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Abstract

Acoustics of stiff porous media with open porosity can be very effectively modelled using the so-called Johnson-Champoux-Allard-
Pride-Lafarge model for sound absorbing porous media with rigid frame. It is an advanced semi-phenomenological model with eight
parameters, namely: the total porosity, the viscous permeability and its thermal analogue, the tortuosity, two characteristic lengths (one
specific for viscous forces, the other for thermal effects), and finally, viscous and thermal tortuosities at the frequency limit of 0Hz. Most of
these parameters can be measured directly, however, to this end specific equipment is required different for various parameters. Moreover,
some parameters are difficult to determine. This is one of several reasons for the so-called multiscale approach where the parameters
are computed from specific finite-element analyses based on some realistic geometric representations of the actual microstructure of porous
material. Such approach is presented and validated for layers made up of loosely-packed small identical rigid spheres. The sound absorption
of such layers was measured experimentally in the impedance tube using the so-called two-microphone transfer function method. The
layers are characterised by open porosity and semi-regular microstructure: the identical spheres are loosely packed by random pouring and
mixing under the gravity force inside the impedance tubes of various size. Therefore, the regular sphere packings were used to generate
Representative Volume Elements suitable for calculations at the micro-scale level. These packings involve only one, two or four spheres
so that the three-dimensional finite-element calculations specific for viscous, thermal, and tortuous effects are feasible. In the proposed
geometric packings the spheres were slightly shifted in order to achieve the correct value of total porosity which was precisely estimated for
the layers tested experimentally. Finally, in this paper some results based on the self-consistent estimates are also provided.
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I. INTRODUCTION

Assemblies of rigid spheres form porous media where the air fills
the space between the spheres which constitute a rigid frame. An
important feature of all even tightly-set packings of (identical)
spheres is that they create granular media with fully-open porosity.
The energy of acoustic waves which penetrate such porous granular
media can be significantly dissipated because of an interaction of
the vibrating air particles with the surface of small rigid motionless
spheres. Models for sound absorbing rigid-frame porous media are
therefore suitable for description and quantitative estimation of this
phenomenon. On the other hand, the layers of small rigid spheres
are suitable to test how microstructure of porous media affects its
absorptive properties, and also to validate the so-called multi-scale
modelling applied to this classic problem of poro-acoustics, as well
as some simple or more complex propositions for microstructure
representations.

There are many macroscopic models for sound absorbing porous
or fibrous materials. For quite a long time they were rather sim-
ple empirical models involving only a couple of material param-
eters. In consequence such models often impose some restric-
tive requirements (like, for example, high porosity) or limitations
with respect to the valid frequency range. Such are, for exam-
ple, the purely empirical models proposed by Delany and Bazely1

for fibrous materials and later significantly improved by Miki2,3.
Empirical models for rigid frame porous materials are still be-
ing proposed (see, for example, models by Voronina4,5), how-
ever, a semi-phenomenological model which involves more physi-
cal insight was established in 1990s basing on achievements and
previous publications of many researchers. It is the so-called
Johnson-Champoux-Allard model6–11 or its tuned-up versions with
enhancements proposed by Pride12,13 or Lafarge14. Recently, the
acoustic wave propagation in macroscopically inhomogeneous ma-
terials using the equivalent fluid approach was also studied by
Cieszko et al.15.

In general, acoustics of granular media with open porosity can
be modelled in the same or very similar way as other porous
or fibrous materials. For example, Attenborough16 proposed a
model that predicts the acoustical characteristics of rigid fibrous
absorbents and granular materials from five parameters (porosity,
flow resistivity, tortuosity, steady flow shape factor, and dynamic
shape factor). Later, this author examined also the slow acous-
tic wave in air-filled granular media17 with respect to the predic-
tions given by the classical theory of rigid porous medium and the
rigid-frame limit provided by the model based on the Biot theory
of poroelasticity. An empirical model proposed by Voronina and
Horoshenkov18 for loose granular materials allows for evaluation
of their acoustic performance with respect to only four parame-
ters: the characteristic particle dimension, porosity, tortuosity and
specific density of the grain base. Horoshenkov and Swift19 ap-
plies a simple model for the prediction of the acoustic properties
of porous granular media with some assumed pore geometry and
pore size distribution close to log-normal. The model is based on
the rational Padé approximation approach20.

Porous media made up of fused glass beads were studied ex-
perimentally by Charlaix et al.21 with respect to the crucial (for
poroacoustics) characteristics of dynamic permeability. They mea-
sured the dynamic permeability on samples of glass beads (also
on crushed glass) slightly sintered together. Beads of three dif-
ferent mean diameters were used, namely, 1.7 mm, 0.95 mm, and

0.5 mm, with a variation of roughly 20% around that mean, and the
frequency range was from 0.1 Hz to 1 kHz.

Chapman and Higdon22 addressed the problem of oscillatory
Stokes flow in periodic porous media, considering the consolidated
media composed from spheres arranged in three classic lattices:
simple cubic (SC), body centered cubic (BCC) and face centered
cubic (FCC). Detailed results of the dynamic permeability com-
puted mainly for closely packed concentrations are compared with
previously published results.

More complete results concerning sound propagation and ab-
sorption in air-saturated random packings of beads were provided
by Allard et al.23. These authors measured a layer of (nearly) iden-
tical glass beads of diameter 1.46 mm (±0.02 mm) in a Kundt
tube, and the measured normalised surface acoustic impedance
at normal incidence of the layer of thickness 5.2 cm was com-
pared with the prediction calculated from the Johnson-Champoux-
Allard model (of the equivalent fluid). To this end, the neces-
sary macroscopic parameters for random packings of glass beads
having a quasi-uniform diameter were first measured with nona-
coustical and acoustical methods. Thus, for example, the mea-
sured porosity was 0.4 like in the case of random loose packings of
identical beads24,25, and the measured (viscous) permeability was
1.5 × 10−9 m2. Tortuosity evaluated from conductivity measure-
ments was 1.37. Also the normalized compressibility (of the equiv-
alent fluid) measured using the Tarnow method26, and the squared
ratio of the speed of sound in air to the frequency-dependent effec-
tive speed of sound of equivalent fluid were compared with model
predictions.

Umnova et al.27 proposed analytical expressions for dynamic
and static permeability, high-frequency limit of tortuosity, and the
characteristic viscous dimension in porous media composed of
packings of spheres derived using a cell model (based of the simple
cubic lattice) with an adjustable cell radius which allows for hy-
drodynamic interactions between the spherical particles; the other
parameters are: the volume porosity and the particle radius. It
is shown that better results are obtained for the cell radius corre-
sponding to that of the sphere circumscribing a unit cell of a cubic
lattice arrangement. The results are compared with some numer-
ical data published previously by Chapman and Higdon22, Allard
et al.23, or Charlaix et al.21.

The work by Gasser at el.28 is one of the first where the
sound absorption of rigid porous media (made up of identical rigid
spheres) is calculated from microstructure using the finite element
method. The regular face centered cubic (FCC) packing of rigid
spheres was assumed with porosity 26%. The parameters of tor-
tuosity and the dynamic length were obtained by solving a po-
tential flow, whereas a steady viscous flow was used to compute
the permeability. These parameters allowed use the approximation
formulas for the frequency-dependent effective density. Similarly,
the frequency-dependent effective compressibility was also deter-
mined on the basis of macroscopic parameters calculated from the
microscopic finite element model. In the paper the radius of the
spheres was 1 mm, and a soldering neck of radius 0.15 mm binding
them together was taken into account. Thus, the variations of char-
acteristic lengths (thermal and viscous) were shown as functions
of the normalized sintered neck radius for different neck descrip-
tions, as well as the tortuosity parameter versus neck radius for
cylindrical necks. The work was purely numerical, however, some
comparison with experimental results of the literature is provided.
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The microostructure-based approach for modelling of porous
media is applied by Perrot et al.29,30 for open-cell aluminium foams
and more recently for polymeric foams31. It was also demon-
strated that two-dimensional microostructure-based modelling of
sound absorbing fibrous material may be useful for optimisation of
the cross section of rigid solid fibres32. Another two-dimensional
microostructure-based analyses allowed Cortis and Berryman33 to
correctly describe dynamic viscous flow in channels with (fractal)
rough surfaces which limits the application of classical approxima-
tion models for sound absorbing porous media. Chevillotte et al.34

used microstructure-based model for sound absorption predictions
of perforated closed-cell metallic foams. Recently, Chevillotte,
Perrot, and Guillon35 studied a link between microstructure and
acoustical macro-behavior of double porosity foams. Hoang and
Perrot36 investigated porous microstructure for local characteristic
lengths governing sound wave properties in solid foams. Boutin
and Geindreau37 used the homogenization of periodic media and
the self-consistent method to derive three estimates and also exact
bounds of dynamic permeability in granular media. More recently,
they used also the same approach to study dynamic and thermal
permeability, diffusion and trapping constant through porous me-
dia represented by sphere and polyhedron packings38.

