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ABSTRACT
The paper focuses on some issues regarding the utilization of small rectangle-
shaped piezoelectric transducers as both sensors and actuators in active
vibration and vibroacoustic control systems of beam, plate and panelled
structures with arbitrary (non-homogeneous) boundary conditions. A new form
of description of a simple proportional active control system with multiple
independent feedback loops is proposed. The modal sensitivity functions of
sensors and the modal selectivity functions of actuators are introduced to
describe their ability for sensing and exciting specific structural modes of the
structures. Basing on the assumed form of cost function and the derived
equations of control system the influence of the modal characteristics of
transducers on the stability of the system and on the performance of the active
control is analyzed. The results of analytical solutions and numerical
simulations are compared with the results of the experiments carried out on
various beam and plate structures made up of aluminium or composite materials
including the actual materials used in aviation, proving usefulness of the
presented approach.

1. INTRODUCTION
Active vibration and vibroacoustic control methods are of great interest in many
industrial applications and have been the topic of numerous scientific investigations
over the past several decades. The necessary elements of control systems developed
for such applications are sensors and actuators: the sensors allow to determine the
current state of vibrating structures (or some parameters of the generated acoustic
field), whereas the actuators are used to apply the control loads. Among a variety of
available techniques of implementation, one of the most commonly used are
piezoelectric transducers attached to the surface of structures under control. Such
solution preserves compactness of the controlled system while providing good
electro-mechanical properties. The electric signals from sensors are processed by a
control unit and, based on the results, the optimal parameters of the excitation
signals driving actuators are determined. However, assuming that the parameters of
the external excitation – which is the primary source of the vibrations – are
unknown, the information obtained from the sensors is never complete, that is: as
the number of sensors and their areas are limited to some reasonable (finite) values,
the gathered data would not allow to posses the complete knowledge about the
parameters of the vibrations of the considered structure in any possible case. On the
other hand, for the very similar reasons, the control system is not able to excite any
arbitrarily chosen form of vibrations using the finite number of actuators.
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Many of the studies devoted to the field of active vibration and vibroacoustic
control focus on specific types of structures, which may be accurately described
using analytic formulas – like, for example, beams or simply supported plates.
Solutions obtained for such cases allowed to design piezoelectric sensors and
actuators sensitive only to specific sets of structural modes [1] or even to a single
structural mode [2, 3] by changing the shapes, sizes and/or locations of the
transducers. However, the results of these investigations cannot be easily
generalized into a more general case of plates with arbitrary boundary conditions of
support.

Considering active vibroacoustic control systems, the most commonly
investigated case of acoustic conditions is the far-field acoustic radiation of
structures placed in an infinite, rigid baffle (see, for example [1, 4, 5]). The radiation
characteristics of the vibrating structure in such case can be computed using the
Rayleigh’s integral. In case of the other acoustic boundary conditions or for the
near-field computations, numerical techniques have to be implemented in order to
determine the amplitude of the radiated acoustic pressure field. Typically it is the
Finite Element Method (FEM) or the Boundary Element Method (BEM). The
approach using FEM (see for example [6]) allows for straightforward coupling with
the vibrating structure, yet it involves a huge number of degrees of freedom and
means that some non-reflective boundary conditions must be properly applied since
only a finite sub-domain of the whole infinite acoustic domain can be meshed. This
final problem is non-existent in case of BEM. The method applicable to the most
general cases is the indirect variational Boundary Element Method. However, it
involves relatively high computational cost when compared with the other versions
of BEM, and requires special integration schemes to deal with the singularities in
the integrands [7–9].

Taking into account the parameters of the closed-loop feedback control system it
is desirable to use collocated piezoelectric sensor-actuator pairs. Two different
solutions which ensure this feature can be found in literature. The first one – which
is simpler and more practical, yet not always feasible due to the possible lack of
access to both sides of a structure – is to attach the transducers symmetrically to the
both surfaces of a thin beam or plate [1, 10]. The second solution involves the use
of a single piezoelectric element as sensor and actuator simultaneously [11–15]. The
advantages of such a solution with respect to the functionality of the control system
are significant, but the necessary complications of the corresponding electronic
circuits together with a requirement to meet very stringent parameters make it
impractical.

Optimization algorithms for the placement of sensors and actuators may be based
on various cost functions depending on the type of structure, its purpose, and also
some restrictions related with the usage of various types of transducers. The state of
the art in this field is well documented in corresponding review papers (see, for
example [16–18]). Again, the majority of relevant scientific investigations is
focused on thin beams [19, 20] and plates with specific boundary conditions (simply
supported [21, 22], clamped [23, 24], cantilevered [23, 25]). Other approaches also
usually impose some restrictions on the structure mounting parameters, like, for
example, plates with arbitrary but homogeneous along the edges boundary
conditions [26]. The optimization problem is usually solved numerically with
different iterative algorithms.

