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Abstract

The paper proposes and investigates computationally-efficient microstructure representations for sound absorbing fibrous me-
dia. Three-dimensional volume elements involving non-trivial periodic arrangements of straight fibres are examined as well as
simple two-dimensional cells. It has been found that a simple 2D quasi-representative cell can provide similar predictions as a
volume element which is in general much more geometrically accurate for typical fibrous materials. The multiscale modelling
allowed to determine the effective speeds and damping of acoustic waves propagating in such media, which brings up a discussion
on the correlation between the speed, penetration range and attenuation of sound waves. Original experiments on manufactured
copper-wire samples are presented and the microstructure-based calculations of acoustic absorption are compared with the cor-
responding experimental results. In fact, the comparison suggested the microstructure modifications leading to representations
with non-uniformly distributed fibres.
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Highlights:

• Periodic 3D and 2D representations for sound absorbing fibrous media are proposed.

• Fibrous samples are manufactured and used to validate modelling.

• An agreement between 3D and 2D representations is demonstrated.

• A change in absorption due to a modification of fibre cross-section is predicted.
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1. Introduction

Sound propagation and absorption in air-saturated porous media with sufficiently stiff frame can be predicted using the so-
called Johnson-Champoux-Allard (JCA) model [1–3] or its enhanced versions involving some improvements concerning viscous
dissipation [4] and thermal effects [5–7]. Namely, Pride et al. [4] proposed a correction for the imaginary part of dynamic
viscous permeability which is underestimated at low frequencies by the original Johnson-Koplik-Dashen model [2], whereas
corrections for thermal effects involved introduction of a static thermal tortuosity [5] and a thermal analogue of permeability [6].
Finally, what resulted are precise semi-phenomenological models with rather large number of parameters, involving in the most
advanced case: the open porosity, the (inertial) tortuosity, the static viscous permeability and its thermal analogue, the viscous
and thermal characteristic lengths, and the static viscous and thermal tortuosities. Simpler phenomenological models do exist,
in particular, the purely empirical models by Delany and Bazley [8] with important corrections and generalizations by Miki,
namely: a correction for low frequencies [9], and a generalisation introducing porosity and tortuosity [10]. They are valid for
some fibrous absorbent materials of very high porosity (originally they were proposed and validated for fibrous materials with
porosity close to unity). The main material parameter is here the flow resistivity of fibrous material. More recently, an improved
empirical model for fibrous materials was proposed by Voronina [11]. In general, more complex, general models (especially,
the mentioned JCA model or its enhanced versions) are less restrictive, yet they involve many parameters related to the average
geometry of porous or fibrous media. These parameters (usually referred to as transport parameters) can be in fact determined
from microstructure of a porous (or fibrous) medium, and it seems that soon such microstructure-based approach should allow
to design and optimise novel acoustic materials. Improvements in robust passive acoustic treatments are possible, although an
active approach has been proposed [12].

Realistic microstructure-based calculations become now an important tool for prediction of attenuating performance of sound
absorbing porous and fibrous media. Such an approach has been recently applied to various porous materials, namely: to open-
cell aluminum foams [13, 14], to perforated closed-cell metallic foams [15], to open-cell foams with microstructure represented
by idealised packing of polyhedral periodic unit cells [16], to a fibrous material with hexagonal arrangement of fibres [17], to
open-porosity ceramics [18] and other open-cell foams with spherical pores [19], to polyurethane foams in order to optimise their
low frequency sound absorption by cell size control [20], to granular media with face-centred cubic packing [21] and also other
packings of spherical grains [22, 23], to granular media with double porosity [24], and to double porosity foams [25]. Moreover,
various microstructure-based analyses have been also applied when studying wave propagation in poroelastic materials [26–29].

Nevertheless, the accuracy of such calculations strongly depends on a correct choice of representative micro-structural ge-
ometry of porous media, and that choice is constrained by some requirements, like: the periodicity, a relative simplicity of
micro-geometric representations, and the size of elementary volume (or cell) which should be small enough to allow for the
separation of scales [30].

One of important transport parameters is the static viscous permeability, and in particular, a dynamic generalisation of this
parameter: the frequency-dependent and complex-valued dynamic permeability [2]. It was investigated by Johnson et al. [2], and
also, for example, by Cortis and Berryman [31] in case of frequency-dependent viscous flow in channels with rough surfaces.
The real part of this frequency-dependent function of dynamic permeability converges to the value of static permeability when
the frequency tends to zero. Thus, the parameter of Darcy permeability forms a low-frequency limit of its dynamic generalisation,
and therefore, it is used as an important reference parameter in the analytical approximating formulas for the dynamic permeabil-
ity [1, 2]. Microstructural influences on the permeability of fibrous media have been studied by many authors, for example: for
media with uni- and bi-modal fibre size distribution [32, 33], in case of 2D periodic fibrous representations [34], and using 3D
imaging coupled with CFD simulations [35]. The role of microstructural parameters in radiative heat transfer through disordered
fibrous media was investigated by Tahir et al. [36]. Koponen et al. [37, 38] used the lattice-Boltzmann methods to study the in-
terdependence of permeability, tortuosity, and porosity of random fibrous media. They confirmed that permeability exponentially
depends on porosity over a large range of porosity, and proposed a modification of the Kozeny-Carman equation for permeability
by involving the concept of effective porosity. Tomadakis and Robertson [39] compared diffusional and electrical estimates of
viscous permeability and tortuosity of random fibre structures with analytical formulas and experimental results.

The acoustic attenuation of sound absorbing fibrous materials strongly depends on the dynamic resistivity to an oscillating air
flow, which is directly related to the dynamic permeability. This matter was studied by Tarnow [40], who calculated the dynamic
resistance for a 2D model of randomly placed cylinders (discs) with geometry simulating the geometry of a real fibrous material.
Earlier, the same author [41] investigated the dynamic compressibility of air in fibrous materials, which was determined for 2D
models with parallel cylinders: placed in a regular square lattice and placed randomly. Tarnow carried out also experimental
investigations on the sound propagation in glass wool [42], and later in particular, he investigated the effect of fibre movements
on the sound attenuation in this material [43].

