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Abstract

This paper presents a methodology for the inverse characterization of sound absorbing rigid porous media, based on standard measure-
ments of the surface acoustic impedance of a porous sample. The model parameters need to be normalized to have a robust identification
procedure which fits the model-predicted impedance curves with the measured ones. Such a normalization provides a substitute set of
dimensionless (normalized) parameters unambiguously related to the original model parameters. Moreover, two scaling frequencies are
introduced, however, they are not additional parameters and for different yet reasonable assumptions of their values the identification pro-
cedure should eventually lead to the same solution. The proposed identification technique uses measured and computed impedance curves
for a porous sample not only in the standard configuration, that is, set to the rigid termination piston in an impedance tube, but also with
air gaps of known thicknesses between the sample and the piston. Therefore, all necessary analytical formulas for sound propagation in
double-layered media are provided. The methodology is illustrated by one numerical test and by two examples based on the experimental
measurements of the acoustic impedance and absorption of porous ceramic samples of different thicknesses and a sample of polyurethane
foam.
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I. INTRODUCTION

The energy of acoustic waves penetrating into porous media filled
with air (or other fluid) is usually very well dissipated by the
viscous and thermal interactions of the pore-fluid with the solid
frame/skeleton. For many materials with open porosity and a suf-
ficiently rigid frame, only the propagation in the pore-fluid need
to be considered to model this phenomenon. A typical approach
is then to substitute such a rigid porous medium by an equiva-
lent dispersive fluid characterized by the complex and frequency-
dependent effective bulk modulus and density. There are in fact
many models of that sort which have been proposed for various
materials. The simplest of them are purely empirical and involve
only a couple of parameters, such as, for example, the flow resistiv-
ity, in the models of Dealny and Bazley1 with important general-
izations proposed by Miki2,3, which are valid for fibrous absorbent
materials of very high porosity (originally they were proposed and
validated for fibrous materials with porosity close to unity). More
complicated models are less restrictive, yet they involve more pa-
rameters related to the average pore geometry. Thus, for example,
Attenborough4 proposed a model for rigid fibrous absorbents and
granular materials using five parameters: porosity, flow resistivity,
tortuosity, a steady flow shape factor, and a dynamic shape factor.
More recently, new empirical models for fibrous materials have
been proposed by Voronina5, and for granular media by Voronina
and Horoshenkov6.

A general semi-phenomenological model for sound absorbing
porous media with rigid frames was originally formulated by John-
son et al.7 and substantially extended later by Champoux and Al-
lard8, and by Lafarge et al.9 to include thermal losses in the porous
medium. Other important improvements were introduced by Pride
et al.10. It is a versatile model, based on a set of independently
measurable porous material parameters. It is essentially formulated
in the frequency domain, although recently time-domain formula-
tions have been proposed (see, for example, a time-domain formu-
lation without any restrictions on the frequency bands by Umnova
and Turo11). In its standard version12, which may be referred to as
the Johnson–Champoux–Allard–Lafarge model (JCAL)13, it uses
six parameters: the total open porosity, the high frequency limit of
the tortuosity (i.e., the classic parameter of tortuosity), the static
viscous permeability (originally, the static air flow resistivity), the
static thermal permeability, and two characteristic lengths—a vis-
cous one and a thermal one. A slightly simplified version does
not use the thermal permeability parameter and is usually called
the Johnson–Champoux–Allard model (JCA). One the other hand,
the enhanced eight-parameter version, which may be referred to as
the Johnson–Champoux–Allard–Pride–Lafarge model (JCAPL)13,
also involves the static viscous and thermal tortuosities, which are
in fact the low-frequency limits of their dynamic counterparts. As
in most of the other models of porous media, there are also addi-
tional parameters representing some of the properties of the fluid
in the pores, which are usually well-known. The JCA, JCAL or
JCAPL model is often simply called the Johnson–Allard model.
Its importance is also confirmed by the fact that, together with all
parameters, the Johnson–Allard formulas are present in the Biot–
Allard model for poroelastic media12, which is essentially based on
Biot’s equations of poroelasticity instead of the Helmholtz equa-
tion for time-harmonic acoustics. The poroelastic model for sound
absorbing media must be used when the vibrations of the solid
frame cannot be neglected, for example, in the case of soft porous

media or in active systems involving porous materials14–16.
The essential parameters of the Johnson–Allard (JCA, JCAL

or JCAPL) and Biot–Allard models which result from the micro-
geometry of the solid frame are in fact some sort of macroscopic,
average geometric characteristics of the porous medium derived on
the basis of homogenization theory. Although, they can be mea-
sured directly (see, for example, Refs.17–20), a specific measure-
ment equipment is required for each one of them. This is an im-
portant reason for developing inverse methods of parametric iden-
tification based on acoustical measurements carried out by a single
type of equipment.

The inverse characterization of porous media based on acous-
tical measurements has been investigated for various models and
parameters. Braccesi and Bracciali21 applied a least squares re-
gression based on measured reflection coefficient values of sound
absorbing porous specimens to estimate reliable values for the flow
resistivity and structure factors used as parameters by an early
model proposed by Zwikker and Kosten22. Alba et al.23 applied
an inverse identification method to obtain the porosity, fibre diam-
eter, and density of fibrous sound absorbing materials using the
Voronina model5,24. Fellah et al.25 used reflected and transmitted
ultrasonic waves in air-saturated industrial plastic foams in order to
identify their porosity, tortuosity, and characteristic lengths. They
applied the least squares method to solve numerically the inverse
problem defined in the time domain. Göransson et al.26 proposed a
methodology for the inverse estimation of the anisotropic flow re-
sistivity through porous materials. This methodology was then re-
fined by Van der Kelen and Göransson27, who applied it to identify
the full anisotropic flow resistivity tensor of multiple glass wool
and melamine foam samples.

An inverse identification of some parameters governing viscous
dissipation in porous media was essayed by Panneton and Olny28,
who showed that when the open porosity and static airflow resis-
tivity are known from direct measurements, and the dynamic den-
sity is obtained from acoustical techniques involving an impedance
tube, the analytical solutions derived from the Johnson et al.7

model yield the geometrical tortuosity and viscous characteristic
length. The same authors29 proposed a method for the inverse
acoustical determination of the parameters governing thermal dis-
sipation in porous media. Their approach is based on the measure-
ment of the dynamic bulk modulus of the material (using a three-
microphone method), and the analytical inverse solutions derived
from three different semi-phenomenological models governing the
thermal dissipation of the acoustic waves in porous media. In all
three cases, the knowledge (i.e., a direct measurement) of the open
porosity was assumed, and the inverse method was used to deter-
mine one or two of the remaining model parameters: for example,
the thermal characteristic length and thermal permeability.

