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Abstract

This paper proposes and discusses an approach for the design and quality inspection of the morphology dedicated for sound absorbing
foams, using a relatively simple technique for a random generation of periodic microstructures representative for open cell foams with
spherical pores. The design is controlled by a few parameters, namely, the total open porosity and the average pore size, as well as the
standard deviation of pore size. These design parameters are set up exactly and independently, however, the setting of the standard deviation
of pore sizes requires some number of pores in the Representative Volume Element (RVE); this number is a procedure parameter. Another
pore structure parameter which may be indirectly affected is the average size of windows linking the pores, however, it is in fact weakly
controlled by the maximal pore-penetration factor, and moreover, it depends on the porosity and pore size. The proposed methodology
for testing microstructure-designs of sound absorbing porous media applies the multi-scale modelling where some important transport
parameters — responsible for sound propagation in a porous medium — are calculated from microstructure using the generated RVE, in order
to estimate the sound velocity and absorption of such a designed material.
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I. INTRODUCTION

Computational experiments can be an important tool for study-
ing and designing novel materials with respect to some desirable
macroscopic properties which essentially depend on the material’s
microstructure. This is especially true in the case of porous media
which are typically characterized by a rather complex morphology
involving some random factors. The stochastic generation of pore
structures has been a subject of numerous research with respect to
many problems like the Darcy flow !, or the problems of elasticity
and viscoelasticity of porous solids?, or the effective electric con-
ductivity of porous media®, etc. However, the so-called transport
parameters of porous media relevant for viscus and thermal flows
are also responsible for an overall sound absorbing properties of
porous materials with open porosity. The effects of microstructure
for the transport parameters have been recently studied with re-
spect to the reticulated foams, especially, polyurethane foams*3,
but also some highly porous open-cell metallic foams®. Such retic-
ulated foams are characterised by a very specific geometry of cells
which can be idealized by tetrakaidecahedra shapes (Kelvin cells)
or truncated octahedron networks with tetrahedral vertices. On the
other hand, it has been reported that in case of some open-cell ce-
ramic foams the shapes of pores tend to be spherical and the pores
are linked by circular windows '°.

The main purpose of this work is to present a methodology for a
morphological design of sound absorbing foams. The proposed ap-
proach consists of two stages: (1) the generation of representative
microstructures with open-porosity, and (2) the multi-scale mod-
elling of acoustics of such open porous media filled with air. The
generation of porous microstructure will involve a random factor,
however, it will be at the same time controlled by some average (or
macroscopic) morphological parameters. Moreover, it is assumed
that the pores are spherical, which is in agreement with the men-
tioned non-reticulated foams produced by thermo-chemical pro-
cesses (with or without mixing) with pores created by growing
air-bubbles, like, for example, in porous corrundum ceramics %!,
Therefore, the technique for the generation of representative mi-
crostructures will be essentially based on the algorithms of random
packing of hard spheres. This subject has been investigated by
many authors '>~'®. Two main group of techniques are based on the
so-called Random Sequential Addition (RSA) process ', or on the
Lubachevsky-Stillinger compression algorithm?. The technique
applied in this paper is similar to the Lubachevsky-Stillinger algo-
rithm which was originally proposed for two-dimensional discs?°.
In this algorithm the particles start with random positions and ve-
locities, and as they move about they grow uniformly in size, from
points to jammed disks°.