In 2009 the microstructure-based modelling of porous materi-
als was also applied by Lee, Leamy and Nadler39 for the problem
of sound propagation in granular media of rigid spheres. These
authors used regular, close packings of spheres as microstructural
geometry representations to compare between the so-called direct
and hybrid numerical approach. Since both approaches utilised the
same Representative Volume Elements the direct and hybrid results
were nearly identical. The numerical calculations by authors were
also confronted with the results found in literature.

The present paper follows up the proceeding used by Lee
et al.39 and in some other works mentioned above. The hy-
brid microstructure-based modelling is applied for the problem
of sound absorption in granular media composed of randomly (or
semi-randomly) packed rigid spherical beads. To this end, regular
sphere packings are used, however, the spheres are not closely-
packed, yet they are slightly shifted apart or, on the contrary, a
minor overlapping is allowed. Such approach permits to use rather
simple geometries to represent the porous microstructure in finite-
element analyses, and is validated by the results of original exper-
imental tests carried out by the author.

The paper is organised as follows. First, the experimental tests
of sound absorption by layers made up of identical rigid plastic
beads are reported. Next, three types of Representative Volume
Elements (RVEs) are proposed and examined. Then, the multi-
scale modelling is discussed and the hybrid approach using three
RVEs is applied for microstructure-based modelling of the consid-
ered problem. In this context, also some self-consistent estimates
based on a bicomposite spherical cell are provided. Finally, the
microstructure-based calculations and the self-consistent estimates
are compared with some of the results of experimental tests.

II. TESTING FREELY-PACKED LAYERS OF BEADS

A series of acoustical tests was carried out in the impedance tube
on layers composed of identical rigid spherical beads. The diame-
ter of each sphere was 5.9 mm and the layers were prepared in the
following way:

• First, a quantity of beads was freely poured into the testing
tube set in vertical position.

• Then, the tube was being shaken (manually) in order to stably
pack the beads.

• Occasionally, the top layer of beads was softly clapped with a
flat piston to level its surface.

It was found that the described proceeding gave always stable mi-
crostructure and excellent repeatability of measurements. On the
other hand, the arrangements of spheres were constrained by the
tube walls (see Figure 1) so that even long mechanical mixing
would never result in close packing (especially in case the small-
est tube). Such semi-randomly packed layers of rigid beads were
tested in the impedance tube (see Figure 2) using the technique
based on the two-microphone transfer function method40,41. In
that way the surface acoustic impedance and sound absorption was
measured for each layer. As a matter of fact, the tests were car-
ried out in three vertically-positioned tubes of various diameter
(see Figures 1 and 2), namely: in a large tube with diameter of
100 mm, in a medium tube with diameter of 63.5 mm, and in a
small tube with diameter 29 mm. Depending on the tube diameter

Figure 1: Randomly-packed spherical beads inside three tubes of various
size

Figure 2: Three vertically-positioned impedance tubes
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Table I: Freely-packed layers of spherical beads in impedance tubes of various size

Tube size: Large Medium Small
Tube diameter: 100 mm 63.5 mm 29 mm

Frequency range: 50–1600 Hz 100–3200 Hz 500–6400 Hz
Layer symbol: L-41 M-41 M-106 S-41 S-106 S-200
Layer height: 41 mm 41 mm 106 mm 41 mm 106 mm 200 mm

Number of beads: 1840 708 1840 147 380 710
Porosity: ∼ 39% ∼ 41% ∼ 42%
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Experimental results for tubes of different size (L/M/S) and layers of various height (in mm):
L-41 M-41 S-41 M-106 S-106 S-200

Figure 3: Acoustic absorption of freely-packed beads – experimental results

the measurements were in frequency range: from 50 Hz to 1.6 kHz
for the large tube, from 100 Hz to 3.2 kHz for the medium tube,
and from 500 Hz to 6.4 kHz in case of the small tube.

Each cylindrical layer had a certain height which was thoroughly
measured, so that the total volume of layer could be calculated as
the product of the layer’s height and the cross-section area of the
tube. Moreover, the beads from each layer were weighted together
so that their total number could be approximately determined, bas-
ing on the fact that the mass of a single bead is 0.3 g; knowing
the spherical bead’s volume, the total volume of all beads in a par-
ticular layer could be estimated. That result together with the total
volume of cylindrical layer allowed to estimate the solid-phase vol-
ume and then the layer’s porosity. All those data are summarised
in Table I for 6 particular layers.

In case of the large tube all beads (approximately 1840 of them)
formed a layer 41 mm in height with the estimated porosity of 39%.
In case of the medium tube, only about 708 beads were necessary
to form the 41 mm-high layer; since the packing could not be so
dense, the porosity was approximately 41%. The whole assembly
of 1840 spherical beads formed in the medium tube a layer of sim-
ilar porosity and 106 mm in height. Eventually, the 41 mm-high
and 106 mm-high layers were formed in the small tube using es-

timated numbers of 147 or 380 beads, respectively. The porosity
was approximately 42% in both cases. A very similar porosity was
obtained when approximately 710 beads were poured and mixed in
the small tube to form a layer of 200 mm in height.

It must be emphasized that roughly the same correspondence of
the cylindrical layer’s porosity with respect to its height and di-
ameter were achieved for independent pouring and mixing of rigid
beads into the tubes. This was also confirmed by the excellent
repeatability and good accordance of the results of independent
experimental tests carried out in the impedance tubes. These re-
sults are presented in Figure 3 where the frequency-varied curves
of the acoustic absorption coefficient are shown for all 6 sample-
layers discussed above. For each of the layers measured in the large
and medium tubes two independent measurements are shown to il-
lustrate the test repeatability. Moreover, quite a good accordance
is found (in the common frequency range) between the samples
tested in tubes of different diameter; some obvious discrepancies
(compare the curves S-106 with M-106, or S-41 with M-41 and
L-41 in Figure 3) – visible especially when referring to the results
form the small tube which diameter is only less than five times big-
ger than the size of beads – are because of different porosity and
irregularities in the packing constrained by the sides of the tube.
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Figure 3 shows only the testing results of porous layers. In fur-
ther Sections these experimental curves will be compared with the
acoustic absorption calculated from the advanced multi-scale mod-
elling – discussed in the previous Section – which should involve
several finite-element analyses based on some three-dimensional
geometries more or less representative for the porous medium mi-
crostructure.

III. PERIODIC SPHERE PACKINGS AND REPRESENTA-
TIVE VOLUME ELEMENTS

In order to apply the microstructure-based approach to modelling
of the porous layers tested in the previous Section, one needs
some representative models of their micro-geometry. Moreover,
the representative micro-geometric cells should be periodic to sat-
isfy some mathematical requirements of the discussed multi-scale
modelling. Since the layers are made up of identical rigid spherules
it seems reasonable to start up with regular, periodic sphere pack-
ings as the base for the micro-geometric representations. Three
sphere packings known very well, for example, from crystallogra-
phy lattices, will be considered, namely:

• Simple Cubic (SC) – the spheres are arranged at the corners
of the cubic cell; there is only 1 sphere per unit cell,

• Body Centered Cubic (BCC) – the spheres are arranged at
the corners of the cubic cell with another sphere at the cube
centre; there are 2 spheres per unit cell,

• Face Centered Cubic (FCC) – the spheres are arranged at
the corners and centre of each face of the cubic cell; there are
4 spheres per unit cell.