An ultrasonic characterization of homogeneous rigid porous ma-
terials based on the JCA model was proposed by Groby et al.30.
The same model was used in inverse characterization by Dauchez
and Yvars31. A good review on the inversion problems for deter-
mining parameters of porous materials has been recently published
by Bonfiglio et al.32. Acoustical measurements in an impedance
or standing wave tube were used to identify the parameters of the
JCAL model by Sellen et al.33, and also by Atalla and Panneton34

for the JCA model. In that latter paper, the inverse characteriza-
tion is applied only for three parameters, namely, the tortuosity
and two characteristic lengths, which means that the open poros-
ity, airflow resistivity, and bulk modulus must be measured with
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direct methods. In that paper, only the standard configuration of
a porous sample set directly to the rigid termination in the tube
was used. Moreover, no direct parameter normalization was ap-
plied. Such a normalization, suitable for the inverse identifica-
tion of the JCAL model parameters, has been recently proposed
by Zielinski35 in an approach which assumes that the open poros-
ity is known. The present paper is an extension and continuation of
conference reports by Zielinski35,36, and it provides complete dis-
cussions as well as some new results. Here, the proposed method-
ology involves measuring of the surface acoustic impedance of
porous samples in an impedance tube with air gaps (of known
thicknesses) between the sample and the rigid termination of tube.
This paper is organized as follows. First, the necessary formulas
of the JCAL and JCAPL models are recalled. Then, the analyti-
cal solutions for plane harmonic wave propagation in double- and
single-layered media are derived, together with formulas for the
surface acoustic impedance and absorption coefficient. These for-
mulas are used by the inverse identification procedure, applying the
least squares method to a set of normalized dimensionless param-
eters proposed for the JCAL and JCAPL models. The procedure
is illustrated by one test based on a numerical experiment (with
synthetic data implying non-trivial identification37) and by the val-
idated parametric identification of an open-porosity alumina foam
based on measurements of two samples (of different thicknesses)
carried out in an impedance tube, and finally, by another test based
on the impedance-tube measurements of a polyurethane foam.

II. MODELING THE ACOUSTIC IMPEDANCE AND AB-
SORPTION OF POROUS MATERIALS

A. Sound propagation in porous media with a rigid frame

When the skeleton of a porous material can be regarded as rigid and
motionless, which is common in materials like ceramic or metal
foams and even for many softer (PU) foams, the time-harmonic
acoustic wave propagation in such media can be effectively mod-
eled as in fluids by using the classical Helmholtz equation of linear
acoustics. In fact, a layer of the rigid porous material is then sub-
stituted by an effective fluid layer characterized by the effective
speed of sound c and density %, which should differ from the speed
of sound of the fluid in the pores (typically, air), even for materials
of very high porosity (which is usually the case for soundproofing
materials). In consequence, the effective bulk modulus K is also
introduced since c2 = K/%. Moreover, it is observed that porous
materials are dispersive, therefore, the effective quantities should
be frequency-dependent functions, namely, c = c(ω), % = %(ω),
and K = K(ω) (here and below, ω = 2πf is the angular fre-
quency, f is the frequency).

The effective density of a porous material is related to the density
%f of the actual fluid filling the pores:

%(ω) =
%f α(ω)

φ
, (1)

where φ is the open porosity and α is a dimensionless function of
frequency, the so-called dynamic (visco-inertial) tortuosity. John-
son et al.7 proposed a model for the dynamic tortuosity, which
(apart from the kinematic viscosity, νf, of the fluid in the pores) de-
pends on four geometric parameters that macroscopically charac-
terize a porous medium, namely: the open porosity, φ, the (static)
permeability, k0, the tortuosity of the pores, α∞, and finally, the

characteristic size of the pores for the viscous forces, Λ. The static
permeability is an intrinsic property of a porous medium, used,
for example, in Darcy’s law, where it relates the pressure gradient
and the flux, which, when divided by the total porosity, is equal to
the (average, macroscopic) velocity of stationary-flow (therefore,
at ω = 0). The tortuosity α∞ is defined as the ratio of the hypo-
thetical effective density of a porous medium saturated by an ideal,
inviscid fluid, to the density of this fluid. Therefore, it takes into
account only the inertial resistance, and in reality, when the sat-
urating fluid is viscous, the effective density must only approach
the value α∞%f/φ when the viscous skin depth tends to zero and
the viscosity effects become negligible, that is, when ω → ∞.
Johnson’s model was modified by Pride et al.10, and the improved
version can be presented as follows:

α(ω) = α∞ +
νf

iω

φ

k0

[√
iω

νf

(
2α∞k0

Λφ

)2

+ b2 − b+ 1

]
, (2)

where b is a parameter introduced by Pride to adjust the low-
frequency limit of the real part of the effective density (for cir-
cular pores, this limit is obtained at b = 3/4). Lafarge showed
that the right low-frequency limit α0 for the real part of α (i.e.,
limω→0 Reα = α0) is achieved when

b =
2α2
∞k0

Λ2φ(α0 − α∞)
. (3)

An analysis of thermal effects leads to the following expression
for the effective bulk modulus

K(ω) =
Kf

φβ(ω)
, β(ω) = γf −

γf − 1

α′(ω)
(4)

where Kf = γfPf is the bulk modulus of the pore-fluid (Pf is the
ambient mean pressure), γf is the heat capacity ratio for the pore-
fluid, and α′ is the frequency-dependent thermal tortuosity. This
function was introduced by Lafarge9 as an an analogue of the dy-
namic tortusity. Similarly, the following model was proposed for
this quantity:

α′(ω) = 1 +
ν′f
iω

φ

k′0

[√
iω

ν′f

(
2k′0
Λ′φ

)2

+ b′2 − b′ + 1

]
. (5)

where ν′f = νf/Nf, with Nf being the Prandtl number of the pore-
fluid, while k′0 is the static thermal permeability, Λ′ is the char-
acteristic size of the pores for thermal effects, and finally b′ is a
parameter which can provide minor modifications of the effective
bulk modulus in the low- and medium-frequency range; the low-
frequency limit α′0 for the real part of α′ (i.e., limω→0 Reα′ = α′0)
is achieved when

b′ =
2k′0

Λ′2φ(α′0 − 1)
. (6)

