro-slits in the form of

“IPPT” acronym as shown in Figures 6 and 7. The main width
of slits was designed as a = 1 mm, however, in some places it
is doubled, namely b = 2a (see Figure 6). The “IPPT” pattern
of slits is set into a rectangular cell with dimensions d1 × d2,
where d1 = 21 mm and d2 = 15 mm, and the other distances
are: d3 = 3 mm, d4 = 3.5 mm, and d5 = 4 mm (see Figure 6).
A (4×3) array of such cells was set onto the circular disk of plate,
so there are 12 “IPPT” slit patterns, however, the 4 of them at cor-
ners are only partial since they cross the disk border (see Figure 7).
This is important to observe, since – because of that feature – the
porosity of circular plate would differ slightly from the porosity of
the rectangular cell.

The CAD model was used to 3D-print the disk of micro-slotted
plate using the Zortrax M200 printer, see Figure 7. The 3D-printed
specimen was examined under a microscope. Apart form a rough
surface and other imperfections, it was found that the actual slit

a

a a

a

a

b b c

d

d
2

d1

d2

d3 d4 d5

Figure 6: A pattern of slits in the shape of “IPPT” acronym inside a rect-
angular cell

Figure 7: A (4 × 3) array of the “IPPT” slit-pattern cells on the circular
disk, the corresponding designed CAD model and the 3D-printed circular
disk with micro-slits in the shape of “IPPT” acronym
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Figure 8: A zoomed fragment of a microscope photo of the “IPPT” slits
with a calibration glass (with the scale resolution of 0.1mm) set on the
surface of the disk (here, all marked lengths “L” are assigned their actual
values after the calibration)

Table 2: Designed and corrected (∼ actual) values of slit dimensions (see
Figure 6)

Slit dimensions
(A) designed values (B) corrected values
a = 1 mm a′ = a− ∆ = 0.8 mm
b = 2 a = 2 mm b′ = b− ∆ = 1.8 mm
c = 4 a = 4 mm c′ = c− ∆ = 3.8 mm
d = 6 a = 6 mm d′ = d− ∆ = 5.8 mm

(correction: ∆ = 0.2 mm)

widths are narrower (by approximately 0.2 mm) than the designed
values, see Figure 8. The microscope examination allowed to pro-
pose systematic corrections for some dimensions of the “IPPT”
pattern of slits; the corrected values and the original designed val-
ues are given in Table 2.

4.2 Transport parameters
The transport parameters were calculated analytically, using for-
mulas (7) or alternatively (8), and numerically as described in Sec-
tion 2.2, Appendix C and Appendix D – for both cases of perfora-
tion size, namely: (A) for the original designed values, and (B) the
corrected ones (see Table 2). The analytical estimations were based
on the exact porosity and hydraulic radius, both of which were de-
termined from the whole perforation pattern, since the four of nine
IPPT-shape perforations (see Figure 7) are cut by the disc border.
To compute them, the wetted perimeter and the total area of perfo-
ration (slits) were found (for both cases) as: (A) Pw = 674 mm,
As = 3.309× 10−4 m2, respectively, and (B) Pw = 640 mm,
As = 2.685×10−4 m2, respectively. The porosity φ and hydraulic
radiusRh are listed in Table 3 together with the remaining transport
parameters (notice that the hydraulic radius is the same as char-
acteristic lengths, Rh = Λ = Λ′). These analytical estimations
involved corrections for tortuosity, using formula (9), where the
correction length was computed as (12) with r = Rh, and alterna-
tively, as (15) for narrow slits (with ξ = φ and 2a0 = Rh), which
entailed also corrections for the static viscous tortuosity. The per-
meabilities were also computed from two alternative formulas: as
for circular perforations (7), and for narrow slits (8). In Table 3 the
results of numerical calculations are also presented. Since in cir-

Figure 9: Microscale fields re-scaled to the unit of permeability [m2]
for the single-cell calculations (top) and for the whole circular perforated
plate (bottom).

cular plate some of the cells are cut by the circular border (see Fig-
ure 7), the transport parameters were obtained from the numerical
solution of the Poisson problem defined on the whole perforation –
see Figure 9 (bottom) – rather than on a single perforated cell – see
Figure 9 (top) – which in fact would give only slightly different
values. From the comparison between the numerical results and
analytical estimations, one can observe that permeabilities are bet-
ter estimated when the formula for circular perforations, φR2

h/8,
is used. Another observation is that the numerically-determined
static tortuosities are much higher than their analytical estimations
– even in case of the viscous tortuosities which were analytically
increased using the corrected lengths. This would perhaps com-
pensate for the lack of correction in the numerically-determined
inertial tortuosity (which equals 1).