The purpose of the present paper is to investigate the modal characteristics of
small rectangle-shaped piezoelectric transducers attached to surfaces of beam, plate
and panelled structures in terms of their utilization for active control of vibrations.
A new form of theoretical description is proposed. The modal sensitivity functions
of sensors and the modal selectivity functions of actuators are introduced to describe
their ability for sensing and exciting specific forms of vibrations of the structures.
The presented approach – in contrast to most studies described in literature – is
elaborated and tested for plates with arbitrary (non-homogeneous) boundary
conditions; moreover, due to the high level of generality of the proposed form of
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description it should work for structures of more complex geometries than
rectangular plates. It has been shown in the paper how such relatively simple
approach may be utilized to deal with sandwich composites used in aviation – one
of the tested sample structures is actually made from the same material as the
fuselage of a small gyrodyne, provided by the aircraft manufacturer. Therefore, 
the main original contribution of the paper is not the introduced theoretical approach
by itself, but rather in relation with the results of experiments. The comparison
between predicted and obtained values of modal characteristics provides many
useful conclusions regarding the utilization of small rectangle-shaped piezoelectric
transducers in active control of vibrations of various real-life structures. Some
results of the related preliminary investigations have already been presented in [27].

2. THEORETICAL CONSIDERATIONS
2.1. Problem statement
Beam and plate structures with arbitrary boundary conditions are investigated. It is
assumed, that N small piezoelectric transducers are attached to the surfaces of the
considered structures. Some of the transducers are used as sensors while the
remaining serve as actuators in a closed-loop active feedback control system. It is
assumed that the structures and the piezoelectric transducers attached to their
surfaces are rectangle in shape and that their edges are parallel to the axes of the
global coordinate system. The typical geometry of the problem is depicted in 
Figure 1. Vibrational motion of the structures is assumed to occur only in the z
direction, so only one, corresponding component of the displacement field is
considered, namely, the deflection w = w(x, y, t).

In case of the so-called beam structures it is assumed that the length a of a
structure is much greater than its width b and its thickness hs. The flexural waves
propagate along the x direction only and the deflection w is constant along the y

direction, that is: . The vibrations of the beams are modeled using the

classical Euler-Bernoulli beam theory.
Similarly, plate and panelled structures considered in this study are thin in the

sense of the classical Kirchhoff's plate theory. They are considered to be made of
homogeneous, isotropic material (thus, in case of composites, such approach can be
applied provided that the relevant effective material constants are known). The
equations of motions for the considered structure models can be found, in example,
in [28].

It is assumed, that each of the considered structures is subjected to an external
harmonic excitation with arbitrary spatial distribution. The system is linear and the
structural damping is neglected, therefore the response of the structure is also
harmonic, with the same frequency and phase as the excitation. The present study
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Figure 1. Geometry of the considered problem.



focuses only on a low-frequency range (up to about 400 Hz), since higher frequency
vibrations can be rather easily suppressed using the well-known passive techniques
- like thin soft liners, a porous core of panel (see for example [29, 30]). Taking all
these assumptions into account, the response of a structure can be approximated by
a finite sum of N structural modes as follows:

(1)

where (x) � (x) in case of beam structures and (x) � (x, y) in case of plate
structures, while Φn is the normalized shape function of mode n with wn as the
corresponding time-varying coefficient. When a harmonic motion is considered -
with ω = 2πf as the angular frequency of the external excitation force (f being the
frequency) - these coefficients are time-harmonic and can be expressed as wn(t) =
eiωtWn, where Wn are the (frequency-dependent) modal amplitudes; w̃(x) in the
(frequency-dependent) amplitude function of harmonic vibrations. Here and below,
it is understood that when the time-harmonic term eiωt is involved, eventually only
real (or imaginary) part of the whole expression has physical meaning (and should
be eventually taken as the final result).

Modal shape functions Φn are found by solving the corresponding 
eigen-problems. In the case of beams, regardless of their boundary conditions (and,
as a matter of fact, because of their ‘unidimensional’ simplicity), it is always
possible to find analytical solution consisting of a sum of trigonometric and
hyperbolic functions [28]. In the case of plate structures, however, even when they
are rectangular in shape, the analytical solutions can be found only for some specific
(‘geometrically-homogeneous’) boundary conditions and - in general - it is required
to use numerical methods, such as the Finite Element Method, in order to solve such
problems.

In order to control the vibrations of structures, piezoelectric sensors and actuators
are connected in control loops. In the present study control performance and
stability is evaluated on the example of a relatively simple, decentralized
proportional feedback system. There are, of course, many other well-known control
algorithms that can deal with relevant problems (see, for example, [1, 4, 10, 13]).
However, taking into account the fact that steady-state harmonic vibrations are
considered, the control processes in most of the cases can be easily reduced and
modeled with the proposed approach. It is assumed, that the control system consists
of M independent feedback loops. The electric signal from the piezoelectric sensors
is fed back to the corresponding actuators through the amplifiers with adjustable
gains. Under such conditions, the optimal control strategy is to find such a vector of
gains with values belonging to the available control space, for which the desired cost
function should be minimized. The form of this function depends on the scopes of
the control. Operating of the active control system causes changes of the vibrational
mode components, which may lead to minimization of the global vibration level or
radiated acoustic pressure in a given sub-space.