Equations (1) and (4), together with the expressions (2) and (5),
constitute a very effective model for sound propagation in porous
media with a rigid frame (in fact, the JCAPL model). This model
involves eight parameters which, in different ways, depend on the
micro-geometry of the porous material (being, in fact, its average
macroscopic properties); they are: φ, α∞, k0, k′0, Λ, Λ′, b (or α0),
and b′ (or α′0). However, by choosing to put b = 1, or in conse-
quence, α0 = α∞ +

2α2
∞k0

Λ2φ , the simplified (original) Johnson’s
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model7 for dynamic tortuosity is achieved. A similar simplifica-
tion can be done for the Lafarge model9 for thermal tortuosity by
assuming that b′ = 1, or α′0 = 1 +

2k′0
Λ′2φ , thus, neglecting the

possibility of some minor modifications in the low- and medium-
frequency range. Eventually, a simplified version, i.e., the JCAL
model, which involves only six geometrical parameters (φ, α∞, k0,
k′0, Λ and Λ′), can be written as follows:

α(ω) = α∞ +
νf

iω

φ

k0

√
iω

νf

(
2α∞k0

Λφ

)2

+ 1,

α′(ω) = 1 +
ν′f
iω

φ

k′0

√
iω

ν′f

(
2k′0
Λ′φ

)2

+ 1.

(7)

B. Surface impedance and acoustic absorption coefficient for
double- and single-layered media

Figure 1 shows the configuration of a double-layered medium of
thickness `, set on a rigid wall and composed of an inner layer 1
with thickness `1 = ξ`, where ξ ∈ (0, 1), and an outer layer 2
with thickness `2 = (1 − ξ)`. The densities of the materials of
these layers are %1 and %2, respectively. In general, these materials
may be porous with open porosities φ1 for the inner layer, and φ2

for the outer one. These porosities will be used in the formulas
derived below, although in further considerations the layer 1 will
be an air gap, which means that its porosity should be simply set
to 1. A plane harmonic acoustic wave propagates in the fluid (i.e.,
the air, which also fills the pores in both layers) and penetrates at
normal incidence into the double-layered medium. It passes both
layers, and (provided that the two materials are different) it is par-
tially reflected at the interface between the layers, and finally, it
is fully reflected by the rigid wall. A standing-wave interference
pattern results due to the superposition of forward- and backward-
travelling waves. By measuring the sound pressure at two fixed
locations outside the medium, it is possible to determine important
acoustical characteristics of the two-layered arrangement, namely,
the complex-valued normal acoustic impedance and reflection co-
efficient, and the real-valued sound absorption coefficient.

xx = 0 x = ξ` x = `

`1 = ξ` `2 = (1− ξ)`

` = `1 + `2

plane harmonic
acoustic wave

(in the air)

layer 1 layer 2

(air gap) porous material
rigid
wall

Figure 1: A two-layered medium: A layer of porous material with an air
gap (or another material) close to the rigid wall

Assuming that the speed of sound (and therefore, the wave num-
bers) and the density in both materials are known, plane wave prop-
agation in a double-layered medium is governed by the system of
two Helmholtz equations, each valid for one of the two layers and
coupled with the other equation only at the interface where the am-
plitudes of the pressure and velocity flux for both layers must be
equal. This linear system of equations can be solved analytically.

Thus, the (complex amplitudes of) acoustic pressure and particle
velocity in layer 1, that is, for x ∈ [0, ξ`], are in fact given by the
following formulas

p(1)(x) = A
(1)
1 e−ik1x +A

(1)
2 eik1x , (8)

v(1)(x) =
k1

ω%1

(
A

(1)
1 e−ik1x −A(1)

2 eik1x
)
, (9)

where k1 is the wave number in the medium of layer 1, while A(1)
1

andA(1)
2 are the (unknown) complex amplitudes of the incident and

reflected pressure waves, respectively. Similarly, the wave number
in medium 2 is denoted by k2, the (unknown) pressure amplitudes
of the incident and reflected waves in layer 2 are denoted by A(2)

1

and A(2)
2 , respectively, and the formulas for acoustic pressure and

particle velocity are

p(2)(x) = A
(2)
1 e−ik2x +A

(2)
2 eik2x , (10)

v(2)(x) =
k2

ω%2

(
A

(2)
1 e−ik2x −A(2)

2 eik2x
)
, (11)

for x ∈ [ξ`, `]. In the case of porous layers v(1) and v(2) are in fact
the effective velocity fluxes, so that the real fluid velocity in pores
is v(1)/φ1 or v(2)/φ2, respectively.

In the proposed approach, the first layer will be the air gap so
that φ1 = 1, %1 = %f and k1 = ω/cf, where %f and cf are the
density of air and the speed of sound in air, respectively. The sec-
ond layer will be a layer of porous material with open porosity
φ2 = φ ∈ (0, 1) filled with air. Moreover, for this layer %2 = %(ω)
and k2 = ω/c(ω), where the effective density %(ω) and the effec-
tive speed of sound c(ω) for the porous material are not real-valued
constants, but are complex frequency-dependent characteristics de-
fined by the formulas presented in Section A.

The unknown amplitudes of the pressure waves are derived by
applying the boundary and interface conditions, namely:

• the zero normal velocity at the rigid wall, i.e., at x =
0: v(1)(0) = 0;

• the pressure and velocity flux continuity at the interface be-
tween two layers, i.e., at x = ξ`: p(1)(ξ`) = p(2)(ξ`) and
v(1)(ξ`) = v(2)(ξ`);

• the pressure boundary condition at the free surface, i.e., at x =
`: p(2)(`) = p̂, where p̂ is the acoustic pressure amplitude of
the incident plane harmonic wave penetrating the two-layered
medium.