Schladitz et al. [44] presented a method of design for a stacked fibre non-woven acoustic trim based on geometric modelling
and flow simulations. The non-woven fabric was modelled by a macroscopically homogeneous random system of straight
cylinders (tubes). Such geometric model was generated from stochastic geometry (obtained using image acquisition) by adapting
the characteristic properties of the material (i.e., porosity, fibre size distribution). For the geometric model, the Stokes equations
were solved with no-slip boundary conditions on fibre surfaces using the generalized lattice Boltzmann method. Numerical
calculations allowed to determine the flow resistivity of the material, which was then used in the formulas of Delany–Bazley
model [8] improved for low frequencies by Mechel [45] to predict the frequency-dependent acoustic absorption (these final
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results were confronted with measurements). The authors proposed a design procedure for a non-woven material with improved
acoustic absorption properties as follows. First, the fibre thickness, porosity and anisotropy of the fibre system are modified.
Then, the flow and acoustic simulations are performed for the new geometric sample. These two steps are repeated for various
sets of parameters. Finally, the set of parameters for the geometric model leading to the best acoustic absorption is found.

Thermoacoustic properties of fibrous materials were studied by Jensen and Raspet [46]: they used computational fluid simu-
lations to test the proposed models for propagation in porous materials with an ambient temperature gradient. These authors also
used the lattice Boltzmann model for flow simulations and the geometric model used for the fibrous material was the same as the
one used by Schladitz et al. [44].

The effect of some physical parameters on sound absorption properties of natural fibre mixed non-woven composites was
studied experimentally by Küçük and Korkmaz [47]. Along with the sound absorption properties they measured thickness,
weight per unit area, and air permeability for samples of eight different non-woven composites including different fibre types
mixed with various ratios (for example, 70% of cotton and 30% of polyester fibres). They found in particular for such composites
that the increase in amount of fibre per unit area resulted in an increase in sound absorption of the material. (Of course, it is
within some reasonable limit of fibre amount, since on the other hand, too many fibres may eventually make the airflow resistivity
too large and degrade the sound absorption.)

Determination of a representative volume element of random fibrous media suitable for estimation of their acoustic properties
was studied by Peyrega and Jeulin [48, 49]. As a matter of fact, a random fibrous medium was modelled in this study in a fairly
simplified way, namely, in the form of infinite straight parallel fibres set along the surface plane normal to the acoustic waves
penetrating the medium. Thanks to this assumption, the medium could be represented as a periodic array of circular cylinders
(PACC), or in fact, as a two-dimensional array of circular discs. The authors generated numerous independent 2D realisations
of PACC composed of overlapping fibres in accordance with the Boolean model, as the result of the location of the centres of
discs, according to a random Poisson point process [50]. The work presents the results of numerical thermo-acoustic simulations
based on the 2D random representations of fibrous media (where the circular discs are allowed to overlap), although in the initial
part of work the curves of acoustic absorption computed using 2D PACC representations are compared with some available
measurements of a fibrous material (see Figure 4 in Ref.[48]).

The present work discusses the microstructure-based approach involving the visco-thermo-acoustic calculations for sound
absorbing fibrous media with respect to the important issue of Representative Volume Elements (RVEs). In particular, truly
3D and eventually also 2D representations for a fibrous material made up of a metal wire are proposed, studied and validated
experimentally. The paper is organised as follows. First, a methodology of manufacturing of fibrous samples from a copper
wire is described and the measurements of sound absorption for a few layers of such fibrous material of various thickness are
presented. Next, three-dimensional periodic arrangements of fibres are discussed and proposed as suitable for volume elements
of fibrous media. Combinations of these arrangements are then used to construct a couple of periodic volume elements and
the multi-scale analyses involving the relevant microstructure-based computations are carried out on these RVEs. Eventually,
also a two-dimensional representative cell is proposed and used for micro-structural calculations. The results of micro-structural
analyses serve to determine the effective speed of sound and effective density for fibrous media of the proposed micro-geometry
and to compute the acoustic wave velocity in such media. All this allows to calculate the acoustic absorption coefficient for
layers of various thickness and compare these results with the measurements obtained for the fibrous samples. In the final part
of paper, some additional numerical and experimental studies are discussed – to demonstrate and verify the correctness of the
proposed computationally economical approach based on quasi-representative two-dimensional cells for fibrous media. These
studies concern a fibrous material made up from oblate wire – manufactured from the round wire used previously, so that the
effect of cross-section change is clearly predicted.

2. Manufacturing and experimental testing of fibrous samples

Several fibrous samples were manufactured from a silver-plated copper wire of diameter 0.5 mm. The samples were manually
braided from 10 cm long pieces of wire and they were fitted into the impedance tube of diameter 29 mm (see Figure 1). In that
way the samples were shaped into cylinders. As a matter of fact, in the process of manufacturing each sample was being inserted
into the tube and taken out of it many times, so that some new wire fibres could be pierced and interwoven through the sample;
as a result lengthy parts of wires are straight and the samples are macroscopically homogeneous along their lengths and with
respect to their both ends, which was later confirmed in a way by experiments.

In particular, two fibrous samples were manufactured: one has a height of 30 mm and the other one is two times higher (see
Figure 2). The total length of wire used for the smaller sample is 10 m, and for the twice taller one it is 20 m, so that both samples
have the same porosity of 90%.

The samples were tested in the impedance tube using the two microphone transfer function method [51]. The acoustic
absorption coefficient was measured in the frequency range from 500 Hz to 6.4 kHz during 12 different experimental tests,
namely:

• 2 tests of the smaller sample set on the rigid termination in the tube: with one face (side) exposed to penetrating acoustic
waves, and then, the other way around;

• 2 similar tests of the larger sample;
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• 4 tests when both samples are put inside the tube – the larger sample directly behind the smaller one, so they form a double
layer with thickness 30 mm + 60 mm = 90 mm (4 tests were carried out to realize all possible face-to-face configurations);

• 4 similar tests (as above), but this time the smaller sample is set behind the larger one, and the total thickness is also
90 mm = 60 mm + 30 mm.

Acoustical measurements carried out on all manufactured fibrous samples in the impedance tube proved repeatability of the
proposed preparation technique. Figure 3 presents some of the experimental results for the fibrous samples with porosity 90%.