The acoustic pressure field generated (in air) by a vibrating structure is, in
general, complex and varies strongly with the frequency, the distance from the
source, and the boundary conditions. Due to the linearity of the considered system
the sought values in the specified points of the space surrounding considered
structure can be regarded as linear functions of the modal amplitudes. That leads to
the following, general formula:

(2)

where pre and pim denote the real and imaginary parts of the complex amplitude of
acoustic pressure and can be written as:

p p W W p W W jpN N( ) ( , ,..., ) ( , ,..., ) (R R R R= = +
1 1re im ,, ,..., )W WN1
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(3)

and

(4)

Here, Pre
n (R) and P im

n (R) are the modal radiation coefficients at a given point of
space R; they can be computed either analytically ((using, for example, Rayleighs
integral), or numerically using, for example, one of the methods described briefly in
previous section). Equations (2)–(4) link the parameters of the generated acoustic
pressure field with the vibrational characteristics of the considered structure.

The shapes of the piezoelectric transducers and their locations on the surface of
structure determine the sets of the vibrational mode components available by
changing the gains of the feedback loops in a specified, limited range of values.
Therefore, in the considered cases of the external excitation forces and the boundary
and acoustic conditions the control performance is strongly affected by the
parameters and distribution of sensor/actuator pairs. Due to the fact that the piezo-
transducers are permanently bound to the surfaces of the controlled structures and
their locations have to be chosen at the stage of the control system design, it is
necessary to analyze in advance their parameters and probable control strategies.

2.2. Piezoelectric sensors and actuators
The behavior of piezoelectric transducers is governed by the constitutive equations
which include coupling between mechanical and electrical phenomena. Assuming
that the summation convention is used (i.e., the summation is carried out over the
repeating indices i, j, k, l = 1, 2, 3) these equations can be presented as follows, for
example, in the so-called stress-charge form:

Tij = cijklSkl – ekijEk, (5) 

Dk = ekijSij + εkiEi
, (6)

where is the second-order stress tensor, is the second-order strain

tensor, is the fourth-order elasticity tensor, is the third-order tensor

of piezoelectric coefficients (for the so-called stress-charge form), is the

electric displacement vector, is the electric field vector, and is the

second-order tensor of dielectric constants.

It is assumed that a sensor electrode covers the whole relevant surface S of the
transducer and that the polarization of the material is constant. The electric charge
which appears on the electrodes of a piezoelectric sensor fixed to the surface of a
vibrating thin plate or beam structure is computed as follows

(7)Q D n dS D dSi iS S
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where ni are the components of the unit vector normal to the surface of structure and
at the same time identical with the direction of polarization of the piezoelectric
sensor (n1 = n2 = 0, n3 = 1 in Figure 1), while – in the absence of external electric
field, and assuming that the piezoelectric transducers are made up of transversely-
isotropic piezo-ceramics (which involves that: e311 = e322 which now will be
denoted by e3, whereas e312 = e321 = 0) – the relevant component of the dielectric
displacement vector (6) (having also noticed that S33

_ 0) reads

(8)

It is assumed that (because of a very good bonding) the in-plane deformation of
piezoelectric element is consistent with the deformation of the underlying structure,
thus, the relevant components depend on the corresponding curvatures and the
distance between the mid-planes of the piezo-element and the structure, namely:

(9)

Here, hp and hs are the thickness of the piezo-element and the structure,
respectively. Obviously, in the case of beam structures S22 = 0. Now, the electric
charge induced on the shunted piezoelectric sensor attached to the surface of the
plate structure can be expressed as follows

(10)

We would like to obtain the sensitivity function of piezoelectric sensor to specific
structural modes. To this end, we first compute the amplitude of the electric charge
induced on a transducer by substituting the time-harmonic form (1) into equation
(10) to obtain:

(11)

Here, Q~ denotes the amplitude of the harmonically varied sensor charge.
It is assumed that the piezoelectric sensors are connected to the charge-to-voltage

transducers circuits. Hence, the resulting voltage signal which is fed to the active
control system is proportional to the charge given by equation (11), and so the desired

sensitivity function S~m of a sensor to the structural mode m can be

defined as follows:

(13)

where Q~m is the electric charge amplitude induced by the mode m, and R is the

gain of the signal conditioning circuit attached to the piezoelectric transducer.
The external loading introduced by the rectangle-shaped piezoelectric actuator

situated in such a way that its edges are in parallel with the relevant axes of the
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global coordinate system (see Figure 1) can be approximated by linear (i.e., per
length) moments acting along these edges. The excitation function can be then
expressed as follows [1]:

(13)

where δ′(·) is the derivative of the Dirac delta function, H(·) is the Heaviside step
function, E is the Young’s modulus of the structure, Kf is the material-geometric
constant dependent of material properties of the piezo-ceramics and type of actuator
(symmetric or antisymmetric) [1] and sa is the strain of the actuator (the same in the
x- and y-direction, because of the transversal-isotropy in the xy-plane) caused by the
applied driving voltage V which generates within the piezo-element a uniform
electric field in the z-direction, E3 = V/hp, therefore:

(14)

where d3 is the relevant piezoelectric material constant (d3 � d311 = d322 from the
strain-charge form of piezoelectric constitutive relation). The effects of added mass
and stiffness introduced by the actuator as well as a longitudinal strain of the
structure (resulting from the transverse asymmetry of the actuator) are neglected in
the present considerations.

While considering response of a structure to an external harmonic excitation, it
is very convenient to perform the decomposition of the loading force into the
eigenmodes of the structure. Due to the orthogonality property of the mode shape
functions Φn, the amplitude of mode number m excited by the external force FS can
be expressed as:

(15)

where ρs is the density of the structure and ωm is the eigenfrequency of the
considered mode m. To compute the modal decomposition coefficients of the
excitation introduced by the actuator driven with the harmonic voltage V relations
(13) and (14) are used for equation (15) and yield the following result:

(16)

We now introduce the actuator selectivity function to the structural mode m,
defined as:

(17)

The selectivity of a piezo-actuator to the structural mode m describes the
amplitude of mode m excited by the actuator driven with a harmonic signal of unit
voltage amplitude with angular frequency ω (in absence of other excitation forces).
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It should be pointed out that – in contrast to the modal sensitivity function of a
piezo-sensor, defined previously – the modal selectivity is a function of the
frequency of driving signal and strongly depends on the difference between this
frequency and the eigenfrequency of mode m. The singularity in equation (16)
occurring in case when ωm = ω results obviously from the assumptions of negligible
damping and linearity of the system, which are not valid for large amplitude
vibrations. When the equations (16) and (17) are compared with the relation
defining the sensor sensitivity function (12) an important remark should be made,
namely: the surface integrals are the same and depend only on the transducer’s
coordinates (x1, y1) and (x2 , y2). This means that the efficiency of a piezoelectric
transducer with respect to a particular structural vibration mode is similar both for
the mode sensing or actuating. It will be shown below that these conclusions –
which result from the reciprocal principle regarding the direct and inverse
piezoelectric effects – are of a great importance for the process of development of
the active control system.

2.3. Active vibroacoustic control
The pairs of piezoelectric sensors and actuators are connected in feedback loops via
amplifiers with adjustable gains –G, where 0 � G � Gmax and Gmax is the maximum
available gain value. Through the operation of the control system the parameters of
vibrations of the structure are modified. The amplitudes of vibrational modes can be
linked with the distribution of the acoustic pressure by utilization of separate
acoustic analysis and equations (2)-(4). Depending on the chosen objective function
different gain values may be optimal. Equations describing general relations
between modal amplitudes and the parameters of the control system are derived and
presented below.

In the first step a simplified active control system with a single feedback-loop is
analyzed. It is assumed that the considered electro-mechanical system is linear.
There are two sources of vibrations. The primary source is an external disturbance
described with spatial force distribution FS (x, y), acting with angular frequency ω.
The modal amplitudes of the vibrating structure excited by the external force itself
– i.e. in the absence of the forces introduced by the control system – can be
computed using the equation (15):

(18)

The other source of vibrations of excited in the structure is the influence of the
actuator (to be used for active control). Modal decomposition of the introduced
loading is given by equation (16). The driving, harmonic voltage V is equal:

(19)

where S̃n is the sensor sensitivity (12).
Due to the assumption of system linearity the transverse vibrations of the

structure may be written as a sum of the responses to both mentioned excitation
sources:
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After using the orthogonality property of the modal shape functions and some
transformations, the following relation for resulting amplitude of structural mode a
is eventually obtained:

(21)

Equation (21) implies some important remarks that should be taken into account
while developing the active vibroacoustic control system. First part of the right-
hand

side of the equation represents the well-known relation describing the

resultant gain of the closed-loop feedback controller. If we would be able to create
a single-mode in-phase sensor/actuator pair, the system would remain
unconditionally stable and the amplitude of the selected mode reaches zero as the
feedback gain reaches infinity. Method of creating modal sensors/actuators has been
described by Lee and Moon [2]. However, the practical implementation of such
transducers is limited to simple one-dimensional beam structures and only to few
lowest-order structural modes. Another important disadvantage of single-mode
sensors/actuators is the fact, that we would need one separate pair of transducers for
every mode we would like to control, which would lead to very complex, multi-
layered structure.