Eventually, after introducing the following notations,

κ1 = ik1` , κ2 = ik2` ,

B1 = k2%1 + k1%2 , B2 = k2%1 − k1%2 ,
(12)

the expressions for complex amplitudes are

A
(1)
1 = A

(1)
2 = p̂

(B1 +B2)eξκ1+(1+ξ)κ2

A0
, (13)

A
(2)
1 = p̂

B1e(1+2ξ)κ2 +B2e2ξκ1+(1+2ξ)κ2

A0
, (14)

A
(2)
2 = p̂

B1e2ξκ1+κ2 +B2eκ2

A0
, (15)
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where the denominator equals

A0 = B1

(
e2ξκ2 + e2(ξκ1+κ2)

)
+B2

(
e2κ2 + e2ξ(κ1+κ2)

)
. (16)

Now, the surface acoustic impedance at the free surface of two-
layered medium, i.e., at x = `, can be computed as

Z =
p(2)(`)

−v(2)(`)
=
ω%2

k2

[
− A

(2)
1

p̂
e−ik2` +

A
(2)
2

p̂
eik2`

]−1

, (17)

where p(2)(`) = p̂ and the coefficients A(2)
1 /p̂ and A(2)

2 /p̂ are cal-
culated from the formulas derived above, and it should be noted
that the surface impedance Z(ω) is a complex-valued frequency-
dependent characteristics which actually does not depend on the
excitation pressure amplitude p̂.

When there is no air gap (or inner layer), and a single porous
layer of thickness ` is set directly on the rigid wall (that is for ξ = 0,
`1 = 0, and `2 = `), the whole problem is simplified. This is in
fact a typical configuration used in standard material testing. Then,
the surface acoustic impedance of single porous layer is

Z = %c
exp(2iω`/c) + 1

exp(2iω`/c)− 1
= −i%c cot

(ω`
c

)
= − iZf

φ

√
α

β
cot
(ω`
cf

√
αβ
)
,

(18)

where Zf = %fcf is the characteristic impedance of the fluid (air)
in the pores and outside the porous medium, and the frequency-
dependent functions α(ω) and β(ω) (or the effective quantities
%(ω) and c(ω)) are computed using formulas from Section A.

Whatever the case, when the surface acoustic impedance of
a two-layered (17) or single-layer medium (18) is known, the
complex-valued reflection coefficient R and the real-valued acous-
tic absorption coefficient A can be calculated12,16 as

R(ω) =
Z(ω)− Zf

Z(ω) + Zf
, A(ω) = 1− |R(ω)|2. (19)

The surface acoustic impedance (17) or (18), as well as the re-
flection and absorption coefficients (19) can be determined exper-
imentally in an impedance tube in some frequency range (which
depends on the size of the sample and the tube), using the so-called
two-microphone transfer function method38–40.

III. PROCEDURE FOR INVERSE PARAMETRIC IDENTI-
FICATION OF RIGID PORO-ACOUSTICAL MODEL

A. A normalized set of dimensionless parameters

A method for the parameter identification for the rigid-porous
model, based on some acoustical measurements, will now be pre-
sented. For this purpose, a set of six dimensionless parameters,
which are in an unequivocal relation with the JCAL model pa-
rameters and should render the optimization algorithm robust, is
proposed as follows:

p0 = φ, p1 = α∞ − 1, p2 =
νf

ω∗

φ

k0
, p3 =

ν′f
ω′∗

φ

k′0
,

p4 =
ω∗
νf

(
2α∞k0

Λφ

)2

, p5 =
ω′∗
ν′f

(
2k′0
Λ′φ

)2

,

(20)

with two additional dimensionless parameters in the case of the
JCAPL model:

p6 = b =
2α2
∞k0

Λ2φ(α0 − α∞)
, p7 = b′ =

2k′0
Λ′2φ(α′0 − 1)

. (21)

Here, the definitions of the parameters p2,. . . ,p5 involve the an-
gular frequencies ω∗ = 2πf∗ and ω′∗ = 2πf ′∗, where f∗ and f ′∗
are some arbitrarily chosen scaling (normalizing) frequencies for
viscous and thermal dissipation effects, respectively. They may
be related to the critical frequencies delimiting the low- and high-
frequency regimes of viscous and thermal effects. It is important
to emphasize that the scaling frequencies are not additional pa-
rameters since they can be chosen quite arbitrarily, and for vari-
ous choices, the same results for the model parameters should be
obtained35, although the corresponding sets of the scaled dimen-
sionless parameters will be obviously different. Nevertheless, rea-
sonable values for these frequencies must be used (see examples in
this work) in order to make the identification procedure successful.
As a matter of fact, the scaling frequencies allow properly normal-
izing the vector of dimensionless parameters. The main purpose is
that for the same initial value (typically 1) used for those parame-
ters by the optimization procedure, when the identification is com-
pleted, the found values of the dimensionless parameters should be
of more or less similar order.

Now, the formulas for the dynamic viscous and thermal tortuosi-
ties, α and α′, can be rewritten in the following form:

α(ω) = 1 + p1 +
ω∗
iω
p2

[√
iω

ω∗
p4 + p2

6 − p6 + 1

]
,

α′(ω) = 1 +
ω′∗
iω
p3

[√
iω

ω′∗
p5 + p2

7 − p7 + 1

]
.

(22)

It should be observed that the dimensionless parameter p0 is not
present in these formulas. It is actually the total open porosity
parameter φ, which in the model formulas for the dynamic tortu-
osities (2) and (5), or (7) (as well as in the definitions for param-
eters p2,. . . ,p7), appears always in rational relation with the per-
meabilities k0 or k′0. Nevertheless, the parameter p0 = φ must
be included in the proposed set of identifiable parameters, because
the porosity occurs independently (of k0 and k′0) in the formulas
for surface impedance (17) or (18) which will be used by the iden-
tification procedure.

After the dimensionless parameters have been found, the model
parameters can be calculated as follows:

φ = p0, α∞ = 1 + p1, k0 =
νf

ω∗

φ

p2
, k′0 =

ν′f
ω′∗

φ

p3
,

Λ =
2 + 2p1

p2

√
νf

ω∗p4
, Λ′ =

2

p3

√
ν′f
ω′∗p5

,

(23)

and furthermore, for the JCAPL version of the model:

α0 = 1 + p1 +
p2p4

2p6
, α′0 = 1 +

p3p5

2p7
, (24)

In the case of the JCAL model (7), only six dimensionless pa-
rameters (20) (and so only six model parameters (23)) need to be
identified (since p6 = b = 1 and p7 = b′ = 1) and in that case the

5

http://dx.doi.org/10.1121/1.4919806


This is a preprint of: http://dx.doi.org/10.1121/1.4919806 J. Acoust. Soc. Am. 137(6), 3232-3243 (2015)

formulas for the dynamic tortuosities are

α(ω) = 1 + p1 +
ω∗
iω
p2

√
iω

ω∗
p4 + 1,

α′(ω) = 1 +
ω′∗
iω
p3

√
iω

ω′∗
p5 + 1.