Figure 1: Manufacturing of a fibrous sample from 10 cm long pieces of copper wire with diameter 0.5 mm, and the sample inside the impedance tube
with diameter 29 mm

Figure 2: Two fibrous samples with porosity 90%, manufactured from the copper wire of diameter 0.5 mm; both samples are cylindrical in shape with
diameter 29 mm and heights: 30 mm or 60 mm
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Figure 3: Sound absorption measured in the impedance tube for the fibrous samples manufactured from the copper wire
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The absorption curves obtained for different side-configurations were always practically identical, and so only one representative
curve is plotted for each case. It proves that the technique of sample preparation is good, which is even more confirmed when the
comparison is made between the results obtained for two different double-layered cases: the sound absorption measured when
the small sample was in front of the large one is almost identical to the result when they were put the other way around! – both
curves are plotted in Figure 3 to show how small are the discrepancies. Thus, both samples – the small and the large one – have
not only the same porosity and fibre diameter but also statistically-identical geometry of microstructure.

3. Periodic arrangements of fibres

In this Section some simple (though, not trivial) fibrous arrangement will be proposed as a possible representation for the fibrous
geometry of wire samples. The proposition will be based on two facts concerning the technique used for sample preparations,
namely: (1) the samples were braided from long wires which were rather mildly bent; (2) many of them pierced through the whole
fibrous sample to be bent mildly around and pierce again inside. Therefore, there are two main assumptions consistent with these
facts: (1) locally, the fibres are straight; (2) the fibres pass through the volume element, that is, no fibre endings appear in the cell.
There is also an obvious requirement that the porosity of a fibrous representative cell must be equal to the porosity of fibrous
samples, which is 0.90. Accordingly, the thermal characteristic length, which is a generalisation of the hydraulic radius, will
also characterise the proposed simplified representations of microstructure. It is defined as the doubled volume of fluid domain
to the surface of (wetted) solid walls, and for the samples with porosity 0.90 and manufactured from round wire with diameter
0.5 mm, this value can be easily estimated as 2.27 mm, or in fact, a bit less than that value since the wire is in pieces and the
cut-wire endings increase slightly the wetted solid surface. Moreover, all representative volume elements or cells proposed in this
work satisfy the fundamental mathematical requirement that the arrangement of fibres in cells is periodic (although, symmetric
conditions could also be used).

(a) (b) (c)

(d) (e) (f)

Figure 4: Generic periodic arrangements of straight fibres in the representative cube: (a) three mutually-perpendicular fibres normal to the adequate
faces of the cube; (b, c, d, e) mutually-parallel fibres set obliquely to four faces of the cube and in the plane parallel to the remaining two faces; (f) an
example of periodic cube with six fibres, two of them oblique

Here, the periodicity of non-trivial arrangements of fibres in a cubic or cuboid cell will be discussed. Figure 4 shows some
periodic arrangements of fibres in a cubic (or cuboid) volume element on the viewing plane perpendicular to the direction of
propagation. The straight fibres normal to some of the cube faces (and consequently, parallel to the remaining faces) – as shown
in Figure 4(a) – can be added one by one to the volume element and the periodicity will always be maintained. This is not the
case of oblique fibres. For simplicity, only such oblique fibres are considered which are lying in planes normal to the direction
of propagation. For example, when a diagonal fibre is present, which passes through two corners of the cross-sectional square
as depicted in Figure 4(b), the complementing fibre pieces appear in two remaining corners. When a slanting fibre is added,
which passes through the middles of two neighboring egdes of the square cross-section, a similar piece of fibre must be put
symmetrically in the same plane to pass the opposite neighboring edges – such arrangement is shown in Figure 4(c). Adding an
oblique fibre such as any of three fibres presented in Figure 4(d) requires also the presence of the other two fibres, and when a
fibre is put like any of four fibre pieces shown in Figure 4(e) also the remaining three pieces must be added in order to satisfy the
periodicity of arrangement. A periodic arrangements of oblique fibres can be of course combined with fibres parallel (or normal)
to the volume element faces – a simple example with six fibres is given in Figure 4(f). However, more fibres in the representative
volume element (with some prescribed porosity) means that its relative size must be increased and the straight fibres become
longer (i.e., more slender) in order to preserve the assumed porosity, which is the most fundamental feature.

Figure 5 presents a cubic volume element which may be representative for the copper-wire fibrous material tested experimen-
tally. The proposed cubic RVE contains four straight fibres in a uniformly-spaced configuration: three of them are perpendicular
to the direction of propagation X , and one is parallel. Although, there is no full identity in arrangement between the X- and Y -
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(a) (b) (c)

Figure 5: Fibrous Representative Volume Element RVE-1 with a periodic arrangement of four regularly-spaced fibres and porosity 90%: (a) the X-
normal view of a single periodic cubic cell; (b) the X-normal view of a set of four periodic cubic cells; (c) an axonometric view of the periodic cubic
cell

or Z-direction, the uniform distribution of fibres should – in this case – set the macroscopic features of volume element close
to isotropy. (In fact, most of real fibrous media tend rather to be transversally isotropic, and this feature will be characteristic
for the other fibrous representations proposed further in this work.) The porosity of the fibrous volume element is exactly 90%
which conforms with the porosity of copper-wire samples. In the next sections the multiscale modelling will be applied in order
to check the degree of representativeness of this cubic volume element for the copper-wire fibrous material, and to eventually
propose some simple modifications which should allow to take into account some prominent features missing in this element.