Spheres are closely-packed in their cells when the sphere diam-
eter and the cell egde length are in some definite proportion so that
the rigid spheres forming one of the above type of arrangement are
in full contact. These proportions together with some other data
are listed in Table II for the packing types SC, BCC, and FCC. The
ratio of sphere volume to unit cell volume is also strictly definite
and for closely-packed arrangements it is 0.524 for SC, 0.68 for
BCC, and 0.74 for FCC, which means that the void space in unit
cell (or the porosity) is 47.6%, 32%, and 26%, respectively.

Table II: Geometric data for periodic RVEs obtained from three regular
close sphere packings

Packing type: SC BCC FCC
number of spheres: 1 2 4

edge to diameter ratio: 1 2√
3

= 1.155
√

2 = 1.414

edge length∗ [mm]: 5.90 6.81 8.34

solid volume fraction: π
6

= 0.524 π
√
3

8
= 0.680 π

√
2

6
= 0.740

porosity [%]: 47.6 32.0 26.0
∗for the sphere diameter 5.9 mm

In practice, although, the spherical beads tend to be identical
their distribution is usually not so regular as in case of the pre-
sented periodic arrangements, because of random pouring and tube
constraints. It has been shown in the previous Sections that in
case of random packing, that is, when the spheres are dropped or
packed manually, the porosity is about 39 to 41% or even slightly
higher, about 42% when the free packing of spheres is somehow

constrained by the sides of container which is only a few times big-
ger their size. This is, however, far more superior than the porosity
of BCC or FCC arrangements which are densely packed, yet at the
same time significantly smaller than the porosity of SC packing.

Total porosity is an extremely important parameter for models
predicting the sound propagation and absorption in porous media,
therefore, it seems reasonable that it should be exactly represented
by the micro-geometric model. Now, the regular periodic sphere
packings will be used to model the experiment described in the
previous Section, though, obviously they should be somehow ad-
justed in order reflect the total porosity. To this end, the SC packing
must be compressed so that the rigid spheres overlap, whereas in
case of the BCC and FCC packings the spheres must be slightly
spread apart.

The closely-packed arrangements of spheres are shown in Fig-
ure 4 for packing types SC, BCC, and FCC, that is, with cubic
cells. Notice that in case of the BCC arrangement the cube is ver-
tically shifted by half its length, so that the “body centered” sphere
appears on top and bottom faces (and not inside the cube as in
commonly used representation). The corresponding periodic cells
of Representative Volume Elements are presented in the top row of
Figure 5 for closely-packed arrangements, and in the bottom row
of Figure 5 for arrangements slightly compressed (SC) or spread

SC BCC FCC
simple cubic body-centered cubic face-centered cubic

Figure 4: Regular closely-packed arrangements of spheres

SC BCC FCC

SC42% BCC42% FCC42%

Figure 5: Represtative Volume Elements (RVEs) obtained from the regu-
lar sphere packings

Table III: Geometric data of three porosity-adjusted periodic RVEs

Packing type: SC42% BCC42% FCC42%

number of spheres: 1 2 4

edge to diameter ratio: 0.960 1.218 1.534

edge length∗ [mm]: 5.66 7.19 9.05

by shifting spheres the porosity is set to 42%
∗for the sphere diameter 5.9 mm
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(BCC, FCC) so that the total porosity would be 42%, that is, in
agreement with the value found experimentally. These arrange-
ments with regularly shifted spheres will be now referred as SC42%,
BCC42%, and FCC42%. Table III presents some relevant geometric
data corresponding to these RVEs, for example, their size assum-
ing that the sphere diameter is 5.9 mm (which is the very diameter
of the spherical beads used in experimental tests). Notice that the
representative cell with simple cubic packing has been diminished
within the process of porosity adjustment, whereas the cells with
body centered cubic and face centered cubic packings are slightly
enlarged with respect to their closely-packed originals.

IV. MULTI-SCALE ANALYSIS

A. Effective density, bulk modulus, and speed of sound

Multi-scale asymptotic modelling is a homogenisation technique
suitable for analysis of vibrations and wave propagation in non-
homogeneous media42, in particular, for porous media saturated
with a fluid. It can be shown that in case of acoustic waves, two
main phenomena responsible for their absorption and propagation,
that is, the viscous and thermal effects are uncoupled, because at
the micro-scale the (oscillating) flow is incompressible; therefore,
they were often studied separately. In this Section the multi-scale
analyses for both effects will be discussed at limiting cases of very
low and very high frequencies suitable for the hybrid approach.

Dynamic behaviour of porous medium saturated by a viscous
fluid was studied for example by Auriault et al.43,44 or Johnson et
al.6 and many others. More recently multi-scale numerical analy-
ses carried out by Cortis et al.33,45 showed that the pore roughness
affects the dynamic permeability at high-frequencies. The influ-
ence of rigid structure of pores on wave-propagation in a porous-
medium was also studied by Cieszko et al.46. Thermal effects with
respect to sound propagation were thoroughly investigated for ex-
ample by Lafarge14, who also gave a complete multi-scale descrip-
tion of the problem of sound propagation and absorption in a rigid
porous medium47. Macroscopic formulas can also be found in the
book by Allard and Atalla10.

From the macroscopic perspective the fluid-equivalent approach
is applied where a rigid porous medium is substituted by an effec-
tive fluid characterised by the effective density and bulk modulus,
and eventually, by the effective speed of sound. As a matter of
fact, these quantities vary with frequency since porous media are
dispersive. It is rather obvious to relate the frequency-dependent
function of effective density %e(ω) to the constant density of actual
fluid in pores %f, therefore:

%e(ω) =
%fα(ω)

φ
. (1)

Here, α(ω) is the so-called dynamic (viscous) tortuosity. It is
a complex-valued function of frequency. Its real part is always
greater than 1, since it describes the apparent increase of the den-
sity because of visco-inertial interaction with the solid skeleton.

Similarly, the effective bulk modulus of equivalent fluid Ke(ω)
is related to the bulk modulus of pore-fluid Kf, as follows

Ke(ω) =
Kf

φβ(ω)
, (2)

where β(ω) is the compressibility ratio, that is, the ratio of the
effective compressibility 1/Ke(ω) to the pore-fluid compressibil-

ity 1/Kf. It was shown that this complex and frequency-dependent
function can be expressed by the following formula

β(ω) = γ − γ − 1

α′(ω)
(3)

where γ is the ratio of specific heats of pore-fluid, whereas α′(ω)
is the so-called thermal dynamic tortuosity (an analogue of its vis-
cous predecessor).

Now, it is easy to show that the dimensionless functions α(ω)
and β(ω) are necessary to calculate the effective speed of sound in
fluid equivalent porous medium:

ce(ω) =

√
Ke(ω)

%e(ω)
=

cf√
α(ω)β(ω)

, (4)

where cf =
√
Kf/%f is the speed of sound in the actual fluid which

fills the pores. When this complex-valued frequency-dependent
characteristics ce(ω) is determined, it can be used by the Helmholtz
equation for time-harmonic acoustics.