As observed above, the permeability estimation for narrow slits
does not work correctly for the IPPT plate: the correct permeabil-
ity is much higher. This is because the IPPT perforation pattern is
far from the narrow slits: there are in fact two, extremely different,
slit or perforation widths (a′ = 0.8 mm and b′ = 1.8 mm), and
the slits are proportionally wide (not narrow) since they are rela-
tively short and based on rectangular shapes. Below, a discussion
concerning the correct permeability estimation for a single rectan-
gular perforation is given. It will be shown that this value can be
even larger than the estimation for circular perforations with the
same hydraulic radii. (Notice that the edge-length of a square per-
foration with the same hydraulic radius as a circular perforation is
equal to the circle diameter, so that the square perforation perme-
ability must be higher, even if the porosities are set equally.) Nev-
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Table 3: Transport parameters for IPPT-plate – for two cases of slit-size, (A) and (B), see Table 2 – numerical results and analytical estimations (for circular
perforations and narrow slits)

Transport parameters Analytical estimations Numerical
Parameter Symbol Unit for circles for slits calculations

porosity φ % 10.45 8.478 10.45 8.478 10.45 8.478
permeabilities k0 = k′0 10−9 m2 12.59 7.456 8.393 4.971 12.91 8.193

inertial tortuosity α∞ – 1.077 1.071 1.100 1.095 1.00 1.00
static viscous tortuosity α0 – 1.367 1.357 1.302 1.294 1.644 1.810
static thermal tortuosity α′0 – 1.25 1.25 1.167 1.167 1.644 1.810

characteristic lengths Λ = Λ′ mm 0.982 0.839 0.982 0.839 0.982 0.839
(A) (B) (A) (B) (A) (B)

ertheless, for complex perforation patterns numerical calculations
seems to be necessary.

Let us consider a single rectangular perforation with dimensions
dx and dy = ζ dx, so that the proportion coefficient is ζ = dy/dx,
and the rectangle width is: min(dx, dy) = dx min(1, ζ). For such
a rectangular aperture the hydraulic radius is Rh = dx ζ/(ζ + 1),
which means that for ζ � 1: Rh ≈ dx (as a matter of fact,
Rh → min(dx, dy) for ζ → ∞ or ζ → 0, that is, when the
rectangular perforation becomes a narrow slit). The permeabili-
ties k0 = k′0 and hydraulic radii Rh were computed numerically
for such single rectangular perforations of various proportions ζ,
in order to determine the correct values of the denominator D in
the estimation formula

k0 =
φR2

h

D
. (16)

Remember that D = 8 exactly for any circular perforation. This
value will vary for rectangular perforations. Figure 10 presents
the actual values of the denominator D = φR2

h/k0 with re-
spect to the rectangle proportion coefficient ζ and to the ratio
χ = Rh/min(dx, dy) of the hydraulic radius and the rectangle
width. The corresponding proportions of a series of rectangles
are also depicted. It was confirmed that for narrow slits (i.e., for
ζ → ∞ or ζ → 0, and χ → 1) the denominator D → 12. On the
other hand, D drops nearly to 7 for the square perforations (i.e.,
for ζ = 1, χ = 0.5). Finally, the rectangle proportion ζ ≈ 2.27
(or ζ ≈ 1/2.27 ≈ 0.44; for both χ ≈ 0.694) was found when
required that D = 8, which is the exact value of the denominator
for a circular perforation. (In Figure 10: κ = φk3(x1, x2)/k0 =
φk′(x1, x2)/k′0, see Appendix C.)