(25)

B. The objective function and identification procedure

Over some frequency range, the surface impedance of a sample of
porous material of known thickness is measured in an impedance
tube. As a matter of fact, a few measurements are carried out for
the same sample set directly on the rigid termination in the tube and
with air gaps of various (known) thicknesses between the sample
and the rigid termination.

The objective function is defined as the sum of squared measures
of the difference between the experimental curves (i.e., the real and
imaginary parts of the measured surface impedances) and their an-
alytical analogues computed from the model discussed above, with
some assumed values for the dimensionless parameters; namely:

F (p) =
∑
m

∑
ω

∣∣Zm(ω;p)− Zexp
m (ω)

∣∣2
=
∑
m

∑
ω

[(
ReZm(ω;p)− ReZexp

m (ω)
)2

+
(

ImZm(ω;p)− ImZexp
m (ω)

)2]
.

(26)

Here: p is the vector of dimensionless parameters with six com-
ponents defined by (20) – in the case of the standard JCAL model
– or with eight components defined by formulas (20) and (21) –
in the case of the enhanced JCAPL model; Zexp

m (ω) is the acoustic
impedance measured at frequency ω for the measurement case m,
and Zm(ω;p) is its computed counterpart; the summation (

∑
ω)

is carried out over the discrete set of measurement/computational
frequencies ω (from the relevant frequency range), as well as over
all the measurement cases (

∑
m) with various known air gaps (or

with the sample set directly on the rigid termination). The acoustic
impedance values are computed using formulas (17) or (18) with φ
substituted by p0 and the porous layer effective quantities %(ω;p)
and c(ω;p) calculated from the model formulas where the viscous
and thermal tortuosities are determined with respect to the dimen-
sionless parameters, that is, from Equation (25) for the JCAL case,
or Equation (22) in the JCAPL case. The analytical formulas for
the gradient of the objective function with respect to the parame-
ters p can be derived (see the Appendix) to be used by minimiza-
tion procedures.

During the identification procedure, the objective function is
minimized with respect to the dimensionless parameters p. It is
required that all the parameters are positive, however, some addi-
tional constraints may be imposed. For example, it is known that
thermal dissipation effects are associated with the so-called ther-
mal skin depth, which tends to be bigger than the viscous skin
depth corresponding to the viscous dissipation effects. Thus, the
thermal effects are rather associated with the the pore size, while
the viscous effects are associated with the size of the “windows”
(and small pores) linking the pores; therefore, in general, the vis-
cous and thermal characteristic lengths should satisfy the following
relation Λ 6 Λ′. Similarly, one may always expect that k0 6 k′0,
which means that p3 6 ω∗

ω′∗Prp2. Nevertheless, the optimization

algorithms with (simple) positive-value constraints (or even algo-
rithms without constraints) can be successfully used for the correct
identification of the model parameters, thanks to the normalization
realized by the scaling frequencies. The initial values for the com-
ponents of the vector p should be all set to 1, and the reference
frequencies, f∗ and f ′∗, may be chosen with some reasonable free-
dom (though, rather f∗ > f ′∗).

Mathematically speaking, the inverse characterization uses the
least squares method: a numerical model is fitted to experimental
data by minimizing a quadratic function of the differences between
the data and their model counterpart. The modeled problem is of
the steady-state kind (its behavior does not depend on any initial
conditions and it continues into the future). An inverse solution
exists because the model function is continuous in its parameters
with bounded domains. Since many experimental curves are sug-
gested to be used simultaneously in the error minimization, the
least square problem is overdetermined, and it seems that the solu-
tion is unique. Thus, the problem is rather well-posed41, however,
the problem’s different sensitivity to various parameters42 may im-
ply ill-conditioning. An important role in fitting models to mea-
surements is often played by the Hessian matrix which contains
the second derivatives of the quadratic objective function43. In the
discussed method, the formulas for the normalized parameters set
at once the conditioning of the fitting-error minimization problem
at a better level, and a good choice of the normalizing frequen-
cies improves it by reducing the condition number of the Hessian
matrix.

IV. EXAMPLE BASED ON A NUMERICAL EXPERIMENT

The following numerical experiment was carried out. First, each
value from a set of realistic parameters for the six-parameter JCAL
model of a rigid porous medium – listed in Table I as the orig-
inal values – was subject to some random deviation. As a mat-
ter of fact, for each parameter, three different random deviations
were independently effectuated. The results are presented in Ta-
ble I as the A-, B-, and C-deviated values. The average deviated
values, computed for each parameter as the arithmetic mean from
the corresponding A-, B- and C-deviations, are also listed in Ta-
ble I, whereas in Figure 2 the relative difference of each deviated
value from its original is shown. It should be noted that the A-, B-,
and C-deviated values differ from their original counterparts from
by several percent to nearly 20%, however, the average deviation
tends rather to be a few percent (less than 6%) for each parameter.

Table I: Values of transport parameters

Parameter φ α∞ k0 k′0 Λ Λ′

value↓ [unit] [%] [–] [10−9m2] [10−6m]
original: 88.00 1.800 0.500 2.000 50.00 180.0

A-deviated: 81.63 1.789 0.516 1.823 58.54 173.2
B-deviated: 82.79 1.690 0.539 1.914 54.42 158.4
C-deviated: 93.50 1.840 0.509 1.920 43.15 213.8

averaged: 85.97 1.760 0.521 1.886 52.04 181.8
identified: 86.06 1.739 0.508 1.840 50.99 197.6

The A-, B-, and C-deviated values of the JCAL model param-
eters were used in modelling calculations to produce artificial ex-
perimental curves of surface acoustic impedance for three config-
uration cases of a 30 mm-thick rigid porous layer: (a) a porous
layer described by the A-deviated values of model parameters set

6

http://dx.doi.org/10.1121/1.4919806


This is a preprint of: http://dx.doi.org/10.1121/1.4919806 J. Acoust. Soc. Am. 137(6), 3232-3243 (2015)