B. Dynamic tortuosities and macroscopic parameters

At each frequency ω the viscous dynamic tortuosity α(ω) is in-
versely proportional to the so-called dynamic (viscous) permeabil-
ity of porous medium k̂(ω) studied by many authors (it is a gener-
alisation of the classic static permeability), namely

α(ω) =
φν

iω k̂(ω)
. (5)

Here, φ is the (open) porosity of porous material, while ν = µ/%f is
the kinematic viscosity of fluid in pores with µ being its (dynamic)
viscosity. Now, it should be noticed that the thermal dynamic tor-
tuosity α′(ω) was is fact introduced by the analogy to the above
formula since it is equal

α′(ω) =
φν′

iω k̂′(ω)
(6)

where ν′ = ν/Pr, with Pr being the Prandtl number for the fluid
in pores, while k̂′(ω) is a thermal analogue of viscous dynamic
permeability, introduced by Lafarge14,47.

It is clearly visible from the formulas presented in the previous
section that the two dynamic tortuosities are necessary to determine
the effective speed of sound for porous medium which can be then
substituted in modelling by the corresponding equivalent fluid. The
Johnson-Champoux-Allard model10 and its enhanced versions pro-
pose some analytical, semi-phenomenological yet rather precise
approximations for these tortuosity functions.

Both dynamic tortuosities depend on the geometry of solid struc-
ture of porous medium as well as on the saturating fluid. In order
to calculate the viscous dynamic tortuosity function from the for-
mulas of the Johnson-Champoux-Allard-Pride-Lafarge model10,11

one needs to know the kinematic viscosity ν of fluid in pores, and
five purely geometrical parameters which macroscopically charac-
terise the solid (rigid) frame of porous medium, namely: its poros-
ity φ, the tortuosity factor α∞, the static permeability k̂0, the vis-
cous characteristic length Λ, and the viscous static tortuosity (i.e,
at 0 Hz) α0. To determine the thermal dynamic tortuosity func-
tion the kinematic viscosity ν and Prandtl number Pr of fluid in
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pores are necessary (or, as a matter of fact, their ratio ν′ = ν/Pr),
and moreover, four macroscopic parameters resulting exclusively
from the porous geometry: the porosity φ, the thermal analogue
of static permeability k̂′0, the characteristic length for thermal ef-
fects Λ′, and the thermal static tortuosity (i.e, at 0 Hz) α′0. In to-
tal, there are 8 macroscopic parameters which depend (only) on
the geometry of rigid structure of porous medium. All of them
can be calculated from the microstructure of porous medium by
solving the corresponding Boundary-Value Problems (BVPs) dis-
cussed below. For each of these problems, it is assumed that
the representative cell of porous medium is periodic and that the
problems are defined on the fluid domain Ωf with specific bound-
ary conditions set on the solid walls, i.e., on the solid-fluid inter-
face ∂Ωsf, and relevant periodic boundary conditions set on the cor-
responding fluid parts of cell faces. Finally, the averaging operator
〈. . .〉f = 1

Ωf

∫
Ωf

(. . .)dV means averaging over the fluid domain,
and since the rigid solid does not contribute the average over the
whole cell equals 1

Ω

∫
Ω

(. . .)dV = φ 〈. . .〉f, where φ is the porosity.

C. Electric conduction problem

The classical tortuosity of porous medium α∞ is in fact the limit of
the real part of the frequency-dependent dynamic tortuosity func-
tion α(ω) for the frequency reaching infinity, ω → ∞. In such
high-frequency regime the viscosity of fluid can be neglected and
its behaviour tend to be as for the perfect fluid. The resistance of
flow through porous medium is therefore purely inertial.

It can be shown that the problem of incompressible perfect fluid
flow coincides formally with the electrical problem of a porous
medium made up of electrically insulating solid filled with a con-
ductive fluid47–50. By applying a unit electric field e(m), that is a
constant and dimensionless vector field acting uniformly in some
direction direction m in the whole fluid domain, the microscopic
scaled current in the saturating fluid will be

j = σfE
(m) , (7)

where σf is the fluid electric conductivity, and E(m) is the scaled,
i.e., dimensionless, electric field (it is as a matter of fact, the local
electric field divided by the applied macroscopic electric potential
gradient). The macroscopic current is by definition the average of
j over the porous medium and equals

J = φ
〈
j
〉

f
= φσf

〈
E(m)

〉
f
. (8)

It obeys a macroscopic Ohm’s law:

J = σe · e(m) , (9)

where σe is the second-order tensor of effective (homogenized,
macroscopic) conductivity of porous medium. It is linearly related
to the electric conductivity of fluid in pores σf and this relation is
determined by the tortuosity factor of porous medium. In that way,
the second-order tortuosity tensor can be introduced, namely

α∞ = φσf σe
−1 . (10)

As a matter of fact, these observations allow to measure the tor-
tuosity factor experimentally, provided that the solid structure of
porous medium is made up from dielectric material. Then, it can be

filled with a conductive fluid and from the measurements of electric
current induced in the porous sample by application of a uniform
electric field the effective conductivity can be found, which allows
to calculate the tortuosity from the above formula, if the electric
conductivity of fluid and the total porosity are known.

Using formulas (8), (9) and (10) the following relation is ob-
tained

e(m) = α∞ ·
〈
E(m)

〉
f
, (11)

from which the the components of the inverse tortuosity tensor can
be easily derived

α−1
∞(mn) =

(
α∞

−1 · e(m)
)
· e(n) =

〈
E(m)

〉
f
· e(n) . (12)

It means that the tortuosity tensor can be determined when the
scaled electric fields E(m) are known for three different (orthogo-
nal) directions m of the unit vector fields e(m). And to this end,
three electric conductivity problems must be solved in a represen-
tative periodic cell of porous medium.

The scaled problem of electric conduction of porous cell means
that for a constant (i.e, uniform in the fluid domain) unit vector
field e(m) the sought microscopic field E(m) must be equal

E(m) = e(m) −∇ q(m) in Ωf , (13)

where q(m) is an unknown potential field periodic on Ωf, in fact
−∇ q(m) is a fluctuating part ofE(m), which therefore must satisfy
the divergence-free condition, namely,

∇ ·E(m) = 0 in Ωf , (14)

and also the boundary condition on the insulating solid walls (i.e.,
the solid-fluid interface)

E(m) · n = 0 on ∂Ωsf, (15)

where n is the unit vector normal to the interface.
Eventually, the electric conduction problem can be reduced to

the Laplace problem for the unknown (scaled electric) potential
field q(m) periodic on Ωf, namely, in the fluid domain

4 q(m) = 0 in Ωf , (16)

and on the solid walls

∇q(m) · n = e(m) · n on ∂Ωsf. (17)

When the potential field q(m) is found the scaled electric fieldE(m)

is computed from the formula (13).
Now, the formula for the components of the inverse tensor of

tortuosity (12) can be transformed as follows

α−1
∞(mn) =

〈
E(m) · e(n)

〉
f

=
〈
E(m) ·E(n)

〉
f
+
〈
E(m) · ∇q(n)

〉
f
.

(18)

The last term in this expression vanishes (by integration by parts),
because the electric field is divergence-free in the compact fluid
domain, Eq. (14), and satisfies the boundary condition (15) on the
solid walls. Therefore, the components of the tortuosity tensor can
be computed from the following formula

α∞(mn) =
1〈

E(m) ·E(n)
〉

f

, (19)
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which explicitly shows the symmetry of this tensor.
When the system of reference coincides with the principal axes

of a tensor, its matrix representation reduces to the diagonal form;
thus, in case of the tortuosity tensor, its components are

α∞(mn) = α∞(m) δmn , (20)

where α∞(m) are the principal values (eigenvalues) of the tortu-
osity tensor and δmn is the Kronecker’s delta. (Here and below
no summation is imposed on any indices.) Moreover, in the prin-
cipal axes system the mean scaled electric field is colinear to the
vector e(m) in the following way〈

E(m)
〉

f
= α−1

∞(m) e
(m) , (21)

which also means that〈
E(m)

〉
f
·
〈
E(m)

〉
f

= α−2
∞(m) . (22)

All this eventually leads to the following expressions for the prin-
cipal components of tortuosity tensor

α∞(m) =
1〈

E(m)
〉

f
· e(m)

=
1〈

E(m) ·E(m)
〉

f

=

〈
E(m) ·E(m)

〉
f〈

E(m)
〉

f
·
〈
E(m)

〉
f

.