4.3 Sound absorption

The frequency-dependent effective properties (density, bulk modu-
lus, speed of sound) of a fluid layer equivalent to the micro-slotted
plate characterised by the transport parameters determined above
(numerically or analytically) were computed for all the consid-
ered cases and ways of calculation, using formulas recalled in Sec-
tion 2.1 and Appendix A, and the properties for air in slits taken
for the ambient conditions of temperature and pressure determined
during the experimental testing, namely, for 22◦C and 1005 hPa
(that is, the air density %f = 1.19 kg/m3, the kinematic viscosity
νf = 1.55 m2/s, the Prandtl number Nf = 0.71, the specific heat
ratio γf = 1.40, and the adiabatic bulk modulus Kf = 141 kPa).
Obviously, the same air properties (i.e., the density and bulk mod-
ulus) were applied for the air in cavities (of various sizes) when

0 1 2 4 6 8 10 12 14 16 18 20
7

8

9

10

11

12

Rectangle proportions, ζ = dy/dx

D
en

om
in

at
or

,D
=
φ

R
2 h/

k 0

ζ = 1

ζ
=

2.
27

−→

ζ = 4

ζ = 6

ζ = 8

ζ = 10

ζ = 12

ζ = 14

ζ = 16

ζ = 18

≡
D = 8

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
7

8

9

10

11

12

κ

Hydraulic radius vs. rectangle width, χ = Rh/min(dx, dy)

D
en

om
in

at
or

,D
=
φ

R
2 h/

k 0

ζ = 1

ζ = 2.27

ζ = 4

ζ = 6

ζ = 10
ζ = 18

Figure 10: The exact value of the denominator D in the formula k0 =
φRh/D for the permeability of a single rectangular perforation, with re-
spect to the rectangle proportions or the ratio of the hydraulic radius to the
rectangle width

solving the double-layered problems of sound absorption of a per-
forated plate backed by an air cavity, as described in Section 2.4.
Although, these macroscopic double-layered problems are solved
analytically (see, for example [48]), some of the results presented
below are denoted as numerical – when they are based on the
numerically-determined transport parameters.

Sound absorption was measured (at 22◦C and 1005 hPa) in the
circular impedance tube for both sides of the disk-shape micro-
slotted plate (see Figure 11) backed by air cavities of various sizes.

Figure 11: Both sides of the circular disk (with “IPPT” slits) and the disk
inside an impedance tube
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Figure 12: Acoustic absorption for various air cavities (empty tube, with-
out the plate) coming from some non-negligible losses on the walls of the
circular impedance tube of diameter 63.5 mm

The total thickness of the 12 mm-thick plate plus air cavities var-
ied from 3 cm to 20 cm. The corresponding measurements carried
out for both sides of the plate were practically the same (and an
average is presented in graphs below). It was found that there are
some small but perhaps non negligible losses on the walls on the
circular impedance tube which result in some acoustic absorption
in the empty tube, that is, for air cavities without the plate. This
absorption is generally higher for larger cavities and it increases
with frequency exceeding 0.05 in higher frequency ranges, see Fig-
ure 12. These results were appropriately used (as some kind of a
background noise) to modify slightly the original measurements of
the plate backed by air cavities.

The experimental curves of acoustic absorption coefficient are
compared in Figures 13–18 with some modelling results, namely,
the numerical ones obtained for the designed (A) and corrected
micro-geometry (B), and the analytical estimations which for
the sake of clarity are presented only for the corrected micro-
geometry (B), but for two kinds of the perforation shape, i.e, circu-
lar pores or narrow slits. An obvious observation is that the mod-
elling results for the original (designed) micro-geometry, i.e, for
the case (A), differ much more from the measurements than the
results obtained for the corrected (actual) micro-geometry, i.e., for
the case (B). It was also checked that the analytical estimations
without any tortuosity corrections (not presented in the graphs)
were also not accurate. When the analytical correction for tor-
tuosity is applied the estimations of sound absorption tend to be
quite correct. The absorption estimations based on the formula for

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Total thickness = 3 cm

Frequency [Hz]

A
co

us
tic

ab
so

rp
tio

n
co

effi
ci

en
t

experiment
numerical (A)
numerical (B)
analytical-circ. (B)
analytical-slits (B)

Figure 13: Acoustic absorption for the circular micro-perforated plate
backed with an air cavity of (3 cm− 12mm) = 18mm
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Figure 14: Acoustic absorption for the circular micro-perforated plate
backed with an air cavity of (5 cm− 12mm) = 38mm
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Figure 15: Acoustic absorption for the circular micro-perforated plate
backed with an air cavity of (8 cm− 12mm) = 68mm
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Figure 16: Acoustic absorption for the circular micro-perforated plate
backed with an air cavity of (12 cm− 12mm) = 108mm

permeability for circular perforations are more similar to the cor-
responding numerical results; the differences are not large and in
some cases (namely, for small air cavities) less significant than the
discrepancies to the experimental results. The numerical results
for the case (B), i.e., the actual micro-geometry, agree rather well
with the experimental curves thanks to the accurately determined
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Figure 17: Acoustic absorption for the circular micro-perforated plate
backed with an air cavity of (15 cm− 12mm) = 138mm
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Figure 18: Acoustic absorption for the circular micro-perforated plate
backed with an air cavity of (20 cm− 12mm) = 188mm

permeabilities and static tortuosities (which may compensate for
the lack of correction of inertial tortuosity). There is, however,
some clear underestimation in sound absorption for the arrange-
ments with small air cavities (see Figure 13).