4. Multiscale analyses based on various representations

4.1. Multiscale modelling of sound absorbing fibrous media

The fibrous material from a thick, and therefore, stiff copper wire can be modelled using the assumption of frame (fibre) rigidity
and motionlessness, which allows for the so-called fluid-equivalent approach. The effective density and bulk modulus for a
porous (fibrous) medium modelled as an equivalent fluid are complex and frequency-dependent functions, i.e., %e = %e(ω) and
Ke = Ke

(
Prω

)
, respectively, where ω is the angular frequency and Pr is the Prandtl number. According to the well-known

Johnson-Champoux-Allard (JCA) model they can be determined as follows [1]:

%e(ω) =
α(ω) %f

φ
, Ke

(
Prω

)
=

Kf

φβ
(
Prω

) , with β
(
Prω

)
= γf −

γf − 1

α′
(
Prω

) . (1)

Here, %f, Kf, γf, are the density, the adiabatic bulk modulus and the ratio of specific heats for pore-fluid (air), respectively,
whereas α(ω) and α′(Prω

)
are the so-called viscous and thermal dynamic tortuosity functions. They describe some resistive

effects of tortuous porous geometry to harmonically-driven viscous flow and thermal transport, respectively. Their meaning is
different and in fact they are derived in a different way. The viscous tortuosity function α(ω) depends on the kinematic viscosity
of pore-fluid (air). The thermal tortuosity function α′(Prω

)
depends on the thermal diffusivity, which is usually denoted as the

kinematic viscosity divided by the Prandtl number Pr.
Since both tortuosity functions are in fact essentially related to the porous (fibrous) geometry, they can be expressed with

semi-phenomenological formulas involving some transport parameters directly related to that geometry. Different variants of
the Johnson-Champoux-Allard (JCA) model [1–3] employ various numbers of such parameters. The most complex Johnson-
Champoux-Allard-Pride-Lafarge (JCAPL) model [1, 6] employs 8 transport parameters, namely: the open porosity φ, the (iner-
tial) tortuosity α∞, the (viscous) permeability k0 and its thermal analogue k′0, the viscous and thermal characteristic lengths Λ
and Λ′, respectively, and the viscous and thermal static tortuosities α0 and α′

0, respectively. In fact, in this model the formula for
α(ω) employs: φ, α∞, k0, Λ, and α0, whereas the formula for α′(ω) employs only: φ, k′0, Λ′, and α′

0.
The transport parameters can be found from a representative geometry of porous (fibrous) microstructure. The porosity φ is

directly obtained or known a priori as the most fundamental feature of any porous geometry. Also, the thermal characteristic
length Λ′ is determined directly from geometry as the doubled ratio of the fluid domain to the surface of solid frame (fibres)
in a representative cell. The viscous permeability k0 is calculated from the solution of the scaled Stokes problem of viscous
incompressible flow through a periodic representative cell (in the direction of wave propagation) with the no-slip boundary
conditions on the solid frame, i.e., on the fibres’ surfaces. As a result a scaled (to the dimension of permeability) field of velocity
is obtained, defined in the fluid domain; its averaging over the cell volume provides the viscous permeability parameter k0.
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Another averaging formula allows to calculate the static viscous tortuosity α0. Similarly, the thermal analogue of permeability k′0
and the static thermal tortuosity α′

0 are computed by averaging the solution of the scaled heat transfer problem in the fluid domain
of a periodic representative cell with the isothermal boundary conditions on the surface of solid frame (fibres) – which can be
considered as a thermostat having much higher thermal conductivity than the air. The scaling of the problem results in fact in
the Poisson’s equation and the solution is a field of temperature scaled to the dimension of permeability. Finally, the classic
parameter of (inertial) tortuosity α∞ and the viscous characteristic length Λ are calculated using averaging formulas applied to
the solution of the Laplace problem. This problem results from a high-frequency limit of viscous flow where it becomes formally
equivalent to the problem of electric conduction through a fibrous periodic cell filled with a conductive fluid and electrically-
insulating fibres [52]. In the following Sections, the transport parameters will be calculated (in the ways discussed here) for three
different periodic representations of fibrous microstructure with porosity 90% and fibre diameter 0.5 mm, namely: two volume
elements and a two-dimensional cell. Then, they will serve to determine the tortuosity functions, effective properties and overall
sound propagation and absorption for the investigated fibrous material. A similar hybrid (micro-macro) approach has been used,
for example, in Refs. [14, 17, 21–23].

4.2. Analyses using a cubic RVE

The cubic volume element RVE-1 with porosity 90% containing four uniformly-spaced fibres with diameter 0.5 mm (see Figure 5;
the propagation direction isX) was used to solve the periodic finite element analyses discussed above. The solutions – the scaled
velocity (or viscous permeability field), the scaled temperature (or thermal permeability field), and the scaled field of electric
potential – are shown in Figure 6. They were used by the appropriate averaging formulas to calculate the transport parameters
which are given for RVE-1 in Table 1. These transport parameters permitted to determine the effective density and bulk modulus,
and then, the effective speed of sound for a fibrous material represented on the micro-scale level by such a simple periodic
arrangement of four straight fibres. In Section 4.5, the acoustic absorption coefficient calculated for a few layers of such fibrous
material will be compared with the experimental results measured for the copper-wire samples to show that the proposed simple
fibre geometry is rather weakly representative for them; however, important and obvious similarities between the corresponding
computed and measured absorption curves encouraged some further developments as discussed below.

(a) scaled velocity field [m2] (b) scaled temperature field [m2]

(c) scaled electric potential field [m]

Figure 6: Solutions of microstructural problems in the fluid domain of the cubic fibrous representation RVE-1
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Table 1: Transport parameters for various representations of the half-millimeter-wire fibrous material with porosity 90%

Parameter Unit RVE-1 RVE-2 Cell-2D
viscous permeability, k0: [10-9m2] 116 73.9 48.7
thermal permeability, k′0: [10-9m2] 156 483 204
(inertial) tortuosity, α∞: [–] 1.07 1.10 1.12