(23)

In case of isotropy of porous medium, the flows or scaled elec-
tric fields E(m) caused by the unit-gradient vector fields e(m) will
be identical for any direction m, and the tortusosity tensor is char-
acterised by the unique scalar constant α∞, namely,

α∞ = α∞I , where α∞ = α∞(m) . (24)

The scalar parameter of tortuosity may also be used when the prop-
agation is simply considered along the direction m defined by the
unit vector e(m).

Using the solution for the electric conduction problem of peri-
odic representative cell of porous medium, the viscous characteris-
tic length can be also determined as follows

Λ = 2

∫
Ωf

E(m) ·E(m)dV∫
∂Ωsf

E(m) ·E(m)dS

. (25)

Its thermal counterpart is calculated directly form the porous ge-
ometry as the doubled ratio of the volume of fluid domain to the
surface of solid walls (i.e., the solid-fluid interface):

Λ′ = 2

∫
Ωf

dV∫
∂Ωsf

dS

. (26)

D. Viscous flow problem

In a static regime or at very low frequencies, when ω → 0, the
viscous effects dominate over the inertial ones. The fluid flow

through a periodic cell is described by the microscopic fields of ve-
locity v and pressure p, both periodic over the cell’s fluid domain.
They must satisfy the Stokes equations of steady-state viscous flow,
namely,

µ4v −∇p = g in Ωf, (27)

and
∇ · v = 0 in Ωf, (28)

with no-slip boundary conditions on solid walls (i.e., the solid-fluid
interface):

v = 0 on ∂Ωsf. (29)

In equation (27) µ is the viscosity of pore-fluid, whereas g is the
constant (i.e., uniform throughout the fluid domain) macroscopic
gradient of pressure in some direction m, which means that

g = |g|e(m) , (30)

where e(m) is the unit vector along this direction.
It can be shown that the local velocity field is linearly related to

the macroscopic pressure gradient, that is,

v = −
k0

µ
· g , (31)

where k0 is the tensor field of (viscous) permeability. As a matter
of fact, this relation is a local (microscopic) version of the well-
known Darcy’s law, which is yield after averaging.

Now, the following vector field is defined as the projection of
the second-order tensor k0 onto the direction m:

k0
(m) = k0 · e(m) . (32)

Using this definition and also the relation (30) for the “microscopic
Darcy’s law” (31) the following formula is obtained for the velocity
vector

v = −
|g|
µ
k0

(m) , (33)

which can be used for the equations of viscous incompressible
flow (27), (28), and (29), so that eventually, the scaled Boundary-
Value Problem is obtained as follows:

−4k0(m) +∇q0(m) = e(m) in Ωf, (34)

and
∇ · k0(m) = 0 in Ωf, (35)

with boundary conditions to be satisfied on the solid walls

k0
(m) = 0 on ∂Ωsf. (36)

Here, the unknown fields are the vector field k0(m) and the scalar
field q0(m). Both are periodic over the fluid domain Ωf. The vector
field k0(m) has dimension of permeability [m2] and accordingly to
the formula (33) it can be treated as the velocity field scaled by
factor −µ/|g|. Similarly, the scalar field q0(m) is defined as the
scaled field of pressure

q0(m) = − p

|g| (37)

with dimension [m].
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In order to determine the second-order tensor field of perme-
ability k0 the scaled Boundary-Value Problem (34), (35), (36)
must be solved three times for three mutually perpendicular di-
rections m = 1, 2, 3, defining three orthogonal unit vectors e(m).
Then, the components of this tensor field in the basis e(m) ⊗ e(n)

(m,n = 1, 2, 3) are defined as

k0(mn) = k
(m)
0(n) , (38)

where k(m)
0(n) are the components of vectors k0(m) obtained as three

independent solutions.
The macroscopic tensor of permeability is defined as the average

of permeability field over the microscopic cell, and since this field
is zero in the solid domain the final result is the average over the
fluid domain scaled by the porosity factor:

k̂0 = φ
〈
k0

〉
f
. (39)

This is the classical (static, viscous) permeability tensor used by
the Darcy’s law. It is static with respect to the dynamic general-
ization of permeability as a frequency-dependent function, and it
may be explicitly called viscous to disambiguate from its thermal
analogue.

In case of isotropy or when the wave propagation is simply
considered in the direction m the scalar macroscopic permeabil-
ity needs only to be calculated:

k̂0 = k̂0(m) = φ
〈
k

(m)
0(m)

〉
f
. (40)

This is in fact the limit of the dynamic viscous permeability func-
tion k̂(ω) for ω → 0.

Similarly to the classic parameter of tortuosity computed from
the scaled analysis of electric conduction the static tortuosity (i.e.,
at 0 Hz) is given by

α0 = α0(m) =

〈
k0

(m) · k0(m)
〉

f〈
k0

(m)
〉

f
·
〈
k0

(m)
〉

f

. (41)

E. Thermal conduction problem

The pressure fluctuations caused by acoustic waves induce some
fluctuations of temperature inside the fluid., and therefore a heat
flow. On the micro-scale the phenomenon is governed by the equa-
tion of harmonic thermal flow (for the complex amplitude of tem-
perature T ):

κ4T − iωCp%fT = −iωP in Ωf, (42)

with isothermal boundary condition on solid walls

T = 0 on ∂Ωsf, (43)

because the thermal conductivity of fluid in pores (typically, the
air) is usually much lower than the one of solid. In equation (42)
κ is the thermal conductivity of fluid in pores, whereas Cp is the
specific heat at constant pressure; the heat transfer is caused by the
harmonic change of macroscopic pressure with the amplitude P
uniform in the whole fluid domain of cell.

It can be shown that when the solid frame is a thermostat the
mean excess temperature in the air is proportional to the mean

time derivative of the pressure, which in harmonic case equals iωP .
Thus, by the analogy to the “localised” Darcy’s law (31) the follow-
ing relation was proposed by Lafarge14 which links the harmonic
change of pressure inside pores of a porous medium with the tem-
perature

T =
k′

κ
iωP . (44)

Here, k′ is the thermal analogue of dynamic permeability. Unlike
its viscous counterpart it is not a second-order tensor yet scalar
field since the thermal flow equation described an omnidirectional
dispersion of temperature. The dynamic “thermal permeability”
filed k′(ω) shows how this temperature spread is allowed at partic-
ular frequency ω by the arrangement of solid walls.

Now, by using the relation (44) for the thermal flow problem (42)
and (43), and also by taking into account that

Cp%f

κ
=

Pr

ν
=

1

ν′
, (45)

the following scaled Boundary-Value Problem is obtained

−4k′ + iω

ν′
k′ = 1 in Ωf, (46)

for the unknown field of dynamic “thermal permeability” k′ which
is periodic on Ωf and must satisfy the homogeneous boundary con-
dition on solid walls, i.e.:

k′ = 0 on ∂Ωsf. (47)

In that context the thermal dynamic permeability field k′ is but a
scaled field of temperature amplitude.

For the static case, or at very low frequencies when ω → 0, the
Poisson equation is obtained from (46), that is:

−4k′0 = 1 in Ωf, (48)

with boundary condition

k′0 = 0 on ∂Ωsf. (49)

Here, the unknown periodic field k′0 is the static “thermal perme-
ability” and at the same time the limit of its dynamic counterpart at
0 Hz.

When the scaled problem of static thermal flow (48) with (49)
is solved and the static field of “thermal permeability” k′0 is found,
the macroscopic parameter of “thermal permeability” is calculated
as the average of this field over the whole microscopic cell:

k̂′0 = φ 〈k′0〉f . (50)

Finally, the static thermal tortuosity (i.e., the low frequency limit
of the real part of dynamic thermal tortuosity) is computed as

α′0 =

〈
k′0

2
〉

f

〈k′0〉f
2 . (51)

V. FE ANALYSES FOR REGULAR SPHERE PACKING
RVES WITH ADJUSTED POROSITY

The periodic RVEs based on the regular sphere packings SC, BCC,
and FCC with the porosity adjusted to 42% – as described in Sec-
tion III – served in finite-element analyses (briefly discussed be-
low) to calculate the parameters of Johnson-Champoux-Allard-
Pride-Lafarge model. The corresponding finite-element meshes
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SC42% BCC42% FCC42%

Figure 6: Finite element meshes of Representative Volume Elements (for
media with porosity 42%)

generated over the fluid domains of the three representative cells
are presented in Figure 6.