Another remark, that can be concluded from equation 21 is that one of the
conditions of the stability of the active control system is GS̃aÃa � –1 for every
mode number a in the whole considered frequency range. The sensor should also be
sensitive to the structural modes excited by the corresponding actuator. To provide
the described features the collocated sensor/actuator pairs can be used. There are
two ways of implementing this solution. First, we can use a single piezoelectric
transducer, working simultaneously as a sensor and an actuator. Second method
requires two piezoelectric elements, mounted symmetrically on the both sides of the
controlled structure. The examples of implementations of the first method have been
described i.e. by Dosch [12], Anderson and Hagood [11] and Vipperman [13, 14].
One of the main disadvantages of this solution is the presence of the high actuator
driving signal and the low sensing signal simultaneously at the input of the signal
conditioning circuit. This implies the requirement of very high range of linear
operation of the first stage of the amplifier. The second described solution is much
less complicated and commonly used, but it requires the access to the both sides of
the structure, which may not always be possible.

Next, the more general case of an active control system with a number of K
independent control loops, consisting of sensor/actuator pairs and feedback
amplifiers of gain Gk, where k ∈ 〈1; K〉 is the number of a control loop, is
considered. To compute the modal amplitudes of vibrations of a plate structure with
such system attached we have to modify equation 21 and - upholding the
assumption of linearity - include influence of all of the control loops:

(22)

where Ãka is the selectivity function of actuator k to mode a (see equation (17)) and
S̃kn is the sensitivity function of sensor k to mode n (see equation (12)). The
equation (22) reveals the complex relation between all of the control loops acting
each on each other, coupled via all of the considered vibrational modes. However,
the conclusion that the collocation of the single sensor/actuator pairs guarantees the
stability of the considered system is still valid. The detailed analysis of
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dependencies between modal amplitudes and feedback gain values is complex and
fall beyond the scope of the paper, as it would require separate, extensive
description – however, with one exception. In case when excitation frequency is
equal to one of the eigenfrequencies of the considered structures then – if damping
is low – the equations (21)-(22) can be trivialized to describe only one,
corresponding form of vibrations. The derived formulas are thus simplified to well-
known relations describing simple closed-loop feedback system. The amplitude of
vibrations is monotonic function of every single feedback gain Gk. The higher are
the relevant modal sensitivity and selectivity values of involved sensor/actuator
pairs, the higher reduction of vibrations (and generated sound pressure) can be
obtained. It should be emphasized, that this conclusion has significant practical
implications as many real-world structures reveal problems with high noise
emission or level of vibrations only when excited at one of their eigenfrequencies.
The presented approach allow in such case for fast and simple computation of the
control performance, based on the simplified forms of equations (21)-(22).

3. NUMERICAL AND EXPERIMENTAL INVESTIGATIONS
Modal sensitivity/selectivity functions of small, rectangle-shaped piezoelectric
transducers attached to the surfaces of beam, plate and panelled structures are
investigated in this section. The solutions obtained using analytical formulas and
numerical simulations are compared to the results of experiments.

The numerical finite-element analyses were used to solve eigen-problems of
investigated plate and panelled structures, however, it must be emphasized here that
in the proposed line of investigation only eigenmode shapes were of interest since
the paper subject is the modal sensitivity and selectivity. Thus, the mass and
stiffness properties of structures were not important when caring out these analyses,
and in case of composite structures very approximative values could be taken. Such
approach, however, requires that the investigated plate and beam composite
structures can be considered as macroscopically homogeneous and macroscopically
isotropic (in their planes), so that the mode shapes should be the same whatever are
the stiffness and mass density, and they depend only on the structure geometry and
conditions of support. This entails also that the effect of small piezoelectric patches
fixed to their faces can be neglected. However, this latter assumption – important
also for aluminium structures and usually valid at lower frequencies – is rather
standard and should be also valid in case of stiffer composites.

The assumption of in-plane isotropy may at first appear as disputable in case
of composites, however, one should notice that although the carbon-fibers for the
composite plate faces were woven in an orthogonal pattern (see Figure 3), exactly
the same fibers were used in both mutually perpendicular directions, and that
results in the so-called structural isotropy (in plane) of both faces. In other words,
the carbon fabric is a plain weave and thus isotropic in the plane of the weave. The
honeycomb core is also isotropic in the plane of the cell pattern under three
loading mechanisms as explained in [31], since it is formed from cells of regular
hexagons.

Nevertheless, the final confirmation of the validity of both assumptions of
macroscopic homogeneity and isotropy is confirmed by the results of the proposed
approach which compares and utilises in conjunction numerical and experimental
investigations.