Apart from the purely morphological assumption of spherical
pores, it is also assumed that the skeleton (or frame) of open-
porosity foams is rigid with respect to the physical phenomena
responsible for sound propagation. This is true in the case of ce-
ramic foams (and usually not true in the case of soft polyurethane
foams, especially in some lower frequency range). Thus, the car-
rier medium for sound waves is only the air inside the open pore
structure. In such a case of rigid porous medium, the propagation
and absorption of sound can be described by the so-called fluid-
equivalent models, i.a., by the very efficient and widely accepted
Johnson-Allard model?! which involves a semi-phenomenological
modelling of the viscous effects by Johnson et al.?*> (with some
enhancements by Pride et al.?®), as well as a modelling involv-

ing thermal effects?*2%. The efficiency of this rather complex

model results from the fact that it was actually derived by re-
ferring to an average porous microstructure’®?’. Such an ap-
proach has recently allowed for advanced microstructure-based
analyses in poro-acoustics: by using some approximative two-
dimensional representations of porous materials 2~** and also more
realistic three-dimensional representative cells**3!=33. In this ap-
proach some relevant finite element analyses carried out on the
fluid domains in the periodic representative cells serve to calcu-
late from microstructure some transport parameters (like: perme-
ability and its thermal analogue, or viscous and thermal charac-
teristic lengths, etc.) used by the Johnson-Allard model. Thus,
the influence of microstructure on some of those parameters may
now be also thoroughly studied®3*33 (separately from the whole
poro-acoustic model). The authors of microstructure-based anal-
yses usually propose very simplified periodic cells to represent
the studied porous media; in the case of materials with spherical
pores the representative micro-geometries are based on some reg-
ular sphere-packings®>*}. For example, Chevillotte et al.** used
the body-centered cubic (BCC) arrangement as the most appropri-
ate for the physics of such foams, because it tends to the Kelvin
cell (tetrakaidecahedron) when pores are growing (as in the case of
high porosity polyurethane or polymer foams). The regular sphere
packings have also been used in the microstructure-based mod-
elling of porous media made up of rigid spheres*!**38, for which
—in the case when the spheres are identical — even some analytical
estimations of the relevant transport parameters are possible 37,

The present work is organized as follows. First, the procedure
for a controlled random generation of periodic microstructures rep-
resentative for open cell foams with spherical pores is presented.
The main idea and important features of the proposed technique
are discussed and illustrated with an example of the controlled gen-
eration of microstructure for an open-cell foam with the designed
porosity of 70% and the average diameter of pores equal to 330 pm.
In the second part of paper, this periodic Representative Volume
Element is used to evaluate sound propagation and absorption in
foams of such micro-geometry made up of a stiff material. To this
end, first, some necessary transport parameters are calculated from
the microstructure and they are used by the multiscale modelling to
determine the effective speed of sound in the designed rigid foam,
as well as the acoustic wave number and celerity. Then, the sur-
face acoustic impedance and absorption are calculated from the
effective model for rigid foam layers of various thicknesses. Fi-
nally, some limitations of the proposed approach are discussed in
the context of the results obtained for a real ceramic foam with
spherical pores and open porosity of 88%.

II. CONTROLLED RANDOM GENERATION OF PERI-
ODIC MICROSTRUCTURES REPRESENTATIVE FOR
FOAMS WITH SPHERICAL PORES

A. Procedure and design parameters

In order to calculate the parameters for the Johnson-Allard poro-
acoustical model?!*® one needs a small periodic cubic cell with a
piece of skeleton (solid frame) inside. Such a cell must be repre-
sentative for the (macroscopically homogeneous) porous medium
to constitute its Representative Volume Element (RVE). Porous
materials are usually not regular on the micro-scale level though
their micro-geometry can be rather well described by some global
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Figure 1: Periodic arrangements of moving bubbles

parameters like porosity, some generic features like typical shape
of pores or fibres, and some statistical data like, for example, typi-
cal sizes of pores and windows linking the pores in case of foams,
or typical size of fibres and distances between them in case of fi-
brous materials. Therefore, it seems reasonable that RVEs may be
constructed in a random way basing on some typical statistics of
real porous media they tend to represent.