All cavity resonances are very well predicted by the modelling.
A small increase in the frequency which appears in Figures 13–
15 around 1.8 kHz was not stable, that is, it could have been even
smaller (or a bit larger) depending on how the sample was mounted
into the tube.

5 Controlling sound absorption of micro-
slotted plates backed by air cavities

The modelling of sound absorption of perforated plates backed
with cavities presented in this paper should form a base for de-
velopment of advanced techniques for optimisation of perforation
patterns. In this Section a simple technique for specifying the opti-
mal slit width (or plate thickness, or perforation rate) which max-
imise the sound absorption of a micro-slotted plate backed by an
air cavity will be discussed.

Similarly to plates with circular perforations [5], the sound ab-
sorption of micro-slotted plates can be controlled by the plate

thickness `p, the perforation rate φ, and the width of slits a. For a
thin perforated plate backed by an air cavity, the surface impedance
can be approximated as

Zs(ω) ≈ σp `p + Zb(ω) , (17)

where σp is the airflow resistivity related to the perforation, while
Zb(ω) = −iZf/ tan

(
ω`c/cf

)
is the backing impedance of air cav-

ity of depth `c (moreover, here: Zf and cf are the characteristic
impedance and speed of sound of air, respectively). As demon-
strated in [5], a specific (optimal) sound absorption is reached
when the specific airflow resistance of plate σp `p equals to the
impedance of air Zf. Using this condition, i.e., σp `p = Zf, and
also the formula for airflow resistivity σp = µf/k0 (where µf is the
dynamic viscosity of air, while k0 is the viscous permeability of
perforated plate), the following requirement is specified

`p

k0
=
Zf

µf
, (18)

which relates the geometric properties of perforated plate (on the
left-hand side of this equality) to the physical properties of air (on
the right-hand side). The viscous permeability k0 can be precisely
determined for complex perforation patterns from numerical cal-
culations (see Appendix C). On the other hand, for simple perfo-
rations (e.g., slits) it can be estimated using formula (16) with the
appropriately determined denominator D (see Figure 10). By ap-
plying the estimation (16), the condition (18) can be expressed in
the following form

D `p

φR2
h

=
Zf

µf
, (19)

which means that, for example, the hydraulic radius Rh can be
adjusted to a specific value

Rh(sp) =

√
D `p

φ

µf

Zf
(20)

which maximises the sound absorption. Note that the optimising
condition (19) does not depend on the cavity depth `c. However,
the cavity depth can be used to control the frequency of the maxi-
mum sound absorption peak.

For simple perforations the specific airflow resistance, and con-
sequently, the optimising condition (19) depend on three well-
defined parameters related to the size of plate and perforation,
namely: the plate thickness `p, the perforation rate φ and the hy-
draulic radius Rh. In an optimal design process one can alterna-
tively fix two of these parameters, and adjust the third one.

As an example, a slit-width optimisation will be proposed here
for the micro-slotted plate discussed in Section 3. Using the orig-
inal plate thickness `p = 4 mm and perforation rate φ = 7.667 %,
and assuming the slit perforation shape as for very long (narrow)
slits, i.e., D = 12, the specific slit width a(sp), which is then ap-
proximately equal to the specific hydraulic radius, can be estimated
thanks to formula (20) as: a(sp) ≈ Rh(sp) ≈ 0.165 mm.