Figure 7 presents the viscous permeability field obtained for all
three RVEs from the scaled Stokes flow driven by the uniform
pressure gradient in the x-direction. These results were used to
compute the corresponding parameter of viscous permeability k̂0

as the volume average from the permeability field. It suffice only
to make these calculations for one direction because each of the
representative cells is identical with respect to three perpendicular
directions which agrees very well with the assumption of macro-
scopic isotropy and causes the permeability tensor to be isotropic.
From the same analysis also the parameter of viscous tortuosity
at 0 Hz α0 was determined. Both values are given in Table IV to-
gether with other parameters for the extended Johnson-Champoux-
Allard-Pride-Lafarge model.

Table IV: Macroscopic parameters computed from the microstrucure
RVEs with porosity 42%

Parameter Packing type – RVE
Name – Symbol – Unit SC42% BCC42% FCC42%

viscous permeability: k̂0 [mm2] 0.0546 0.0452 0.0393

thermal permeability: k̂′0 [mm2] 0.1459 0.0803 0.0834

tortuosity (at∞Hz): α∞ [–] 1.5263 1.3245 1.3191

viscous tortuosity at 0 Hz: α0 [–] 2.3052 1.9343 1.8371

thermal tortuosity at 0 Hz: α′0 [–] 1.4438 1.3141 1.5238

viscous length: Λ [mm] 0.9900 1.1054 1.1197

thermal length: Λ′ [mm] 1.5573 1.4268 1.4230

Apart from the porosity φ, among the other seven parameters
shown in Table IV are the thermal analogue of permeability k̂′0 and
the thermal tortuosity at 0 Hz α′0. Both are computed from the so-
lution of the Poisson equation which results from scaling of the
problem of stationary heat transfer in pore fluid with isothermal
boundary conditions on the skeleton walls, driven by the unit heat
source uniform in the whole fluid domain. The thermal perme-
ability is calculated as the volume average from the thermal per-
meability fields (which are, as a matter of fact, the scaled fields
of temperature) shown in Figure 8 as the results of finite element
analyses.

The tortusity parameter α∞ (i.e., the real part of the dynamic
tortuosity limit as frequency goes to infinity) is computed from the
solution of the Laplace problem as the average of the resulting po-
tential field – shown in Figure 9 for three cases of periodic RVEs
– caused by the (scaled electric) unit vector field uniform in the x-
direction. As in the case of viscous permeability and Stokes prob-
lem, only one Laplace analysis was necessary here because of the

directional identity of cells resulting in exact macroscopic isotropy.
Form the same analysis the viscous characteristic length Λ is also
calculated. The thermal characteristic length Λ′ is determined di-
rectly from the geometry of RVE, as the doubled ratio of the fluid
domain or pore volume to the total surface of pore walls.

It is easy to notice from Table IV that the corresponding pa-
rameters computed for the BCC and FCC representative cells are
very similar to each other, and they visibly differ – though not very
much – from the ones obtained in the SC case.

As described in Section B the parameters given in Table IV allow
– by using the formulas of the Johnson-Champoux-Allard-Pride-
Lafarge model – to determine the frequency-dependent effective
density (which is the frequecny-dependent tortuosity characteris-
tics multiplied by the density of air) and compressibility of the ho-
mogenised acoustic fluid macroscopically equivalent to the exam-
ined rigid porous medium filled with air. Firstly, however, some
analytical estimates of these macroscopic parameters will be pro-
vided in the next Section.

VI. SELF-CONSISTENT ESTIMATES OF MACROSCOPIC
PARAMETERS

In this Section the macroscopic parameters will be estimated using
the so-called self-consistent method (SCM) based on a bicomposite
spherical pattern37,38. In this method the local physics of the con-
sidered phenomenon is solved analytically in a generic pattern rep-
resentative for the actual morphology, for the homogeneous macro-
scopic forcing term. The nature of the macroscopic behaviour is
assumed and the energy equivalence between the generic pattern
and the equivalent medium allows to estimate the macroscopic pa-
rameters.

The generic pattern used here is the bicomposite spherical pat-
tern presented in Figure 10. It is in the shape of a sphere Ω with ra-
dius R containing an inner solid sphere with radius Rs surrounded
by a spherical shell Ωf filled with fluid. The solid sphere is rigid
and the fluid is the pore-fluid (i.e., the air). The solid sphere radius
will be assumed equal to the radius of the actual spherical beads
used in the experimental test, that is, Rs = 5.9 mm/2 = 2.95 mm.
The radius of spherical cell must be related to the solid sphere ra-
dius in such a way so that the actual porosity φ = 0.42 should
be ensured, therefore, the ratio between the two radii should be
defined as follows

δ =
Rs

R
= 3

√
4
3πR

3
s

4
3πR

3
= 3
√

1− φ , (52)

and in the considered case δ = 0.83396, which means that R =
Rs/δ = 3.537 mm. These values will be used for all the esti-
mations computed below. They are, however, nearly identical (or
very similar) with the generic values computed with respect to the
Representative Volume Elements considered in this work using the
approach in which the radius of the solid sphere in generic pat-
tern is computed from the assumed porosity φ and the number of
(identical) solid inclusions Ns in a cell of Representative Volume
Element by assuming that its total volume V should be the same
as the volume of the spherical cell in generic pattern; it means that
the following relation is satisfied

4

3
πR3

s =
(1− φ)V

Ns
. (53)
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SC42% BCC42% FCC42%

Figure 7: Results of FE analyses for various RVEs: the viscous permeability field k0(11) [m2]

SC42% BCC42% FCC42%

Figure 8: Results of FE analyses for various RVEs: the thermal permeability field k′0 [m2]

SC42% BCC42% FCC42%

Figure 9: Results of FE analyses for various RVEs: the scaled potential field q(1) [mm]
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R

Rs

Ωf

Ωs

Ω=Ωf∪Ωs

∂Ωsf

∂Ω

Figure 10: Bicomposite spherical pattern formed from a sphere Ω with
radius R composed from an inner (rigid) solid sphere Ωs with radius Rs
surrounded by a spherical shell Ωf filled with fluid

Table V: Generic features of spherical cells corresponding to the SC,
BCC, and FCC sphere-packings with porosity adjusted to 42%

Generic parameter Packing type – RVE
Name – Symbol – Unit SC42% BCC42% FCC42%

volume of cell or RVE: V [mm3] 181.71 371.11 741.37
number of solids in RVE: Ns [–] 1 2 4
solid-to-cell radius ratio: δ [–] −→ 0.83396 ←−

solid sphere radius: Rs [mm] 2.9302 2.9508 2.9497
spherical cell radius: R [mm] 3.5137 3.5383 3.5369

In reference to the three RVEs considered in the previous Sections
(using the data from Table III), the generic features of the corre-
sponding bicomposite spherical cells are computed and listed in
Table V. One should notice that the solid sphere and the whole
cell radii are (nearly) identical with the values determined above,
especially, for the cells corresponding to the BCC42% or FCC42%

RVEs (some small discrepancies in case of the radii corresponding
to the SC42% RVE result mainly from the fact that in this periodic
micro-morphology the rigid spheres are slightly overlapping).

The three generic parameters: the porosity φ, the ratio of solid
sphere radius to the spherical cell radius δ, and the spherical bicom-
posite cell radiusR, will be used in the formulas for self-consistent
estimates of macroscopic parameters.