3.1. Beam structures
Due to the undertaken assumptions the classical Euler-Bernoulli thin beam theory is
used to describe the vibrational motion of the considered beam structures. Under
such conditions the vibration mode shapes can be computed analytically, as the sum
of harmonic and hyperbolic functions, with coefficients depending on the boundary
conditions [28]. Basing on such a formula, the modal sensitivity function was
computed for a piezoelectric sensor (of known dimensions) attached to the clamped
beam structure. Some results of these computations, obtained for a 3 cm long piezo-
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element on a 58 cm long beam (with one end clamped and the other free) are shown
in Figure 2. According to the considerations discussed in section 2.2, piezoelectric
sensors and actuators are bounded with reciprocal relation, which implies that the
sensitivity and ability of exciting specific structural modes depend only on the
location of the transducer on the surface of structure.

The presented results were used for positioning piezoelectric transducers on thin
beams made of aluminium and glass-fiber, which were examined during further
experimental research. For homogeneous beams the modal shape functions do not
depend on the material; they are the same for every thin beam of the same length
and boundary conditions and the material properties affect only the
eigenfrequencies. In the presented case, the piezo-element location that allows to
sense or excite every mode is close to the clamped end of the beam. The transducers
may be positioned such that they will not respond or induce some specific structural
modes, but they still will be sensitive to most of the modes in the considered low-
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Figure 2: Normalized sensitivity functions for the rectangle-shaped piezoelectric sensor attached to a cantilevered
beam of length 58 cm as a function of the structural mode number and the distance of the sensor
from the clamped end of the beam.
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Figure 3: Three thin aluminium beams fixed to an experimental stand (left); a glass-fiber composite beam and a
sandwich panel made up from the carbon-fiber composite liners with the Nomex-honeycomb core
(right) used in experimental investigations.



frequency range.
The experimental investigations were performed using 1 mm thick, 28 cm long

and 2 cm wide aluminium beams and a single glass-fiber composite beam 58 cm
long, 3 cm wide and 2.3 mm thick. The piezo-elements were made of Pz29
piezoceramics and were 2 cm wide, 3 cm long, and 0.3 mm thick. The values of
important relevant parameters of the utilized piezoceramic material are as follows:

d3 = 5, . The beam structures that were used in experimental

investigations are shown in Figure 3.
Experimental examination of the vibrations of beam structures revealed an

excellent agreement with the theoretical predictions. The vibrations were excited by
a single piezoelectric actuator positioned close to the clamped end of beam, while
the other piezo-elements, fixed at different distances along the beam, were used as
sensors. The electrodes of the sensors were connected to a charge-to-voltage
converters. It is worth to notice that for aluminium beams – for which the material
constants are known – the predicted and measured first three eigenfrequencies of the
bending modes (i.e. all eigenfrequencies of the bending modes in the considered
low-frequency range below 400 Hz) at 11, 65 and 185 Hz agreed with an accuracy
better than 1 Hz. That observation justifies the assumption to neglect the stiffness
and mass influence of the attached piezoelectric elements to the vibration
characteristics of beam structures.

In case of the beam made of glass-fiber composite, no material constants were
known. Two rectangle-shaped piezoelements were attached to the surface of the
structure: the first one – fixed 4 cm from the clamped end – served as actuator
simulating external source of vibrations. The second transducer was located 29 cm
from the clamped end and it was used as sensor. Due to the numerical simulations,
the sensor should be insensitive to the structural modes No. 3 and 5. The resonant
frequencies were found experimentally and the mode shapes were identified using
a laser vibrometer. The results are presented in Table 1; the modes No. 3 and 5 were
not sensed by the sensor which agrees with the theoretical predictions.

If a thin beam (of length L and the rectangular cross-section of height hs) is
elastic, isotropic and homo- geneous - or can be approximately treated as such - its
eigenfrequencies can be calculated using the following formula [28]:

(23)

where is the velocity of plane wave in the (supposedly elastic and

isotropic) material of the beam (Eb and pb are the Young's modulus of the material
and its density, respectively) and βn is the coefficient dependent on the boundary
conditions and the mode number [28]. Equation (23) and the results of
measurements given in Table 1 were used to estimate the ("effective", average)
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Table 1.
Measured resonant frequencies and the corresponding parameters of structural mode shapes for the glass-fiber

composite beam

Number of nodes in the mode
Frequency [Hz] shape function Identified mode number

95.8 3 4

235.5 5 6

318.6 6 7

448.5 7 8

562.1 8 9



speed of sound for the composite material of which the examined beam was made.
The mean value found using the measured eigenfrequencies listed in Table 1 was
2553 m/s. Then, this value was used in equation (23) with the coefficient β2

2 =
22,034 [28] appropriate for the 2nd mode (not used in the previous calculations) to
estimate the eigenfrequency of this mode. The computed result of 17.7 Hz agrees
well with the resonant frequency of 18.2 Hz measured for this mode.