Figure 19 compares the sound absorption for the original square
plate – investigated in Section 3 for two cases of backing cavity
(i.e., with the cavity depths of 30 mm and 53 mm) – with the results
found for the proposed optimisation. The proposed specific (opti-
mised) slit width of 0.165 mm is smaller than the original value
of 0.3 mm. Since this optimised value is found with the assump-
tion that the original perforation rate φ = 7.667 % is preserved,
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the number of slits forming the optimised pattern (or, simply, their
total length) must be increased to maintain the same perforation
rate φ.
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Figure 19: Acoustic absorption for the square micro-slotted plate (with
`p = 4mm and φ = 7.667%) backed with air cavities (30 mm or 53 mm
thick) for the original slit width a = 0.3mm and the specific (optimised)
value a(sp) = 0.165mm (maintaining, however, the same perforation
rate φ)

6 Final remarks
For micro-perforated plates and other porous structures with
straight (i.e., not tortuous) flat-walled slits or channels, the ther-
mal transport parameters are identical with their viscous counter-
parts, namely: k′0 = k0, α′0 = α0, and Λ′ = Λ. It was formally
demonstrated that the numerical computations can be then limited
to only one 2D finite element analysis, namely, the (thermal) Pois-
son problem, to find necessary values for k0 = k′0 and α0 = α′0
(since α∞ = 1, while φ and Λ = Λ′ are determined directly from
the micro-geometry). This analysis is purely two-dimensional and
it is not computationally demanding (compared to the Stokes or
Laplace problems). On the other hand, although straight channels
(slits) parallel to the flow are not tortuous (i.e., α∞ = 1), the flow
bends close to the plate surfaces just outside of the slits (if they
are loosely set as they usually are in standard perforated plates),
which suggests a correction for tortuosity, namely: α∞ > 1, es-
pecially for very thin plates. For thick structures, this correction
should rather be local, i.e., on the structure’s surface, which may
suggest to introduce in this place an additional thin layer of equiva-
lent medium with the corrected tortuosity. Finally, in case of plates
with perforations localised in meso-scale areas (like in the disc-
shape plate), they can be treated as mesoscopic porous inclusions
in a solid matrix of plate [50]. Then, a composite model of a (het-
erogenous) plate with large mesoscopic pores filled with an equiv-
alent fluid resulting from the localised micro-perforations can be
applied [50].

It is assumed that for a given micro-geometry the numeri-
cal computations provide accurate values for the permeabilities
(k′0 and k0) and static tortuosities (α0 and α′0). Often, the per-
meabilities can be quite well estimated by the adequate formu-
las depending on the porosity φ and hydraulic radius Rh, namely:
φR2

h/D, whereD = 12 for narrow slits, whileD ≈ 8 for other per-
forations (ideally and exactly for circular ones); roughly speaking,

for wider (i.e., rectangular) slits D ≈ 8 also tends to be more cor-
rect. The analytical estimations for static tortuosities result solely
from the assumption of the JCA or JCAL models instead of the
JCAPL one (see Appendix A), and it is demonstrated that they
may significantly differ from their numerically-determined coun-
terparts.

The cavity resonances are very well predicted. They are lo-
calised around some particular frequencies higher than the first,
i.e., the lowest-frequency peak in sound absorption which is at-
tenuated but spans a much wider frequency range; it is related
to the micro-perforations. Typically, the correction of tortuosity
slightly increases the lowest-frequency peak and shifts it but only
by a hundred of hertz (or less) to some lower frequency. Neverthe-
less, the effect of small improvements/modifications in modelling
can often be blurred by discrepancies coming from measurements.
This is especially true when common 3D-printing technologies are
used to manufacture prototypes or validation samples. One must
be aware of many imperfections which are involved and usually
tend to increase the overall sound absorption. Surface roughness,
not designed micro-pores and fibres, and other imperfections are
very common in 3D-printed samples. Moreover, the actual sizes
of the designed slits, pores or perforations (crucial for viscous and
thermal transport, and so for the overall sound absorption) may
slightly but significantly differ from their original designed values.
Therefore, the designed micro-geometry must be updated (basing
on some examination of the actual samples), before using it for any
microstructural calculations. Finally, for large air cavities backing
micro-porous plates there is usually a non-negligible increase in
absorption (larger at higher frequencies) coming from the dissipa-
tion effects on the walls of impedance tube. This also must be
somehow compensated: in modelling or by slightly correcting the
experimental curves (for example, by using the measurements car-
ried out for the empty tube, i.e., for air cavities without the plate).