viscous static tortuosity, α0: [–] 1.38 1.47 1.30
thermal static tortuosity, α′

0: [–] 1.17 1.56 1.20
viscous charact. length, Λ: [mm] 1.43 1.11 1.08

thermal charact. length, Λ′: [mm] 2.27 2.26 2.25

4.3. Analyses using an elongated cuboid RVE

The discrepancies – reported below in Section 4.5 – between the direct experimental measurements and the results calculated
from the cubic volume element RVE-1 with uniformly-spaced fibres, suggested that the fibres in a representative geometry should
be perhaps set more densely in order to improve the acoustic wave dissipation which was systematically underestimated in the
calculations. Such concentrations of fibres would modify the throat size which controls the viscous permeability and therefore
has a great impact on viscous effects. This conclusion was also supported by additional survey done to the actual microstructure
of wire samples: in fact, at a closer look some distinct groupings of wire fibres could be observed. On the other hand, a very
similar character of the corresponding measured and calculated absorption curves confirmed that the fundamental assumption of
locally straight fibres is admissible. Therefore, another fibrous volume element was proposed, which in a different way combines
the periodic arrangement of straight fibres discussed in Section 3. In this volume element most of fibres are grouped in a layer
formed across the direction of propagation (which entails some sort of anisotropy at the macro-scale level). In fact, the volume
element was elongated in that direction to form a periodic cuboid. It was constructed successively, by adding a few fibres at
a time (the cuboid was at the same time relatively enlarged to maintain the porosity of 90%), doing all multiscale calculations
and checking the final results with measurements. Such an approach gradually led to a better and better agreement between
the numerical and experimental results. Finally, the fibrous volume element RVE-2 presented in Figure 7 was attained. The
relevant problems were solved in the fluid domain meshed with finite elements as shown in Figure 7 and the solution fields are
shown in Figure 8. The corresponding values of transport parameters are listed in Table 1 for RVE-2. Before the results of wave
speed, damping and sound absorption are presented for this representative volume element in Section 4.5, another proposition of
microstructure representation in the form of a two-dimensional cell will be discussed.

Figure 7: Fibrous Representative Volume Element RVE-2 (and the corresponding finite element mesh) in the form of an elongated cuboid with fibres
grouped in a layer across the propagation direction X

4.4. Analyses using a two-dimensional representative rectangular cell

The (non-uniform) fibrous representation in the form of cuboid RVE-2 was developed in a rather uneconomic way and the vol-
ume element tends to be relatively large and it contains many relatively-long straight fragments of fibres. Therefore, a question
arises whether a simpler volume element (i.e, with less fibres) can provide results with at least similarly good agreement to the
measurements. It seems to be fairly possible, and in fact, it means that some optimized locally-representative arrangement of
fibres should be sought. As a matter of fact, the necessity to carry on some optimizing trials, which are computationally demand-
ing in 3D, leads to another question, namely: is it possible to find a two-dimensional representation which may be – to some
satisfactory degree – equivalent to three-dimensional representations? In fact, two-dimensional representations of compact and
open fluid domains found in fibrous materials can be constructed as arrangements of fibre cross-sections set in a two-dimensional
cell, however, formally, they would represent exactly only specific materials which have all straight fibres in parallel and across
the direction of propagation. Therefore, in the two-dimensional case one should rather speak about quasi representativeness.
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(a) scaled velocity field [m2] (b) scaled temperature field [m2]

(c) scaled electric potential field [m]

Figure 8: Solutions of microstructural problems in the fluid domain of the cuboid fibrous representation RVE-2

On the other hand, even three-dimensional representations are only statistically-equivalent periodic realizations of a typical local
geometry (which in reality, slightly varies in a whole fibrous medium and is not periodic). Anyway, it is always the case of
capturing important features of the microstructure geometry which are crucial for the overall macroscopic wave propagation and
damping.

A few concepts of a two-dimensional quasi-representative cell were tested (involving also elliptic cross-sections to simulate
slanted fibres), however, a very simple case will be presented here since already that one provided astonishingly good results.
The two-dimensional cell has a rectangular shape – it is longer in the direction of wave propagation. It has porosity of 90%
and contains only two fibres (i.e., two complete circular fibre cross-sections) set up rather closely in order to form an efficient

−→ X – the direction of propagation

Figure 9: Two-dimensional representation Cell-2D of fibrous material with porosity 90%, in the form of a periodic rectangular cell with two (complete)
fibres
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(a) scaled velocity field [m2] (b) scaled temperature field [m2]

(c) scaled electric potential field [m]

Figure 10: Solutions of microstructural problems in the fluid domain of the two-dimensional fibrous representation Cell-2D

fibre layer perpendicular to the direction of propagation (see Figure 9). In that way it is based on the assumption tested al-
ready in the cuboid volume element. The size of two-dimensional cell was set so that the diameter of fibre cross-sections was
0.5 mm, and the proportions of rectangle were optimized in order to get a better resemblance between the calculated acoustic
absorption curves and the experimental ones measured for wire samples. This is some kind of a fit on the data and the link
between microstructure and the macroscopic acoustical behaviour is somewhat lost. Moreover, the fibre concentration fit in this
simplified quasi-representative two-dimensional cell (where all fibres are in parallel) is somehow different from the fit in the
three-dimensional RVE-2. Figure 9 shows the final representative cell (Cell-2D) with the finite element mesh which was used in
the micro-structural finite element analyses; the obtained solutions – in the form of scaled fields – are shown in Figure 10. The
corresponding values of transport parameters are listed for Cell-2D in Table 1 and the results of calculations based on them are
discussed in Section 4.5.

4.5. Results of the multiscale modelling

The transport parameters calculated from various periodic representations of fibrous microstructure served to calculate the dy-
namic tortuosity functions, α(ω) and α′(ω), and then, the functions of effective density, %e(ω), and bulk modulus, Ke(ω) using
formulas (1); all this allowed to determine the effective speed of sound which is also a complex and frequency-dependent func-
tion:

ce(ω) =

√
Ke(ω)

%e(ω)
=

cf√
α(ω)β(ω)

, (2)

where cf =
√
Kf/%f is the speed of sound in pore-fluid (air). Now, the effective speed of sound can be used to calculate the

complex wavenumber in the following standard way:

kw(ω) =
ω

ce(ω)
=
ω

cf

√
α(ω)β(ω). (3)

The imaginary part of this frequency-dependent function is always negative (for ω > 0, and assuming that the convention +iωt
has been used for the time-harmonic ansatz, where i is the imaginary unit and t denotes time), and thus, the complex wavenumber
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may be decomposed into its real and imaginary parts as follows: kw(ω) = Re kw(ω) + i Im kw(ω) = ω/cw(ω)− idw(ω), where:

cw(ω) =
ω

Re kw(ω)
, dw(ω) = − Im kw(ω) (4)

are the real-valued (and positive for ω > 0) frequency-dependent functions of wave speed and damping, respectively. (Notice
that cw = cf/Re[