φ α∞ k0 k′0 Λ Λ′
−20

−15

−10

−5

0

5

10

15

7.24

2.84

−3.12

8.85

−17.07

3.79

5.92 6.1

−7.86

4.3

−8.84

11.98

−6.25

−2.23 −1.72

3.99

13.7

−18.75

2.3 2.24

−4.23

5.71

−4.07

−0.99

Model parameter

R
el

at
iv

e
di

ff
er

en
ce

[%
]

(a) (b) (c) (d)

Figure 2: Relative differences of the deviated values of model parame-
ters from their original values: (a) A-deviation, (b) B-deviation, (c) C-
deviation, (d) average deviation, i.e., the arithmetic mean value from the
corresponding A-, B- and C-deviated values
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Figure 3: Surface acoustic impedance (its ratio to the characteristic
impedance of air Zf) of the 30 mm-thick porous layer set directly on the
rigid wall, or with the 10 mm or 20 mm-thick air gaps between the layer
and the wall, computed for the following values of model parameters (see
Table I): (a) original, (b) A-deviated – for the no-gap case, B-deviated –
for gap 10 mm, or C-deviated – for gap 20 mm, (c) averaged, (d) identified

directly to the rigid wall, (b) the porous layer described by the B-
deviated values of model parameters set with a 10 mm-thick air
gap to the rigid wall, and (c) the porous layer described by the
C-deviated values of model parameters set with a 20 mm-thick air
gap to the rigid wall. The results obtained in this way, i.e., from
the deviated values of the parameters, can therefore be considered
as realistic results vitiated by measurement errors or some imper-
fections (local inhomogeneities) of real samples. These impedance
curves are plotted in Figure 3 as curves (b). For comparison, the
curves computed from the original values of the model parameters,
as well as from the averaged-deviation values, are also shown as
curves (a) and (c), respectively. Nevertheless, one must remem-
ber that only these A-, B-, and C-deviated curves were used by the
identification procedure, which eventually provided the identified
values of the model parameters listed in the bottom line of Table I.
The corresponding impedance curves were also computed for these
identified values, and are presented in Figure 3 as curves (d). It is
clearly visible that in each case they are the ones closest to the
curves obtained from the averaged-deviation parameters, although,
as mentioned already above, those latter were not used by the iden-
tification procedure. Nevertheless, the overall differences between
the various corresponding curves are rather small, which illustrates
the fact that such moderate variations of model parameters tend to
produce quite similar results.
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Figure 4: Relative errors of the identified parameters with respect to the
corresponding: (a) original values, (b) averaged-deviation values

Figure 4 shows the relative errors for each identified parameter
with respect to its original value and the averaged-deviation value.
The errors with respect to the average-deviations vary from about
4% to 12%, whereas the errors with respect to the original val-
ues are more dispersed: they are from about 3% to 17%. One
should remember, however, that for another numerical test of this
type (i.e., another set of random deviations), the errors would be
(slightly) different. Nevertheless, it was checked that the mean er-
ror tend to be smaller when the identified parameters are compared
with the average-deviation values. Finally, the curves of the acous-
tic absorption coefficient computed for all three configurations of
a porous layer (i.e., with or without air gaps) for the JCAL model
with original, deviated and identified parameters are presented in
Figure 5. Again, the curves computed from the identified model are
closest to the results calculated using the parameters with average-
deviation (although the identification procedure used jointly the A-,
B-, and C-deviated curves of surface acoustic impedance).
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Figure 5: Acoustic absorption coefficients for the 30 mm-thick porous
layer set directly on the rigid wall, or with 10 mm or 20 mm-thick air gaps
between the layer and the wall – see Figure 3 for the description of curve
denotations

V. EXPERIMENTAL VALIDATION OF THE INVERSE
CHARACTERIZATION PROCEDURE

A. Inverse characterization of a ceramic foam

The characterization procedure was applied to two kinds of porous
foams – see Figure 6. First, it was a ceramic (aluminium oxide)
foam of a relatively high open porosity44. It has been recently re-
ported that such foams have a very complex micro-geometry and
exhibit good sound absorbing properties45,46. From two speci-
mens of such foam manufactured separately, one with thickness
app. 24 mm, the other with thickness app. 18 mm, two cylindrical
samples were cut with a diameter of 29 mm (see Figure 6) to be
well-fitted inside an impedance tube. Both samples were measured
in the tube for their surface acoustic impedance and absorption co-
efficient in the frequency range from 500 Hz to 6 kHz, using the
so-called two-microphone transfer function method38,47,48. Each
of the samples was tested in five configurations: first, set directly
to the rigid piston termination in the tube, and then with air gaps
between the sample and the rigid termination so that the total thick-
ness of the two-layered sound absorbing medium was 30, 40, 50,
and 60 mm, respectively.

1
2 3

Figure 6: Two cylindrical porous ceramic (alumina) samples with diame-
ter 29 mm and thickness (height): (1) 18 mm, (2) 24 mm, and (3) a sample
of PU foam with thickness 26 mm

The impedance curves measured for the thicker sample were
used by the parametric identification algorithm. Their real and
imaginary parts are shown in Figure 7 (as the ratio to the character-
istic impedance of air Zf) together with the corresponding curves
calculated after the identification was accomplished from the ana-
lytical JCAL model using the identified parameters – for the sake

of legibility the results for only three configurations are presented,
namely: for the case with no gap, and for the total thicknesses of
40 mm and 60 mm.
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Figure 7: Surface acoustic impedance ratio for the 24 mm-thick porous
ceramic sample with or without an air gap to the rigid wall, and the total
thickness (sample+gap): (a,d) equal to the thickness of ceramic sample,
i.e., no gap, (b,e) 40 mm, (c,f) 60 mm. The results of the experimental
testing (a,b,c) and modeling (d,e,f) using the identified parameters

Table II: Identified values of transport parameters for porous ceramic
sample

Parameter Symbol Unit Identified value
porosity φ % 89.75

tortuosity α∞ – 1.234
viscous permeability k0 10−9m2 2.275
thermal permeability k′0 10−9m2 4.799

viscous length Λ 10−6m 51.84
thermal length Λ′ 10−6m 333.0

The geometric parameters identified by the error-minimization
procedure are listed in Table II and their corresponding dimen-
sionless parameters, obtained by means of the scaling frequencies
f∗ = 700 Hz and f ′∗ = 500 Hz, are shown in Figure 8. It should be
noted that the identified porosity of about 90% is in excellent accor-
dance with the value declared by the foam manufacturer44. Finally,
some of the acoustic absorption curves measured in an impedance
tube and computed from the model are presented in Figure 9 for
the identified porous sample with thickness 24 mm.