Complex perforation patterns can be proposed, especially, when
there is more than one objective (i.e., not only the one directly re-
lated to efficient rigid MPPs and MSAs for air-borne waves). A
good example is here a metamaterial plate with small elastic res-
onators which should eventually be modelled as poroelastic struc-
ture in order to take into account the effects of local resonators. On
the other hand, the transport parameters and dynamic tortuosities
are required, for example, by the Biot-JCAPL poroelastic model
and – as demonstrated in the paper – they often should be computed
from more accurate numerical analyses instead of the well-known
analytical estimations. Such an approach using the Biot-JCAPL
model (at the macro-scale level) with accurately-determined trans-
port parameters can be recommended, although the micro-scale-
based estimations of dynamic tortuosities are done with the as-
sumption that the solid part of microstructure is motionless. Fi-
nally, the ways of modelling compared in the paper should allow
for a proper choice between various competing designs, and even-
tually, should form a base for a more elaborate (shape, topological)
techniques for optimisation of perforation patterns.
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A Formulas for the dynamic tortuosity
functions according to JCAPL, JCAL,
and JCA models

The dynamic viscous tortuosity function is dimensionless and
complex-valued; it can be computed as follows (here, i is the imag-
inary unit):

α(ω) = α∞

[
1+
F(ω)

iω̃

]
, where F(ω) = 1−P+

√
P2 +

M
2

iω̃ .

(A.1)
A dimensionless frequency ω̃ for viscous effects (normalised with
respect to the kinematic viscosity of pore-fluid νf) is introduced
here, namely:

ω̃ = ω
α∞k0

φνf
, (A.2)

and the viscous pore-shape factor M and low-frequency viscous
correction parameter P are defined as:

M =
8α∞k0

φΛ2
, P =

M
4(α0/α∞ − 1)

. (A.3)

The formula for P depends on α0, which is required by the JCAPL
model. For JCA and JCAL models P = 1, which is also obtained
when α0 is defined as (B.2).

The dynamic thermal tortuosity is a dimensionless and complex-
valued function of frequency and can be computed as follows:

α′(ω) = 1+
F ′(ω)

iω̃′
, where F ′(ω) = 1−P ′+

√
P ′2 +

M′
2

iω̃′

(A.4)
Here, a dimensionless frequency ω̃′ for thermal effects is intro-
duced (normalised with respect to ν′f = νf/Nf, where νf and Nf are
the kinematic viscosity and Prandtl number for pore-fluid, respec-
tively):

ω̃′ = ω
k′0
φν′f

, (A.5)

and the thermal pore-shape factorM′ and low-frequency thermal
correction parameter P ′ are defined as:

M′ =
8k′0
φΛ′2

, P ′ =
M′

4(α′0 − 1)
. (A.6)

The formula forP ′ depends on α′0, which is required by the JCAPL
model. For JCA and JCAL models P ′ = 1, which is also obtained
for α′0 defined by the formula in (B.3). Moreover, in the original
JCA version alsoM′ = 1, which is when k′0 is defined as (B.1).

B Transitions between the semi-phenome-
nological models

Transitions between JCA and the enhanced models (JCAL and
JCAPL) are possible, since analytical formulas can be easily de-
rived for 3 transport parameters which are missing in the JCA case.
It is done by comparing the original JCA model and its enhanced
versions. The derived formulas require only (some of) the 5 origi-
nal parameters of JCA model, namely:

• knowing φ and Λ′, the thermal permeability can be approxi-
mated as:

k′0 =
φΛ′2

8
; (B.1)

• knowing φ, α∞, k0 and Λ, the viscous static tortuosity can be
estimated as:

α0 = α∞

(
1 +

2 k0 α∞
φΛ2

)
; (B.2)

• finally, knowing φ, k′0 and Λ′, the following formula can be
used for the thermal static tortuosity:

α′0 = 1 +
2 k′0
φΛ′2

, (B.3)

and moreover: α′0 = 5
4 , if the thermal permeability k′0 is de-

termined using formula (B.1).

The above formulas formulas – or, as a matter of fact, the original
JCA model – are very useful regarding the fact of rather problem-
atic measurability of these parameters. Nevertheless, they can be
treated only as some estimations for three additional transport pa-
rameters which are not present in the original JCA model (or, for
two static tortuosities in the JCAL case). It means that when only
5 parameters of JCA model are known (or 6 as in the JCAL case),
an implementation of JCAPL model can still be used provided that
it is complemented by these (often very rough) approximations of
missing parameters.