A comparatively simple method of random generation of RVEs
for foams with spherical pores is proposed here. First of all, the
method relies on the dynamics of spherical bubbles (or in fact, rigid
spheres) which move and bounce each other while the cubic cell of
RVE decrease its size, and the whole procedure imposes the pe-
riodic boundary conditions. As mentioned above, this approach
is similar to the Lubachevsky-Stillinger method?® which is essen-
tially a hard-sphere molecular dynamics with the particles growing
in size during the course of the simulation at a certain expansion
rate and colliding with each other elastically '*. In the procedure
proposed here, the bubbles (spheres) may freely pass the walls of
the shrinking cube yet the whole setup is periodic so they at once
appear from the other side. As a matter of fact each bubble/sphere
belongs to an ensemble of eight identical bubbles set in the cor-
ners of a cube with its edge equal to the current edge-length of the
RVE cell. (The edge of the cube changes together with the change
of size of RVE.) These imposes some additional constraints, how-

ever, it is necessary to insure the periodicity of RVE. The (final)
diameters of bubbles should be chosen to be consistent with the
statistics of the real foam. There is also a penetration parameter
which states how much the bubbles may penetrate each other; this
parameter together with the assumed bubble sizes should yield typ-
ical sizes of windows linking the pores which are known form the
foam statistics. Figure 1 depicts the idea in 2D, showing some
periodic arrangements of moving bubbles in a few frames of mo-
tion (the solid square shows the boundary of periodic cell and the
dashed circles inside the bubbles mark the maximal range of pen-
etration). The whole procedure can be stopped when the global
porosity is reached or when the size of the RVE cube cannot be
decreased. It was found that to improve mixing and packing of
spheres (bubbles, pores) specific techniques may involve: gravity
simulation, bubble shrinking and swelling, random acceleration,
collision energy dissipation, etc.

The proposed method ensures realistic random arrangements of
pores because of some inherent aleatory factors and techniques
mentioned above. Thus, also the initial distribution of spheres is
random as well as their initial velocities. On the other hand, some
macroscopic parameters of the porous microstructure need to be
controlled. As such parameters are chosen: the total open porosity
and the average size of pores. These two primary parameters are
complemented by two auxiliary ones, namely: the standard devia-
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tion of pore size and the penetration factor. The choice of primary
parameters is rather obvious since the porosity and pore size are
crucial for sound absorption and propagation in porous media, as
well as for the chemical precesses of their production. In fact, those
parameters are often controlled or designed factors in the manufac-
turing of real foams. It is important to notice here that those two
parameters (in contrast to the auxiliary ones) will be controlled di-
rectly, precisely and independently.

Yet another feature of porous foams, namely, the typical size
of windows linking the pores, will be indirectly controlled in the
proposed procedure by means of the mentioned penetration factor.
This dimensionless parameter ( is defined here as the ratio of the
maximal allowed penetration of a bubble (sphere) by neighbouring
bubbles, to the actual radius of this bubble (see Figure 2). Its value
limits in some way the final sizes of the widows linking pores.

Figure 2: Two mutually penetrating spheres

Figure 2 shows two neighbouring spheres (pores): one with ra-
dius R and the other with radius R». The distance d between them
is smaller than the sum of their radii, i.e., d < R; + Rs, therefore,
there is a circular window linking these pores and its radius is:

1
Ry = 5\ 20(R + B) — (R - B3 —dt. (1)
In the case when the spheres (pores) are of the same size, i.e., R; =
Ry = R, the size of window with respect to the size of pores

equals
2
S
4R;

When the maximal allowed sphere-penetration (R, is reached,
which means that the distance between two identical spheres is
d = R,(2 — (), the ratio of the widow size to the pore size equals

(@)

3)

and it is a function of the dimensionless penetration factor (. Fig-
ure 3 plots this window-to-pore size ratio with respect to the value
of penetration factor, in the full range from ( = 0 (when the
spheres are in contact) to ( = 2 (when the spheres fully over-
lap), although practical values of { should be smaller than 1. The
plot in Figure 3 permits to estimate that, for example, for ¢ = 0.2
the maximal window size should rather be smaller than 0.44 of
the average size of pores, although this would depend also on the
variation of pore sizes as well as on the total porosity and random
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Figure 3: The ratio of window to sphere size with respect to the penetra-
tion factor (the case of two identical spheres)

mixing/packing. Nevertheless, this estimate is quite useful; how-
ever, when choosing the penetration factor ¢ one should remember
that the average window size would certainly be even smaller than
the estimated limiting value.