√
αβ] is not the same as Re ce = cf Re[1/

√
αβ].) These functions were calculated for three considered

microstructure representations discussed above, namely: RVE-1 – the cubic volume element, RVE-2 – the elongated cuboid
volume element, and Cell-2D – the rectangular two-dimensional cell. The results are presented in Figure 11 for the wave speed,
and in Figure 12 for the wave damping. The acoustic wave speed in air-saturated fibrous media is always slower than the speed
of sound in the air cf, however, for the considered fibrous material with very thick and loosely set fibres, it is more than 0.9cf
for frequencies higher than 1 kHz, and still more than 0.85cf for frequencies higher than 100 Hz; the acoustic waves below
100 Hz slow down dramatically. It is noticeable that the wave speeds calculated for the representations RVE-2 and Cell-2D are
almost identical in nearly the whole frequency range, already above 40 Hz, and they slightly though distinctly differ from the
result calculated for RVE-1. Also the wave damping calculations are similar for RVE-2 and Cell-2D at least above 500 Hz; one
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Figure 11: Acoustic wave speed (and its ratio to the speed of sound in the air) in the air-saturated fibrous material with porosity 90%, computed from
three different representations of its microstructure
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Figure 12: Wave damping in the fibrous material with porosity 90%, computed from three different representations of its microstructure
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Figure 13: Wavelength in the fibrous material with porosity 90%, computed from three different representations of its microstructure (and compared
with the wavelength of sound in the open air)

should notice that the logarithmic scale is used in Figure 12 to plot these characteristics. The wave damping computed from
the representation RVE-1 is significantly lower. These observations of similarities will be somehow confirmed below by the
calculations of sound absorption.

Figure 13 presents the wavelengths computed for the proposed representations of fibrous material: large differences between
the results can be observed only at extremely low frequencies. It is important to observe that for all representations the wavelength
at 6.4 kHz (the highest measurement frequency) is about 50 mm, which is 25 times larger than 2.0 mm – the size of Cell-2D, and
about 19 times larger than 2.6 mm – the size of RVE-1, and only 11 times larger than 4.5 mm – the size of RVE-2. This raises
a question about the scale separation at higher frequencies. The issue will be discussed further (in Sections 5 and 6), after
presenting the results for a fibrous material braided from oblate wire (see also a discussion on the matter in [53]).

The real-valued frequency-dependent acoustic absorption coefficient is calculated as follows [1]

A(ω) = 1− |R(ω)|2, R(ω) =
Z(ω)− Zf

Z(ω) + Zf
(5)

where Zf = %fcf is the characteristic impedance of pore-fluid (air), and

Z(ω) = −i%e(ω)ce(ω) cot

[
ωh

ce(ω)

]
= −i

Zf

φ

√
α(ω)

β(ω)
cot

[
ωh

cf

√
α(ω)β(ω)

]
(6)

is the complex frequency-dependent surface acoustic impedance of a sound absorbing layer of porous (fibrous) material with
open porosity φ and thickness h, set on the rigid wall. It was found by analytically solving the relevant Helmholtz problem of a
layer of equivalent fluid – with thickness h, the density %e(ω), and the speed of sound ce(ω) – set to the rigid wall and subject on
its free surface to a normal plane incident harmonic wave.

Figure 14 shows the acoustic absorption coefficient computed for fibrous layers with thickness (height) h = 30 mm, 60 mm,
and 90 mm, for each of the considered representations: RVE-1, RVE-2, and Cell-2D. The microstructure-based calculations are
also compared with some corresponding experimental curves measured for the copper-wire samples. The results of sound ab-
sorption obtained from the cubic volume element RVE-1, with fibres placed uniformly, are systematically underestimated with
respect to the measurements (see Figure 14). On the other hand, for each case of layer thickness, the character of the corre-
sponding numerical and experimental curves is in fact the same, which suggested only some modifications to the representative
geometry, based on some additional observations of wire samples. In fact, in real samples a fibre concentration is observed and
this feature must be somehow introduced in order to keep a link with the actual microstructure. This was achieved by grouping
fibres into a denser layer in the cuboid RVE-2; the same concept was also applied in the quasi-representative rectangular Cell-2D.
Both representations provided almost identical curves of the wave speed and damping as well as the acoustic absorption curves,
which suggests some 3D-2D representative equivalence for the studied fibrous material, that is, the features most crucial for
sound absorption can be captured using two-dimensional representations (as the one proposed in this paper) of the essentially
three-dimensional arrangement of fibrous medium. The sound absorption calculated for each layer is now on the same level
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Figure 14: Acoustic absorption of fibrous material with porosity 90%, fibre diameter 0.5 mm, and various thickness (i.e., the layer height), computed
from three different representations of fibrous microstructure, and compared with the corresponding experimental results measured for the copper-wire
samples

as the results measured for the corresponding wire samples (see Figure 14). The discrepancies are acceptable, although one
may observe a systematic shift in the maxima/minima of the computed absorption to slightly lower frequencies than the ones
manifested in the experimental results. A similar though a bit smaller shift is also observable in the RVE-1 calculations for
which the wave propagation is faster (see Figure 11). Undoubtedly, a dense layer of fibres in RVE-2 (or Cell-2D) slows down the
waves penetrating fibrous microstructures. However, the proposed arrangement of straight fibres in a volume element may still
be improved to allow for a little bit higher wave speeds with possibly the same level of damping.

5. Results for oblate wire

Numerical estimations and yet another experimental validation were performed in order to verify the correctness of the proposed
computationally economical approach based on quasi-representative two-dimensional cells for fibrous media.