The consistent estimate of the (dynamic) viscous permeability
is based on the analytical solution of the incompressible viscous
flow through the spherical cell with the no-slip boundary condi-
tions on the solid sphere surface ∂Ωsf; and the flow is driven by the
uniform pressure gradient. It is the same problem as in the case
of finite element analyses on periodic RVEs, however, the sim-
plistic generic pattern of local geometry is used instead and the
periodic conditions are replaced by the energy consistency con-
straints on the spherical cell boundary ∂Ω. Eventually, this vis-
cous and kinetic energy consistency between the microscopic and
macroscopic description leads to the following alternative: (1) ei-
ther the shear stress vanishes uniformly and the stress vector at
the boundary ∂Ω matches the macroscopic (Darcy) pressure, or
(2) the tangential, and thus also the total micro- and macroscopic
velocities are equal on the cell boundary ∂Ω. The first assumption
leads to the so-called P-estimate, whereas the second one leads to
the V-estimate. Finally, the so-called C-estimate results from the
“cell” model assumption of vanishing vorticity at the boundary ∂Ω,
which means that the fluid pressure (not the stress) at the boundary
equals to the macroscopic one (i.e., the Darcy pressure). These es-
timates are found for the general dynamic (harmonic) case of the

viscous flow, and in the quasi-static regime (i.e., at low frequency,
when the viscous effects dominate the inertial ones) they lead to
the following P-, C- and V-estimation formulas37,38 for the intrin-
sic (static viscous) permeability:

k̂0(eP)

R2
=

2− 3δ + 3δ5 − 2δ6

9δ + 6δ6
, (54)

k̂0(eC)

R2
=

10− 18δ + 10δ3 − 2δ6

45δ
, (55)

k̂0(eV)

R2
=

4− 9δ + 10δ3 − 9δ5 + 4δ6

18δ − 18δ6
. (56)

In case of the tortuosity parameter the P-, C- and V-estimates are
derived from the limit case of high-frequency behaviour, when the
inertial effects dominate and the viscous ones are confined to a
viscous layer, and thus, they lead to the same value which de-
pends only on porosity (since the tortuosity may be derived from
a perfect flow, where the interface conditions involve only the nor-
mal/radial component of velocity idependent on the P-, V- or C-
assumption)37,38:

α∞(e) = 1 +
δ3

2
=

3− φ
2

. (57)

Finally, the P- or C-estimate of the viscous characteristic length
is37

Λ(eP or C)

R
=

4φ

9(1− φ)
α∞(e) =

2φ(3− φ)

9(1− φ)
, (58)

while the V-estimate reads37

Λ(eV)

R
=

1

1 + δ4

Λ(eP)

R
. (59)

The (dynamic) thermal permeability is estimated from the ana-
lytical solution of the same problem (46) as in the case of general
periodic micro-geometry, however, set up in the fluid shell Ωf of the
generic spherical bicomposite cell Ω, with homogeneous (“isother-
mal”) boundary conditions on the solid sphere surface ∂Ωsf. Again,
the main difference (apart from the simple geometry pattern) is the
consistency condition on the boundary ∂Ω, which replaces the pe-
riodic condition. Eventually, in the quasi-static regime (i.e., at low
frequencies, when the thermal conduction dominates the inertial
effects) the following estimation of (static) thermal permeability is
achieved38

k̂′0(e)

R
=

3

2φ

k̂0(eC)

R
, (60)

which is presented here in relation to the C-estimate of viscous per-
meability k̂0(eC), because of the similarity in analytical solutions.
The thermal characteristic length is estimated as38

Λ′(e)

R
=

2φ

3(1− φ)
. (61)

Table VI lists the estimates of macroscopic parameters com-
puted (for the radius of spherical cellR = 3.537 mm) from the for-
mulas presented above. In case of “viscous” parameters the three
estimates, P-, C-, and V- are provided. The estimated values α0(e)
for the viscous tortuosity at 0 Hz are taken from Figure 6 in work
by Boutin and Geindreau38. (The estimates for the thermal tortu-
osity at 0 Hz will be assumed from the relevant FCC42% finite ele-
ment analysis.) Some relevant finite element calculations from Ta-
ble IV are also recalled. A comparison reveals a good conformity
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Table VI: Estimates of macroscopic parameters from the generic spherical cell with porosity 42% and some corresponding FE results from Table IV

Estimated parameter Estimate type FE calculations
Name – Symbol – Unit P C V (S: SC42%, F: FCC42%)

viscous permeability: k̂0(e) [mm2] 0.0466 0.0387 0.0134 0.0546 (S), 0.0393 (F)
thermal permeability: k̂′0(e) [mm2] −→ 0.1363 ←− 0.1459 (S)
tortuosity (at∞Hz): α∞(e) [–] −→ 1.29 ←− 1.319 (F)

viscous tortuosity at 0 Hz: α0(e) [–] 1.70 1.65 1.45 1.837 (F)
viscous length: Λ(e) [mm] −→ 1.2246 0.8254 1.120 (F), 0.990 (S)
thermal length: Λ′(e) [mm] −→ 1.4240 ←− 1.423 (F)

of the C-estimate of intrinsic permeability, as well as the estimates
of other parameters – with the corresponding FCC42% results; this
is with an exception of the thermal permeability estimate which
tends to be close to the finite element result computed from the
SC42% RVE (also the V-estimate of viscous length is closer to the
SC42% result, although the P- or C-estimates are again very close
to the FCC42% result). These observations will be of importance
below when the acoustic absorption estimates will be confronted
with the measurement results.

VII. MICROSTRUCTURE-BASED MODELLING OF
SOUND ABSORPTION IN LAYERS OF RIGID
SPHERICAL BEADS VALIDATED BY THE EXPERI-
MENTAL TESTS

From the characteristic functions of effective density and com-
pressibility computed using the Johnson-Champoux-Allard-Pride-
Lafarge approximations10,11 based on parameters from Table IV
(computed from the microstructural finite element analyses) or
their estimations from Table VI (calculated analytically), the
frequency-dependent complex function of effective speed of
sound ce(ω) in the dispersive fluid equivalent to porous medium
can be calculated using formula (4). The real and imaginary parts
of this effective characteristics, divided by the speed of sound in
air cf (i.e., the actual fluid in pores), are presented in Figure 11
for all three numerical cases based on periodic RVEs as well as
the three analytical estimates. First, it should be observed that the
BCC42% and FCC42% results almost overlap, whereas the SC42%
result differs from them by a few percent. The P- and C-estimates
are nearly identical and the V-estimate differs from them slightly in
the real part, and more substantially in the imaginary part. More-
over, when considering the real part of the speed-of-sound ratio, all
the three estimates are placed between the numerical result of the
SC42% RVE and the results obtained from the BCC42% or FCC42%
RVE. On the other hand, in case of the imaginary part, it is the
numerical results which are found between the limiting cases of
the V-estimate and the P- or C- estimates. This observations are
in some conformity with the fact observed above that the esti-
mate of thermal permeability is not far from the SC42% calculation,
whereas the estimations of other parameters are rather similar with
the FCC42% results.

This speed of sound characteristics is used in the Helmholtz
equation of time-harmonic acoustics solved for the configuration
of a porous layer modelled as equivalent fluid fixed on a rigid wall
with a plane harmonic acoustic wave excitation acting on the free
surface. In that way, the acoustic pressure and velocity fields are
found analytically in the layer for the relevant frequency range
from 100 Hz to 6.4 kHz. Knowing the acoustic pressure and ve-

locity, in particular, at the surface of the layer, the surface acoustic
impedance can be calculated, and then the complex reflection coef-
ficient and the real-valued acoustic absorption coefficient (see, for
example Zielinski51,52).