It must be remarked here that the size of widows is also some-
how dependent on the porosity and the typical pore size specified
by the average pore-size with the standard deviation. In the pro-
posed methodology the standard deviation of pore size can be ap-
proximately adjusted provided that there are at least a few different
representative spherical pores in RVE. The size of spheres (which
would become pores) can be semi-randomly or manually set in that
way so that the standard deviation equals the required (or designed)
value. Another possibility is to set for all the spheres the same
initial size, i.e., the diameter (or radius) equal to 1, and then get
some standard deviation by random swelling and/or shrinking the
spheres during the dynamic periodic mixing in the shrinking cube
of RVE. This second approach, however, would require some con-
trol of the swelling/shrinking rate. Finally, it has been found that
a very convenient approach is the one where the initial sizes of
spheres are assumed accordingly to some (initial) standard devia-
tion value which may be slightly modified by comparatively slow
random swelling/shrinking during the numerical packing process.

B. Foam microstructure with open porosity of 70 %

In the example presented in this paper five spheres were used to
generate a Representative Volume Element with the exact designed
porosity of only 70% — with enough of the skeleton to ensure a
good bearing capacity — to suggests a multi-functionality of such
sound absorbing material. The size of spheres (in fact, their di-
ameters) had been initially chosen as: 0.8, 0.9, 1.0, 1.1, and 1.2,
which gives the mean value of 1 with the standard deviation of
0.1581. The same maximal penetration factor ( = 0.2 was set for
all the spheres. Then, the dynamic periodic mixing and packing of
spheres — under the law of elastic collision — inside the shrinking
cubic space was effectuated. The spheres were allowed to slowly
shrink and (even more slowly) swell, however, the rate of sphere
shrinking/swelling was slower than the shrinking rate of RVE cube.
At each step the porosity was calculated and the whole procedure
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Figure 4: Pore sizes, their average diameter with the (band of) standard
deviation

was terminated when its value reached 70%. The final size of
spheres (pores) was normalized, so that their mean value was again
exactly 1. These final normalized sizes of pores are shown in Fig-
ure 4. It appeared that the final standard deviation was 0.1574, that
is, nearly the same as the initial one. Now, the average pore di-
ameter was set to the exact designed value of 0.33 mm by simply
rescaling the RVE cube: in order to achieve this its edge-length
was set to 0.52mm. The corresponding pore diameters are listed
in Table I and they can also be read from Figure 4. Finally, Fig-
ure 5 presents typical size of windows linking the pores in the final
RVE. (One should notice that there are 11 windows since some
pores — each represented by an assembly of eight spheres during
the dynamic mixing — could be linked by two different windows,
because of periodicity.) By rescaling the RVE cube in order to set
the designed pore size, the average diameter of windows was set to
0.136 mm with the standard deviation of 19% of this value. Thus,
the ratio of the average window to average pore size equals 0.41.
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Figure 5: Window sizes, their average diameter with the (band of) stan-
dard deviation

Figure 6 shows the final random arrangement of pores (overlap-
ping bubbles) in the periodic RVE with open porosity of 70%. Only
those bubbles are shown which are in contact with the single RVE
cube, and therefore, usually, less than eight bubbles from every as-
sembly of each ‘periodic pore’. The solid skeleton (frame) of such
periodic representation of foam with porosity 70% is presented in

Table I: Geometric data of the randomly-generated periodic RVE for
open-cell foam of porosity 70%