The presented results clearly conclude that in case of thin beams made from
different materials the ability of sensing or exciting specific forms of vibrations with
small, rectangle shaped piezoelectric transducers can be accurately determined with
simple analytical formulas. The optimal locations of sensors and actuators should be
chosen in order to maximize (or minimize) the modal sensitivity and selectivity
values for modes most significant in considered cases. However, as it can be seen
from figure 2, such transducers will always be sensitive to most of the forms of
vibrations. This conclusion is especially important when considering off-resonant
vibrations with many modal components involved, as it has been described in
section 2.3. 

3.2. Plate and panelled structures
The modal sensitivity and selectivity functions (12) and (17) of small rectangle-
shaped piezoelectric transducers attached to the surfaces of plate or sandwich-panel
structures are investigated in this section. In general, for arbitrary (non-
homogeneous) boundary conditions of support, the rectangle plate mode-shape
functions Φn cannot be found analytically. Therefore, the finite element analysis was
applied to determine the eigenfrequencies and the corresponding eigenvectors of the
investigated structures. Experimental investigations were carried out on the
sandwich composite panel made up of two carbon-fiber faces and a Nomex-
honeycomb core (see Figure 3) and a thin aluminium plate (see Figure 5). The
aluminium plate was 300 mm long, 200 mm wide and 1 mm thick, while the
sandwich plate was 402 mm long, 272 mm wide and 5 mm thick. The structures
were clamped by a part of their shorter edges and all the other edges were free.

Eight 0.3 mm-thick rectangle-shaped piezoelectric transducers with dimensions
20 mm x 30 mm were attached to one face of the sandwich panel. Three of them
were fixed close to the clamped boundary and served as actuators which simulated
the external excitation sources. The other five acted as sensors. In case of the
aluminium plate, five pairs of such piezotransducers were used. In each pair, the two
piezotransducers were attached symmetrically to both sides of the plate, with
polarization and wires connected in that way so that an asymmetric bimporh
actuator/sensor was formed. From five pairs one served as the source of the
excitation force while the others were used as sensors.

The COMSOL Multiphysics software was used for numerical simulations. Two
different models of the considered structures were developed and compared: a
simple two-dimensional thin plate model and a three dimensional model of plate
with five pairs of asymmetrically-attached piezoelectric sensors/actuators. In the
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Figure 4: Results of the numerical simulations: the shape of an exemplary vibrational mode of the considered plate
structure made of aluminium (left) and the corresponding distribution of the induced electric
charge induced on the theoretical point-sensors made of the considered piezoceramics (right).



second case the transducers were assumed to be made of transversally isotropic
piezoceramics, for which the material parameters were taken from the
manufacturer's data catalog. The main reason for using two different models was to
investigate the influence of the added mass and stiffness introduced by the
transducers on the vibrational characteristics of the considered structures. The
comparision between the obtained results indicates that – in the considered low-
frequency range - including the comparatively small transducers in the simulations
had no significant effect, neither on the shape functions of the eigenmodes, nor on
the eigenfrequencies. The experimental investigations revealed that the mode
shapes - determined using the laser vibrometer - were exactly as predicted, but the
measured eigenfrequencies were not that consistent with the simulations. The
results are presented in Table 2. 

The modal sensitivity functions of the piezoelectric sensors attached to the
considered structures were investigated numerically and experimentally. The
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Figure 5: Thin aluminium plate with attached piezoelectric transducers in laboratory stands used in experimental
investigations.

Table 2.
Resonant frequencies determined numerically (using the 2D plate model and the 3D structure model with

piezoelements) and experimentally, and the corresponding mode shapes

Eigenrequency [Hz]
2D plate model 3D model Measured Mode shape

8 8.1 7.1

24.6 25 27.1

50.3 50.5 51.7

82.8 83.1 90.1

127.2 129.2 123.5

144.9 143.4 155.1

160.2 163.5 172.4

199 199 183



normalized absolute values of the obtained results for the first several vibration
modes are given in Tables 3 and 4 for the sandwich plate, and in Tables 5 and 6 for
the aluminium plate. The value 1 in a cell of the Table indicates that the specific
transducer is the most sensitive to the specific mode of all the piezo-elements (thus,
the sensitivities are relative with respect to the result of the “best” sensor), while the
value 0 indicates that it is not sensitive to this mode at all.

The locations of the piezo-elements were chosen based on the results of the
numerical simulations, described in the previous section. The exemplary results are
presented in figure 4. To determine the modal sensitivity or selectivity values the
computed charge should be integrated over the desired surface corresponding to chosen
transducer location. The purpose was to ensure negligible or high sensitivity to the
selected structural modes. Once again, it can be seen that a relatively small, rectangle-
shaped piezo-element can be placed in locations that ensure very high or, in other case,
negligible sensitivity to one or two selected structural modes, but that the transducer
will also respond to most of the other modes in the considered low-frequency range.