For further verification, the parameters identified from the
impedance curves measured for the 24 mm-thick porous sample
were also used to estimate the surface acoustic impedance and ab-
sorption for the second sample, of presumably the same porous
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Figure 8: Identified values of dimensionless parameters (for alumina ce-
ramics)
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Figure 9: Acoustic absorption coefficient for the 24 mm-thick porous ce-
ramic sample in various configurations (see caption to Figure 7). The
results of the experimental testing (a,b,c) and modeling (d,e,f) using the
identified parameters

ceramics yet with a thickness of 18 mm. In Figures 10 and 11
these results, calculated for three configurations with (or without)
various air gaps, are compared with the relevant measurements.
Here, the discrepancies between the measured and modeling re-
sults are bigger, probably because of the poor quality of one face of
this sample; however, one should also recall that the samples were
cut from two separate specimens, which had been manufactured
independently even though using the same technology (which in-
volved semi-manual mixing). Nevertheless, the general agreement
between the corresponding curves is rather good, which essentially
validates the identification.

B. Inverse characterization of a polyurethane foam

A polyurethane foam was used for the second test of the inverse
characterization procedure. The sample of PU foam with thickness
26 mm (see Figure 6) was measured in the impedance tube in five
configurations: set directly on the rigid termination in the tube or
with such air gaps so that the total thicknesses were 40 mm, 60 mm,
80 mm, and 100 mm. The foam was sufficiently stiff, which jus-
tified the rigid-frame assumption and the characterization proce-
dure based on the JCAL model was carried out using the surface
impedance measurements.
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Figure 10: Surface acoustic impedance ratio for the 18 mm-thick porous
ceramic sample in various configurations (see caption to Figure 7). The
results of the experimental testing (a,b,c) and modeling (d,e,f) using the
parameters identified for the sample 24 mm-thick
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Figure 11: Acoustic absorption coefficient for the 18 mm-thick porous
ceramic sample in various configurations (see caption to Figure 7). The
results of the experimental testing (a,b,c) and modeling (d,e,f) using the
parameters identified for the sample 24 mm-thick

In order to illustrate the effect of the proposed normalizing fre-
quencies, f∗ and f ′∗, three solutions for the normalized dimension-
less parameters are shown in Figure 12; they were obtained for
three sets of normalizing frequencies, namely: (1) for f∗ = 3 kHz
and f ′∗ = 2 kHz; (2) for f∗ = 2 kHz and f ′∗ = 500 Hz; (3) for
f∗ = 400 Hz and f ′∗ = 300 Hz. One should note that the pa-
rameters p0 and p1 are (respectively) the same in all solutions pre-
sented in Figure 12, since they do not depend on the normalizing
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Figure 12: Identified values of dimensionless parameters for the PU sam-
ple: three cases for various normalizing frequencies

frequencies. On the other hand, the identified values of all other
parameters, i.e., p2, p3, p4 and p5, are different between the solu-
tions, since they depend on the normalizing frequencies. Another
observation: the most dispersed dimensionless parameters are for
the case (1), while the most compact is the dimensionless vector
found for the case (3). However, what is important, after using the
formulas for the model parameters (23), the results are the same,
at least up to the three significant figures of each number, which
are presented in the last column of Table III. Here, the correspond-
ing “initial” values of the model parameters are also given, for the
all three choices, (1), (2) and (3), of the normalizing frequencies.
Obviously, the identification procedure directly identifies only the
normalized parameters p0, . . . , p5, and the important feature of the
method is that the initial values for all of them is 1. Therefore, the
“initial” values for the model parameters are not used by any min-
imization procedure, but they are simply calculated here from the
unit values of the normalized parameters and the chosen normaliz-
ing frequencies. Again, since these frequencies do not affect p0 and
p1 which unequivocally and directly define φ and α∞, those two
model parameters have the same “initial” values whatever was the
choice for the normalizing frequencies; the other “initial” values
are different. One may observe that the “initial” value for the vis-
cous length is higher than the “initial” value of the thermal length,
however, their final identified values are more properly related: the
thermal length is nearly twice as large as the viscous one. When
the “initial” values are compared with the identified ones, the case
(3) has the closest results, whereas the largest differences are for
the case (1). One may conclude that a better choice of the normal-
izing frequencies puts the unit initial values of the dimensionless
parameters closer to the values which render the minimum of the
objective function.

The Hessian matrix of the objective function was computed for
three identified vectors of normalized parameters. In accordance
with the previous observations, it was found that the conditioned
number of the Hessian matrix computed in the case (3) was 36
times smaller than for the worst normalization case (1). Thus, one
may conclude that a better choice of normalizing frequencies im-
proves the conditioning of the Hessian matrix of the objective func-
tion. Nevertheless, for this PU foam the inverse characterization

Table III: “Initial” and identified values of transport parameters for PU
foam

Parameter Symbol Unit “Initial” value
(1) (2) (3) Ident.

porosity φ % 100 100 100 99.3
tortuosity α∞ – 2.00 2.00 2.00 1.07

viscous perm. k0 10−9m2 0.82 1.24 4.94 4.72
thermal perm. k′0 10−9m2 1.74 3.48 8.70 11.1
viscous length Λ 10−6m 115 141 281 240
thermal length Λ′ 10−6m 83 118 187 449

procedure was very stable: the same results were obtained what-
ever the choice of normalizing frequencies. Figure 13 compares
the acoustic absorption curves obtained from some measurements
in the impedance tube with the corresponding curves calculated
from the identified model parameters – the discrepancies are very
small.
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Figure 13: Acoustic absorption coefficient for the 26 mm-thick PU foam
sample with or without an air gap to the rigid wall, and the total thickness
(sample+gap): (a,d) equal to the thickness of PU sample, i.e., no gap,
(b,e) 40 mm, (c,f) 60 mm. The results of the experimental testing (a,b,c)
and modelling (d,e,f) using the identified parameters

The identified value of high porosity (see Table III) is typical
for open-cell PU foams. Also typical is the identified viscous per-
meability (see Refs.49,50), which sets the value of the air flow re-
sistivity to 3871 Pa·s/m2 (the air flow resistivity for open-cell PU
foams varies with their density, but is in the region of 2000 to
8000 Pa·s/m2 for the densities of 20 to 60 kg/m3).