Porosity: 70% ‘ Number of pores in RVE: 5§
Ratio of the pore diameters to the RVE edge-length:
0.4948 0.6263 0.6301 0.6618 0.7761
Pore diameters [mm] for the RVE edge-length of 0.5159 mm:
0.2553 0.3231 0.3251 0.3414 0.4004
Average diameter [um] of | windows: 136 pores: 330
Volume [mm?] of [ RVE: 0.1373 | frame: 0.0412 | pores: 0.0961

Figure 6: Randomly-generated periodic arrangement of bubbles (pores)
in the cube of Representative Volume Element (RVE) for an open-cell
foam with porosity 70%

Figure 7. In the top row there are three views at various angles of
the original periodic cell with three tiny, seemingly disconnected
fragments visible at lower part. In fact, they are not loose at all, but
they are simply tiny parts from the relevant opposite sides of the
periodic cubic cell. Such a representation with tiny bits of solid or
fluid domains would be quite inconvenient for finite element mesh-
ing and analyses. Therefore, the original periodic cell was simply
periodically shifted (by the vector [0,0.3,0.3]) to get a compact
form of periodic skeleton visualised in the bottom row of Figure 7;
the corresponding (shifted) RVE-cube has also been visualized in
Figure 6. This shifted periodic cell was used in all finite element
calculations. Some relevant geometric data of this periodic mi-
crostructure are listed in Table 1.

III. SOUND PROPAGATION AND ABSORPTION IN RIGID
FOAMS WITH OPEN POROSITY

A. Effective fluid

As mentioned above, the sound waves propagation in porous me-
dia with rigid frame can be very effectively modelled using the so-
called fluid equivalent approach, where a porous material is sub-
stituted by an effective fluid. The dynamic density and dynamic
bulk modulus of such fluid are frequency-dependent and complex

quantities defined as follows?>!->
ora(w) K
Oe\W) = s K.(w) = ) “4)
) ¢ ) ¢ B(w)

that is, with respect to the real constant density of and bulk modu-
lus K of the actual fluid in pores (usually, the air). Here, w = 27 f
is the angular frequency (f is the frequency), and the dimensionless


http://dx.doi.org/10.1121/1.4915475

This is a preprint of:

http://dx.doi.org/10.1121/1.4915475

J. Acoust. Soc. Am. 137(4), 1790-1801 (2015)

Figure 7: A randomly generated periodic cell of foam with open porosity 70% — three views of solid skeleton at various angles (top row), and these views of
the same periodic cell shifted periodically by the vector [0, 0.3, 0.3] (bottom row)

functions a(w) and 3(w) are the so-called dynamic tortuosity and
the compressibility ratio (of the effective fluid to the pore-fluid), re-
spectively. The dynamic tortuosity is the ratio of the dynamic den-
sity to the constant density of fluid in pores and is always greater
than 1, since the effective fluid is virtually heavier than the actual
pore-fluid because of some viscous and inertial interactions of fluid

in pores with the solid frame. The compressibility ratio is derived
21,26
as*"

_ n—1
Bw) = — @)

®)

where ~; is the specific heats ratio in pore-fluid, whereas o’ (w) is
the so-called dynamic thermal tortuosity of porous medium. This
dimensionless function is a thermal analogue of the classic (i.e.,
viscous) dynamic tortuosity a(w).

The enhanced model by Johnson-Champoux-Allard-Pride-

Lafarge provides the following formulas for the dynamic tortuosi-
2132

ties
alw) = °°+iy_oik% %(%)24—@—64—1 ,  (6)
a'(w)zl%—%% il/—tz<ilfg)2+b’2—b'+l , 7
where
S A =

In the formulas above v is the kinematic viscosity of pore-fluid and
v{ = v¢/Pr (Pr is the Prandtl number of fluid in pores), whereas
all the other parameters are the so-called transport parameters of
porous medium resulting purely from its micro-geometry. They
are: the total porosity ¢, the intrinsic (i.e., viscous) permeability kg
and its thermal analogue k{, the intrinsic tortuosity ., (i.e., purely
inertial, in the high-frequency inviscid regime), the low-frequency

limits of dynamic viscous tortuosity ay and dynamic thermal tor-
tuosity «, and finally, two characteristic lengths A and A’ (for
viscous forces and thermal effects, respectively).