The comparision of the results given in Tables 5-6 reveals that the experimental
and numerical results are in general similar, though some significant discrepancies
between predicted and measured values are observed too. For example, in case of
the sandwich structure the sensors 3 and 5 were in fact sources of the electric signal
at the all considered resonant frequencies, although their locations were deliberately
chosen in such way that the transducers should be – theoretically – insensitive or
almost insensitive to some selected modes. As a matter of fact, none of the
sensitivity values in Table 4 is close to zero. It seems obvious that one of the most
important reasons for the observed discrepancies between the measured and
simulated results is that damping was completely neglected in numerical
simulations and thus only one vibrational mode was considered, whereas due to
damping effects present in the real structure the amplitudes of non-resonant modes
compared to the amplitude of the considered resonant mode usually had non-
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Table 3.
Values of the normalized sensitivity function of piezoelectric sensors attached to the sandwich panel obtained from

the numerical simulations

Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

1 1 0.678 0.468 0.28 0.055

2 0.008 0.329 0.01 1 0

3 0.317 0.846 1 0.969 0.28

4 0.001 1 0.09 0.29 0

5 0.6 0.105 1 0.72 0.68

Table 4.
Values of the normalized sensitivity function of piezoelectric sensors attached to the sandwich panel obtained from

the experimental investigations

Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

1 1 0.5 0.634 0.2 0.062

2 0.089 0.523 0.178 1 0.103

3 0.662 0.625 1 0.6 0.185

4 0.465 0.922 1 0.52 0.367

5 0.052 0.091 0.973 1 0.445



negligible values and had to be taken into account.
The results are in general more consistent between the numerical predictions

and the experiments for the aluminium plate. For some vibrational modes of this
structure – see, for example the mode No. 8 in Tables 5 and 6 – the results are in
fact almost exact. The main reason for this better agreement is obviously the
exactness in modelling the material for the isotropic aluminium plate, and also a
seemingly lower structural damping than in the case of the sandwich plate; a better
adhesion of the transducers to the surfaces of the aluminium plate might also have
its effect. The methods of mounting the piezoelements to the considered structures
were different due to a need to ensure the electrical contact to the both electrodes
of a transducer – including the ‘bottom’ electrode that is the one in contact with the
plate. In case of electrically conductive aluminium the plate was used as the
common ground so that the whole bottom side of a transducer could be thoroughly
and fully glued to the plate with a conductive glue; in case when the piezoelements
were attached to the sandwich plate additional electric wires had to be glued to the
‘bottom’ electrodes making the attachment no so complete.

4. CONCLUSIONS
The relation between the placements of piezoelectric transducers on the surfaces
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Table 5.
Values of the normalized sensitivity function of piezoelectric sensors attached to the aluminium plate obtained from

the numerical simulations

Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4

1 1 0.34 0.9 0.03

2 0.29 0.6 0.07 1

3 0.24 1 0.68 0.22

4 1 0.3 0.02 0.88

5 0.25 1 0.22 0.37

6 0.56 0.65 1 0.34

7 0.52 1 0.02 0.09

8 0.56 0.34 1 0.16

Table 6.
Values of the normalized sensitivity function of piezoelectric sensors attached to the aluminium plate obtained from

the experimental investigations

Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4

1 1 0.42 0.91 0.08

2 0.17 0.99 0.55 1

3 0.4 1 0.68 0.33

4 1 0.19 0.05 0.75

5 0.1 1 0.4 0.27

6 0.69 0.14 1 0.42

7 0.34 1 0.1 0.05

8 0.56 0.34 1 0.2



of beam, plate and panelled structures and the capability of sensing or exciting
specific vibration modes were investigated using new, proposed form of
description of the active vibroacoustic control system with multiple independent
feedback loops. It has been shown that relatively small, rectangle-shaped piezo-
elements will be sensitive enough to most of the forms of vibrations in the
considered low-frequency range.

The radiation efficiency of various structural modes may differ significantly one
from another, however, in the process of developing an active vibroacoustic control
system, all of the forms of vibrations should be taken into account due to the
complex, multimodal interaction in the closed feedback loop.

Due to the fact, that the amplitude of the excited mode is inversely proportional
to the difference of the squared values of the corresponding eigenfrequency and
excitation frequency, the number of considered modes can be significantly reduced
in case of harmonic vibrations. This dependence can be used to limit the number of
piezoelectric sensors necessary in adaptive control systems to determine the
parameters of the external loading.

The best agreement between the numerical simulations and experimental
investigations was obtained for the beam structures. Both, the eigenfrequencies and
the structural mode shapes were predicted precisely and the behavior of the
piezoelectric transducers attached to the surfaces of the considered structures was
like expected. In case of the plate and the sandwich panel some discrepancies
between the theoretical predictions and the results of measurements were observed
– mainly due to some damping effects neglected in the modelling and some
inaccuracy in estimating the effective material data for the sandwich plate.
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