VI. CONCLUSIONS

A methodology for inverse parametric identification of rigid porous
media on the basis of surface acoustic impedance measurements
was discussed. The identification procedure applies the least
squares method to fit the measurement curves with the results cal-
culated analytically from the Johnson–Allard models12. In this
way, important transport parameters may be simultaneously iden-
tified, in particular: the open porosity, tortuosity, viscous and ther-
mal permeabilities, and two characteristic lengths. However, these
model parameters are not directly sought for; instead, the identi-
fication algorithm minimizes the discrepancy between the exper-
imental and analytical results with respect to a set of normalized
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dimensionless parameters, which are in unequivocal relation to
the model parameters. The proposed formulas of relation involve
two scaling factors: the normalizing frequencies which may be re-
lated to the critical frequencies delimiting low- and high-frequency
regimes of viscous and thermal effects. These scaling factors must
be set beforehand, and they simply normalize the identification al-
gorithm, which means that for various choices the identified sets
of dimensionless parameters will differ merely in how they ren-
der the same (or very similar) values of the model parameters. In
practice, the choice of scaling frequencies may slightly affect the
identification errors, and it will certainly have an impact on the
number of iterations needed by the minimization algorithm. Nev-
ertheless, the choice of normalizing frequencies may be quite arbi-
trary, within some reasonable limits. It is also suggested that the
thermal scaling frequency should be less than its viscous counter-
part. The purpose for these scaling factors is that the order of the
identified dimensionless parameters should be similar (as a mat-
ter of fact, in cases when they vary significantly, another choice
of scaling frequencies should be tried). Moreover, the initial val-
ues for all dimensionless parameters may be simply set to 1 (thus,
the corresponding initial values of model parameters will depend
only on the two scaling frequencies). This is an important feature
of the identification procedure: with a simple choice of initial val-
ues the iterative minimization should lead to the global minimum.
Such approach should improve the robustness of the methodology
which, however, depends most of all on the quality of experimen-
tal data. Therefore, the parametric identification should be effec-
tuated with respect to many experimentally determined curves of
acoustic impedance measured for the same porous material. This
may be achieved by testing a few samples of various thickness in
several configurations, namely, in the standard one – when a sam-
ple is set directly to the rigid termination in an impedance tube –
and in double-layered arrangements with air gaps of known thick-
ness between the sample and the rigid termination. The method-
ology was tested on data obtained from one numerical experiment
as well as data from the measurements of two samples (of vari-
ous thicknesses) of high-porosity alumina foam, and a sample of
polyurethane foam, carried out in an impedance tube. The tests es-
sentially validated the method, however, they also revealed a mod-
erate accuracy (reliability) of identification because of a rather lim-
ited sensitivity of the impedance curves to some not very large vari-
ations of some of the model parameters (see also Ouisse et al.42).
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APPENDIX: GRADIENT OF THE OBJECTIVE FUNCTION

Here, the analytical formulas will be given for the gradient of the
objective function defined with respect to one measurement con-
figuration (i.e., m = 1 in the formula (26)), when a porous sample
is set directly on the rigid wall (i.e., for `1 = 0 and `2 = `). In that

case, the gradient components with respect to the (real-valued) pa-
rameters pn (n = 0, 1, . . . , 5) are:

∂F (p)

∂pn
= 2

∑
ω

(
ReZ(ω;p)− ReZexp(ω)

)
Re

∂Z(ω;p)

∂pn

+ 2
∑
ω

(
ImZ(ω;p)− ImZexp(ω)

)
Im

∂Z(ω;p)

∂pn
.

where the components of the corresponding gradient of the surface
acoustic impedance,

Z(ω;p) = − iZf

p0

√
α(ω; p1, p2, p4)

β
(
α′(ω; p3, p5)

) cot
(ω`
cf

√
α(. . .)β(. . .)

)
,

are computed as follows:

∂Z

∂p0
= − Z

p0
,

∂Z

∂p1
=
∂Z

∂α

∂α

∂p1
=
∂Z

∂α
,

∂Z

∂p2
=
∂Z

∂α

∂α

∂p2
,

∂Z

∂p3
=
∂Z

∂β

∂β

∂α′
∂α′

∂p3
,

∂Z

∂p4
=
∂Z

∂α

∂α

∂p4
,

∂Z

∂p5
=
∂Z

∂β

∂β

∂α′
∂α′

∂p5
,

where

∂Z

∂α
=

iZf

2p0

1√
αβ

[ a

sin2(a)
− cot(a)

]
, a =

ω`

cf

√
αβ ,

∂Z

∂β
=

iZf

2p0

√
α

β3

[ a

sin2(a)
+ cot(a)

]
,

∂β

∂α′
=
γf − 1

(α′)2
,

∂α

∂p2
=
ω∗
iω

√
iω

ω∗
p4 + 1 ,

∂α

∂p4
=

p2

2
√

iω
ω∗
p4 + 1

,

∂α′

∂p3
=
ω′∗
iω

√
iω

ω′∗
p5 + 1 ,

∂α′

∂p5
=

p3

2
√

iω
ω′∗
p5 + 1

.
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[15] T. G. Zieliński, “Fundamentals of multiphysics modelling of piezo-poro-
elastic structures”, Archives of Mechanics 62, 343–378 (2010).
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[36] T. G. Zieliński, “A methodology for a robust inverse identification of
model parameters for porous sound absorbing materials”, in Proceedings of
ISMA2014 – International Conference on Noise and Vibration Engineering
(2014).

[37] A. Wirgin, “The inverse crime” (2004),
arXiv:math-ph/0401050v1 (date last viewed 3/16/2015).

[38] ISO 10534-2: “Determination of sound absorption coefficient and
impedance in impedance tubes” (1998).

[39] J. S. Bolton, T. Yoo, and O. Olivieri, “Measurement of normal incidence
transmission loss and other acoustical properties of materials placed in a
standing wave tube”, Technical Review 1, Brüel & Kjaer (2007).
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