Firstly, numerical estimations were done for a possible fibrous material from oblate wire. It was assumed that the oblate
wire would be obtained by flattening the round (copper) wire with diameter D = 0.5 mm, so that its cross section is no longer
circular but oblate with some assumed height H (i.e., flat wire thickness, see Figure 15) and appropriately enlarged width. The
overall cross-sectional area of oblate wire was assumed similar to the original round wire. For the micro-scale computations two-
dimensional periodic cells with two fibres were used. The porosity of cells is 90% and their proportions and fibre distribution
inside the rectangular fluid domain are the same as in the two-dimensional cell proposed beforehand for round wire (see Figures 9
and 15). A new factor is an orientation of the oblate cross-section inside 2D cell: an average position was assumed, namely, oblate
fibres are aslant with respect to the direction of propagation (and mutually skewed), that is, they are not parallel nor perpendicular
to each other nor to the horizontal direction inside the rectangular cell (see Figure 15). The transport parameters were computed
for a few cases of such quasi-representative cells, and the results are given in Table 2 for: (a) the circular cross-section (i.e., of
round wire) with diameter D = 0.5 mm, (b) an oblate cross-section with height H = 0.3 mm, and (c) an oblate cross-section
with height H = 0.2 mm. These parameters were used in macro-scale calculations of the acoustic absorption of fibrous layers
with thickness of 90 mm. Figure 15 presents the sound absorption curves computed in the wide frequency range (up to 8.5 kHz).
One should observe a very small difference between the sound absorption of the fibrous layer of round wire with diameter
D = 0.5 mm and the layer of oblate wire with the cross-section flattened to H = 0.3 mm. On the other hand, when the wire is
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(a) Round wire, D = 0.5 mm
(b) Oblate wire, H = 0.3 mm
(c) Oblate wire, H = 0.2 mm

Figure 15: Sound absorption calculated for 90 mm-thick fibrous layers of wire with round or oblate cross-section – numerical estimations were based
on the quasi representative two-dimensional periodic cells with porosity 90%

Table 2: Transport parameters (for JCAPL model) computed from 2D cells quasi representative for fibrous materials with porosity 90%, manufactured
from round wire with diameter D = 0.5mm (D:0.5), or from oblate wire with cross-section height H = 0.3mm (H:0.3), or H = 0.2mm (H:0.2);
additionally, 5 transport parameters determined by inverse characterisations based on JCAL model and using the curves of surface acoustic impedance
measured for the round wire samples D:0.5, and for the oblate wire samples H:0.2

Microstructure-based calculations of parameters for JCAPL model

Parameter Unit D:0.5 H:0.3 H:0.2
viscous permeability, k0: [10-9m2] 48.7 44.7 27.5
thermal permeability, k′0: [10-9m2] 204 182 142
(inertial) tortuosity, α∞: [–] 1.12 1.12 1.22

viscous static tortuosity, α0: [–] 1.30 1.32 1.46
thermal static tortuosity, α′

0: [–] 1.20 1.22 1.26
viscous charact. length, Λ: [mm] 1.08 1.01 0.77

thermal charact. length, Λ′: [mm] 2.25 1.99 1.55

Inverse
identification:
JCAL model

D:0.5 H:0.2
40.1 22.5
192 56.0

1.10 1.16
— —
— —

1.03 0.70
1.81 1.61

more flattened, so that the height of cross-section is reduced to H = 0.2 mm (and its width is appropriately enlarged), then, the
sound absorption is significantly increased in the whole frequency range. In fact, this observation was decisive when preparing
wire for new fibrous samples for experimental validations.

The round copper wire with diameter D = 0.5 mm was flattened so that its thickness was reduced to H = 0.2 mm (and
the cross-section width enlarged to nearly 0.9 mm). In the process, the length of wire pieces was also increased – from the
original 10 cm to more than 11 cm – see Figure 16. Such flattened pieces of oblate wire were used to manufacture two fibrous
samples (see Figure 16) in the manner identical with the one described in Section 2. The sample dimensions are as in the case
of round wire samples, namely, the diameter is 29 mm and their heights are 30 mm and 60 mm, so that their porosity is 90%,
since, respectively, 10 m and 20 m of the original copper wire were used to manufacture them. The samples were measured
in the impedance tube (see Figure 16): small and large sample separately, and in pairs with the total thickness of 90 mm (i.e.,
30 mm + 60 mm and 60 mm + 30 mm). The results of sound absorption shown in Figure 17 prove to be in a very good agreement
with the corresponding numerical estimations based on the two-dimensional quasi-representative cell. Moreover, perhaps the
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Figure 16: A piece of oblate wire (with its rounded original below) and two fibrous samples with porosity 90% (one of the samples is shown also inside
the impedance tube)
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Figure 17: Sound absorption measured in the impedance tube for the fibrous samples (with porosity 90%) manufactured from the oblate copper wire
(with cross-sectional thickness 0.2 mm), and the corresponding numerical estimations

quasi-representative cell could be improved: the size and rectangle can be but slightly modified when the width of cross-section
is slightly reduced (as in reality) to account for the enlarged length of the flattened wire. The small discrepancies may be
neglected; in fact, they ensue from some geometrical deviations of oblate wire and overall imperfections of samples, and also
from a poorer separation of scales at higher frequencies as suggested by the following results concerning wavelengths and surface
acoustic impedance.

Figure 18 shows wavelengths computed in the frequency range up to 10 kHz. For example, the wavelength is 64 mm at
5 kHz, and 54 mm at 6 kHz, which is, respectively, 32 or 27 times larger than 2 mm – the size of representative cell used for these
calculations. Figure 19 compares the surface acoustic impedance computed for the fibrous layer 90 mm thick, and measured in
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the impedance tube with two fibrous samples inside. (In fact, these results served to determine the acoustic absorption coefficient
as shown by formulas (5).) Here, the agreement or discrepancies between numerical calculations and measurements can be
observed separately for the real and imaginary parts. One may notice that the largest discrepancy between the calculations and
measurements are at higher frequencies, above 5 kHz, which can be related to a worse separation of scales, but also some smaller
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Figure 18: Wavelengths computed for the material with oblate fibres and porosity 90% (and compared with the wavelength of sound in the open air
and the size of representative cell used in calculations)
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Figure 19: Surface acoustic impedance (the real and imaginary parts) measured for 90 mm thick layers of two fibrous samples made up from oblate
wire and put together into the impedance tube; the experimental results are compared with the corresponding numerical calculations based on the
two-dimensional representative cell
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scale imperfections in fibrous samples not present in the periodic representation. The measured curves of surface acoustic
impedance were also used by a normalised inverse characterisation method [54] to characterise the parameters of the fibrous
material from oblate wire with respect to the Johnson-Champoux-Allard-Lafarge (JCAL) model [1, 6]. In this model the static
viscous and thermal tortuosities are not used, and moreover, the inverse characterisation procedure was fed only with single-
layer measurements (i.e., without air cavities), therefore, the discovered values must be treated as approximative, though they
are similar to the parameters calculated from microstructure. An inverse characterisation was also carried out for the round wire
material using the JCAL model. The five transport parameters identified for both materials using the inverse method based on
the JCAL model are listed in two separate columns in Table 2.