On the other hand, there is also an analytical estimation of
the viscous characteristic length (useful, especially, for perforated
plates) when the well-known and directly measurable parameters
of porosity φ, (viscous) permeability k0, and tortuosity α∞ are
known; then:

Λ ≈

√
8α∞ k0

φ
. (B.4)

In that way, the 5-parameter JCA model can be reduced to a 4-
parameter model. However, this approximation is valid for round
(ideally, circular) perforations, so for perforations of more complex
shapes (or, e.g., for slits) this would be a very rough and often un-
acceptable estimation. Notice also that a similar relation between
the thermal length and thermal permeability (i.e., Λ′ ≈

√
8k′0/φ)

appears in the formula (B.1), which again suggests the assumption
of circular perforations.
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C Permeability and static tortuosity – nu-
merical calculations from microstruc-
ture

The viscous permeability parameter k0 can be numerically deter-
mined by solving the Stokes’ flow problem describing a viscous in-
compressible flow through a representative periodic fluid domain Ω
(set on open-porosity φ) with no-slip boundary conditions on solid
walls ∂sΩ. The flow is caused by a uniform (i.e., constant over the
whole domain Ω) vector field of macroscopic pressure gradient in
some specified direction of macroscopic flow. The Stokes equa-
tions can be re-scaled, so that the macroscopic pressure gradient is
a dimensionless unit vector field e, and in that case the local field of
flow velocity is normalised to the vector field k with the dimension
of permeability [m2], whereas the local pressure field is normalised
to the local field q with the dimension [m]. Such re-scaled Stokes’
equations are as follows:

−∇2k +∇q = e , ∇ · k = 0 in Ω , (C.1)

with the homogeneous (no-slip) boundary conditions to be satisfied
on solid walls

k = 0 on ∂sΩ , (C.2)

and the periodic conditions for k on the relevant faces of period-
icity ∂pΩ. When the vector field k is found, it can be averaged
over the flow domain Ω, multiplied by the porosity φ and projected
onto the macroscopic pressure gradient direction e to determine
the permeability in that direction, namely:

k0 = φ 〈k〉Ω · e = φ 〈k · e〉Ω =
φ

Ω

∫
Ω

k · e dV. (C.3)

In case of flows in the x3-direction through flat-walled chan-
nels or slits (with all channel walls in parallel to the direction of
flow) set in any pattern on the (x1, x2)-plane, there is no change
along the x3-coordinate and the following mathematical relations
are met:

∂

∂x3

≡ 0 , k =

k1

k2

k3

 =

 0
0

k3(x1, x2)

 ,
q = q(x1, x2) , e =

e1

e2

e3

 =

0
0
1

 .
(C.4)

Using these relations for the first equation of the normalised Stokes
flow (C.1) yields the following two-dimensional equations (defined
in AΩ, which denotes the cross-section of Ω)

∂q

∂x1

= 0 ,
∂q

∂x2

= 0 , (C.5)

−
(
∂2k3

∂x2
1

+
∂2k3

∂x2
2

)
= 1 in AΩ , (C.6)

with the corresponding homogeneous condition k3 = 0 defined
on the solid boundary ∂sAΩ of the cross-section, and the peri-
odic condition for k3 on the relevant edges of periodicity ∂pAΩ

(if they exist). Equation (C.6) appears to be the Poisson prob-
lem in the (x1, x2)-plane. Equations (C.5) show that q must be

constant, which is anyway irrelevant, since q is a balance field,
not used in averaging when the macroscopic transport parameter
of permeability is determined. Moreover, since k1 = k2 = 0
and ∂

∂x3
= 0, the incompressibility condition is identically met,

namely,∇ ·k = ∂k1

∂x1
+ ∂k2

∂x2
+ ∂k3

∂x3
≡ 0. Therefore, the normalised

velocity field k3(x1, x2) is simply computed as the solution of the
two-dimensional Poisson problem (C.6). When this normalised
field is found the macroscopic parameter of viscous permeabil-
ity k0 (in the direction of flow) is determined by averaging this
field over the whole cross section area AΩ and multiplying the re-
sult by the porosity φ, namely:

k0 = φ 〈k3〉AΩ
=

φ

AΩ

∫
AΩ

k3(x1, x2) dS. (C.7)

In general, the thermal permeability k′0 is found by averaging
(over the periodic fluid domain Ω) the local field k′ (which can
be treated as a field of temperature normalised to the dimension
of permeability [m2]) found as a solution of the Poisson problem
(related to a thermal diffusion in Ω caused by a uniform source
normalised to a dimensionless unit field):

−∇2k′ = 1 in Ω , (C.8)

with the homogeneous (isothermal) boundary condition k′ = 0
on solid walls ∂sΩ, and the periodic conditions for k′ on the rele-
vant faces of periodicity ∂pΩ. In case of thermal transport inside
flat-walled channels: ∂