The numerical procedure described above was applied for three
porous layers with the same porosity of 42% and different height
(thickness), namely: 41 mm, 106 mm, and finally 200 mm. These
were actually the exact heights of layers measured in the vertically-
positioned impedance tubes (see Figure 2). Therefore, the numer-
ical calculations based on the multiscale modelling involving mi-
crostructure finite element analyses could be compared with the
corresponding experimental results. For the purpose of this com-
parison, in case of each layer the results of microstructure calcu-
lations for three types of Representative Volume Elements were
used, namely, for the RVEs based on SC, BCC, and FCC sphere
packings with adjusted porosity of 42%. Finally, the results based
on self-consistent estimates derived from the spherical bicomposite
cell (with porosity 42%) are also provided.

Figure 12 shows the sound absorption of porous layer with thick-
ness (height) of 41 mm. The acoustic absorption is especially good
in some frequency ranges around 1700 Hz and 5200 Hz. These
characteristic features of the experimental absorption curve are
very well represented also by modelling results. As a matter of
fact, the absorption curves obtained from numerical modelling are
in very good agreement with the experimental result, although in
general, the numerically computed absorption is slightly inferior
than the one found experimentally. Moreover, one should observe
that the two best-performance peaks in the numerical curve com-
puted from the SC42% RVE are slightly shifted to the left in the
frequency domain, whereas the peaks computed from the BCC42%
or FCC42% RVEs are slightly shifted to the right. However, it
should be recalled now that in the first numerical case, that is for
the SC42% RVE, the spheres were slightly overlapping, whereas in
the remaining two cases, that is for the BCC42% or FCC42% RVEs,
the spheres were shifted apart leaving always some narrow space
between them. In reality some of the spherical beads are in con-
tact which may be seen as an intermediate case between the over-
lapping case and the cases without contact – and thus, the correct
representative experimental results tend to be in the middle of the
two limiting numerical cases. This reasoning seems to be some-
how confirmed by the curves obtained from the self-consistent es-
timates. The V-estimate seems to be the closest to the experimental
result, although the P- and C-estimates are rather inferior than the
numerical findings. However, all three estimates have peaks in ab-
sorption at very similar frequencies as the measurements, that is,
in-between the SC42% and FCC42% (or BCC42%) cases. Since the
estimated thermal permeability was rather close to the SC42% re-
sult, whereas the other estimated parameters were similar with the
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Figure 11: The ratio of the effective speed of sound to the speed of sound of pore-fluid
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Figure 12: Acoustic absorption of 41 mm-thick layer of rigid spheres (beads): the multiscale modelling results vs. experiment
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Figure 13: Acoustic absorption of 106 mm-thick layer of rigid spheres (beads): the multiscale modelling results vs. experiment
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Figure 14: Acoustic absorption of 200 mm-thick layer of rigid spheres (beads): the multiscale modelling results vs. experiment

FCC42% calculations, it seems that the SC42% RVE tends to be more
correct with respect to thermal transport, whereas the FCC42% or
BCC42% RVEs allow for correct estimations of intrinsic permeabil-
ity and tortuosity, that is, the properties of fluid flow through porous
medium. In the actual layers, because of the tube constraints and
rather loose packing some larger spaces may be formed between
some of the beads which allows for higher thermal permeability
than the one previewed by the regular FCC or BCC packings. On
the other hand, as points out the V-estimate the actual viscous per-

meability seems to be even inferior than the lowest numerical find-
ing based on the FCC42% RVE, whereas the viscous characteristic
length is somehow between the FCC/BCC42% results (with spheres
shifted apart) and the SC42% one (with overlapping spheres).

Similar observations can be made in case of the sound absorp-
tion of thicker layers. Figure 13 presents the results obtained for
the layer of spherical beads with thickness (height) of 106 mm:
in the frequency range from 100 Hz to 6.4 kHz there are 5 perfor-
mance peaks starting at about 0.7 kHz and then successively re-
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appearing after additional approximately 1.35 kHz. The peaks of
the experimental curve are repeated by the curves calculated nu-
merically, however, in case of the solution found from the SC42%
RVE, when the frequency increases, the peaks at those higher fre-
quencies tend to be more and more significantly shifted to the left
in the frequency domain. On the other hand, the peaks in curves
found on the basis of the BCC42% or FCC42% RVEs tend to be only
very slightly shifted to the right. The same conclusions can be
drawn when comparing the results measured and computed for the
200 mm-thick layer presented in Figure 14. There are now 9 best
performance peaks of the acoustic absorption in the considered
frequency range, rather well represented by the numerical curves
computed from the simulations based on the BCC42% or FCC42%
RVEs. Lower frequency peaks in the acoustic absorption curve ob-
tained from the SC42% simulations are also in a good agreement
with the experimental results, while the higher frequency peaks
are significantly shifted to a lower range. For the sake of legibil-
ity, only V-estimate is presented in Figures 13 and 14, since it is
very close to the corresponding measurements, and the other esti-
mates (i.e., the P- or C-estimate) were in general worse than the
numerical results obtained from the FCC42% or BCC42% RVEs.

It is easy to notice that the discrepancies between numerical sim-
ulations and experimental results are bigger for thicker layers. A
rational explanation is that the sound waves need to pass a longer
distance through a thicker porous material so that the errors com-
ing from the idealised numerical representations of more random
porous microstructure are summed up, and the effect is even dou-
bled by the fact that it considers both the incident and reflected
waves. More obvious is the fact that the discrepancies appear rather
in a higher frequency range where the wavelengths are shorter and
the effects contributing to the acoustic wave absorption are more
influenced by variations in the characteristic dimensions of the mi-
crostructure of porous medium which is rather simplified by the
regular representations used in the modelling.

VIII. CONCLUSIONS

Representative Volume Elements based on regular sphere packings
of the SC, BCC, and FCC types were used for the hybrid multi-
scale modelling of acoustic absorption in porous layers composed
of quasi-randomly packed rigid plastic spherical beads with diam-
eter 5.9 mm. The porosity of RVEs was adjusted to the exact value
of 42% (found experimentally) by shifting the spheres apart – in
case of the BCC or FCC packings – or by allowing for small over-
lapping – in case of the SC packing. This approach proved to be
sufficient for the multiscale modelling of the problem using com-
paratively simple RVEs, suitable for very efficient finite element
calculations. It was also confronted with the self-consistent esti-
mates based on the spherical bicomposite cell.

As a matter of fact, the results obtained for the BCC42% and
FCC42% packings are almost the same and they tend to be in a
good accordance with the experimental results. They are better
than the results based on the P- or C-estimate, however, the V-
estimate seems to be the closest with the experimental findings.
The results computed using the RVE based on the SC42% packing
are still good for thinner layers; however, in case of thicker layers
the acoustic absorption is estimated more or less correctly only in
a lower part of the considered frequency range. The cause for the
discrepancies at higher frequencies is a poorer scale separation and

a vulnerability of shorter waves for the variations in characteristic
dimensions of microstructure, not correctly represented by the ide-
alised regular RVE. It is crucial especially for thicker layers where
the passing distance of waves is longer so that the discrepancies
can accumulate. Moreover, one should remember that the SC42%
packing allows for overlapping of the spheres which is nowhere
present in the actual microstructure of porous medium composed
of spherical plastic beads poured randomly into the measurement
tubes.

Nevertheless, both, the numerical calculations and the analytical
estimates give a systematic underestimation of sound absorption
when compared to the measurements. This difference tends to be
more pronounced at higher frequencies where the wavelength of
sound waves in porous medium is getting shorter. The plausible
explanation of this fact may be a poor realisation of the scale sepa-
ration assumption (a fundamental assumption taken by the model).
As a matter of fact, the spherical beads are 5.9 mm in diameter
and some of the actual air spaces in the measured layers of beads
loosely packed in a tube may be fairly large in size (a few milime-
ters) and larger than the distances in regular sphere packings or bi-
composite cell. The wavelengths (which are, for example, 97 mm
at 3 kHz and 58 mm at 5 kHz) are still larger than the characteristic
dimensions of pores yet the order of scale separation is rather poor.
This should result in some additional dissipative mechanisms not
present in the model, which at even higher frequencies would lead
to scattering or trapping phenomena of very short waves.
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