6. Conclusions

The non-uniform arrangement of fibres were found to be representative for the fibrous samples manufactured of copper wire.
Different 3D and 2D non-uniform representations were proposed since the fibre concentration parameter is fitted and the direct
link between the microstructure and the macroscopic acoustical behaviour may be somewhat lost. The microstructure-based
calculations showed that (for the same porosity, fibre thickness and shape) such non-uniform arrangements ensure more damping,
although at the same time, perhaps the waves propagate a little bit faster in the investigated copper-wire samples. Nevertheless,
the discrepancies are acceptable and it seems that they are rather caused by the strained periodicity of arrangements used in
modelling, and not by a misconception in the assumption of straight fibres, that is, if not the constraint of periodicity, a better
representation with straight fibres could be easily constructed.

The arrangement of fibres in manually braided wire samples was rather complex and certainly three-dimensional, therefore,
the demonstrated agreement between 2D and 3D representations shows some potential in use of 2D cells quasi-representative for
fibrous media, as pointed out below.

In the cuboid volume elements (and rectangular 2D cells) fibres are grouped in layers which perhaps entails some sort of
anisotropy at the macro-scale level. In fact, one may expect some kind of transversal isotropy with the isotropy planes normal
to the direction of propagation. It means that the transport properties, like permeability and tortuosity, determined along this
direction can be substantially different from the values found for the direction across to it (see, for example, measurements of
anisotropic air flow resistivity by Tarnow [55] for a glass wool). Nevertheless, the considered configuration and problem of
plane wave propagation allow for the investigations based on the assumption of macroscopic homogeneity and isotropy with
the transport parameters computed for the flow/conductivity along the direction of propagation. It seems that anisotropic effects
should be taken into account in case of truly anisotropic poroelastic materials [56–60], where the vibration of elastic skeleton
(fibres) cannot be neglected, and the anisotropy strongly affects their elastic behaviour and also visco-thermal dissipations.

The discussed analyses and microstructure-based approach involving the JCAPL model can be used to develop a simple three-
parameter model for sound absorbing fibrous media, which would employ a few direct geometric features, namely, the porosity,
the (average) thickness of fibres, and the ratio of the density of fibre distribution along the direction of wave propagation to the
density of distribution crosswise, or an equivalent parameter describing some similar anisotropy in fibre arrangement. As a matter
of fact, this new parameter should somehow describe the concentration of fibres which is related to the throat size which controls
the viscous permeability [17] – a very important parameter for overall sound propagation and absorption. If well constructed,
such a model should be more versatile than many of simple yet very restricted phenomenological models of fibrous materials, and
at the same time it would be much simpler, straightforward and “user-friendly” than the underlying 8-parameter JCAPL model.

Some variations of fibrous microstructure geometry can be analysed using two-dimensional representations provided that the
assumptions of sufficiently long and locally straight fibres are fulfilled (which is in fact, the case of many fibrous materials).
It seems that two-dimensional cells can be successfully used to represent many sound absorbing fibrous media in the case of
numerical investigations on the effects of various thickness of fibres, different shape of fibre cross-sections, and the relative
density of fibre distribution along the propagation direction and across to it. This observation is essentially confirmed with the
presented results of numerical and experimental study of fibrous layers made up from oblate wire.

Although the simplest from the proposed periodic representations contain only a few fibres and so the periodic cell size is only
about 2 mm, the effect of a worse separation of scales seems to be obvious at higher frequencies. However, there are perhaps two
main reasons for larger discrepancies at higher frequencies: (1) the obvious poorer separation of scales, (2) small imperfections
in real fibrous samples which are not present in the simplified idealised micro-geometric representations but relevant for higher
frequency effects, for example, oblate wire roughness and sharpness at edges and endings, etc. On the other hand, it seems that
a worse separation of scales (of the order less than 102) causes only a gradual deterioration of results and the method does not
fail. As a matter of fact, the general idealisations which contradict the irregularities in real fibrous samples (the real material is
not periodic, the fibres are not straight everywhere, etc.) tend to be more important in the whole frequency range.

The effect of fibres’ endings is missing, however, this can be included in volume elements. The question remains, however,
how short the real fibres must be to necessitate such approach. Moreover, the number of fibres’ endings per volume of fibrous
medium must also be observed and a single isolated fibre tip in a periodic volume element is possible only in the case of locally-
curved fibres. On the other hand, adding curved and, especially, truncated fibres to a volume element is less restricted by the
requirement of periodicity than in the case of straight obliquely passing-through fibres studied in the present work.

17

http://dx.doi.org/10.1016/j.jsv.2017.07.047


This is a preprint of: http://dx.doi.org/10.1016/j.jsv.2017.07.047 J. Sound Vib. 409, 112-130 (2017)

Acknowledgements

Financial support of the Project “Relations between the micro-geometry and sound propagation and absorption in porous and
poroelastic media”, No. 2015/19/B/ST8/03979, financed by the Polish National Science Centre (NCN), is gratefully acknowl-
edged. Dissemination of this work was also supported by COST (European Cooperation in Science and Technology) through the
COST Action CA15125 – DENORMS: “Designs for Noise Reducing Materials and Structures”.

References

[1] J. F. Allard, N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Second Edition, Wiley, 2009.

[2] D. L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech. 176 (1987) 379–402.

[3] Y. Champoux, J.-F. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous media, J. Appl. Phys. 70 (1991) 1975–1979.

[4] S. R. Pride, F. D. Morgan, A. F. Gangi, Drag forces of porous-medium acoustics, Phys. Rev. B 47 (1993) 4964–4978.
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