∂x3
≡ 0 and k′ = k′(x1, x2), and equa-

tion (C.8) reduces to its two-dimensional form defined on the cross-
section AΩ, namely,

−
(
∂2k′

∂x2
1

+
∂2k′

∂x2
2

)
= 1 in AΩ , (C.9)

with the homogeneous condition k′ = 0 on the cross-section
boundary ∂sAΩ, and the periodic condition for k′ on the relevant
edges of periodicity ∂pAΩ (if they exist). The macroscopic pa-
rameter of thermal permeability is computed as an average of the
filed k′ over the cross-section AΩ multiplied by the porosity φ:

k′0 = φ 〈k′〉AΩ
=

φ

AΩ

∫
AΩ

k′(x1, x2) dS . (C.10)

Since the two Poisson problems (C.6) and (C.9) are identical,
their solutions are the same, namely, k3(x1, x2) = k′(x1, x2), and
so are the macroscopic permeabilities: k0 = k′0. Finally, also the
static tortuosities (the viscous one and thermal one) are identical:

α0 = α′0 =

〈
k′2
〉
AΩ

〈k′〉2AΩ

. (C.11)

D Tortuosity and characteristic lengths
– numerical calculations from micro-
structure

At very high frequency, the flows through porous media tend to be
purely inertial (i.e., the viscosity of fluid can be neglected). Such
perfect (i.e., inviscid and incompressible) flows formally coincide
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with an electrical problem of a dielectric porous material filled with
a conductive fluid. The effective electric conductivity of such a
composite is related to the tortuosity of its open pore space Ω. The
(inertial) tortuosity parameter (and also the viscous characteristic
length) can be determined from the solution of a re-scaled electric
problem for the normalised (dimensionless) electric field E:

E = e−∇q̃ , ∇ ·E = 0 in Ω , (D.1)

where q̃ is the consistently normalised (to the dimension [m]) local
field of electric potential, and e is the normalised (dimensionless)
unit external (global) electric field uniform in the whole fluid do-
main Ω, which induces the local field E. The following boundary
conditions must be satisfied on the dielectric solid walls:

E · n = 0 on ∂sΩ , (D.2)

while the periodic conditions for E and q̃ are set on the relevant
faces of periodicity ∂pΩ. This problem reduces to the Laplace
equation

∇2q̃ = 0 in Ω , (D.3)

with the boundary condition

∇q̃ · n = e · n on ∂sΩ , (D.4)

and the periodic conditions for q̃ on the relevant faces of periodic-
ity ∂pΩ. When the Laplace problem is solved and E is computed
from the first equation of (D.1), the (inertial) tortuosity parameter
can be determined from the following formula

α−1
∞ = 〈E · e〉Ω , (D.5)

whereas the viscous and thermal characteristic lengths are com-
puted as follows

Λ = 2

∫
Ω
E ·E dV∫

∂sΩ
E ·E dS

, Λ′ = 2

∫
Ω

dV∫
∂sΩ

dS
. (D.6)

Notice again that the thermal length Λ′ depends purely on geom-
etry: it is defined as a doubled ratio of fluid domain to the total
surface of solid walls, which can be seen as a generalisation of the
so-called hydraulic radius (which is introduced in Section 2.3).

In case of parallel flat-walled channels in the x3-direction and
with e set in that direction:

∂

∂x3

≡ 0 , E =

E1

E2

E3

 =

 0
0

E3(x1, x2)

 ,
q̃ = q̃(x1, x2) , e =

e1

e2

e3

 =

0
0
1

 .
(D.7)

Then, the potential q̃ becomes constant since the first equation
in (D.1) reduces to

0 ≡ E1 = − ∂q̃

∂x1

, 0 ≡ E2 = − ∂q̃

∂x2

, E3 = 1 . (D.8)

Moreover, in that case: E ·e = 1 and E ·E = 1, which means that
(as expected) α∞ = 1, and the characteristic lengths are equal and
can be computed as the doubled ratio of cross-section area AΩ to

the total length of its solid boundaries (see the definitions of wetted
perimeter and hydraulic radius in Section 2.3):

Λ = Λ′ = 2

∫
AΩ

dS∫
∂sAΩ

dL
. (D.9)

All that means that the tortuosity and characteristic lengths are de-
termined solely by the micro-geometry.
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