B. Calculation of transport parameters from microstructure

The periodic arrangement of pores presented in Figure 6 together
with the (conveniently shifted) cube yielded a good representative
micro-geomertry for the designed open-cell foam with spherical
pores. All pores are interconnected and they also form one sin-
gle domain filled with the pore-fluid. Figure 8 shows the periodic
skeleton as a unique non-fragmented solid domain, as well as a fi-
nite element mesh of the corresponding fluid domain. Such RVE
served in all finite element analyses discussed below, necessary
for determination of transport parameters used in the modelling of
sound propagation in porous media.

(K v’sgés
g N
Y

Figure 8: Randomly-generated periodic RVE for an open-cell foam with
porosity 70%: the skeleton (frame) and a finite-element mesh of the cor-
responding fluid domain

The transport parameters are computed from three steady, static
(i.e., non-harmonic) analyses defined on the fluid domain of Repre-
sentative Volume Element; they are the following scaled Boundary
Value Problems (BVPs)*+26:31.37.
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* the viscous flow problem: the Stokes flow caused by a unit
pressure gradient, with no-slip boundary conditions on the
fluid-solid interface;

¢ the thermal conduction problem: a steady heat transfer
caused by a unit heat source, with isothermal boundary con-
ditions on the fluid-solid interface;

¢ the electric conduction problem: the electric field distribu-
tion in the fluid domain of porous medium made up of elec-
trically insulating solid filled with a conductive fluid, caused
by a unit electric potential gradient; in fact, the scaled elec-
tric conduction problem corresponds to the inertial flow in the
high-frequency regime*, and it can be eventually reduced to
the Laplace problem for the unknown (electric) potential field.

The unit pressure gradient, unit heat source, and unit electric po-
tential gradient are all macroscopic fields, i.e., constant throughout
the fluid domain. The unknowns are relevant microscopic fields of
velocity, temperature or electric potential, respectively, defined on
the fluid domain, caused by the applied macroscopic fields.

The transport parameters are determined from the scaled solu-
tions of those microstructural BVPs, averaged over the fluid do-
main, and using the appropriate formulas given for example in
work by Zielinski®’. Thus, the result of the viscous flow analy-
sis shown in Figure 9 allowed to determine the parameter of static
(viscous) permeability kg and the low-frequency limit g (i.e., at
0Hz) of the viscous dynamic tortuosity a(w). The result of the
heat transfer analysis shown in Figure 10 permitted to calculate the
thermal analogue of static permeability k{, and the low-frequency
limit o, of the thermal dynamic tortuosity «(w). Finally, from
the result shown in Figure 11 — yielded by the Laplace analysis
— the classical parameter of tortuosity o, was calculated, which
is, in fact, the high-frequency limit of the viscous dynamic tor-

A 28x107°

- x10710
& [ — 28

12

Lo
¥ 9.3259x107%!

Figure 9: Viscous permeability field [m?] (for the propagation direc-
tion X as shown in Figure 8) in the fluid domain of the randomly-
generated RVE of foam with porosity 70%
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Figure 10: Thermal permeability field [m?] for the randomly-generated
RVE of foam with porosity 70%
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Figure 11: Potential field [m] (for the propagation direction X as shown
in Figure 8) in the fluid domain of the randomly-generated RVE of foam
with porosity 70%

tuosity a(w), since the electric conduction problem of a porous
medium formally coincides with the inviscid incompressible flow
which captures the purely inertial resistance of flow through a
porous medium at very high frequencies. From the solution of this
problem also the viscous characteristic length A was determined.
The thermal characteristic length A’ is computed as the ratio of the
doubled volume of fluid domain to the surface of fluid-solid inter-
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face. All those necessary transport parameters determined from the
randomly-generated representative microstructure of the designed
foam are listed in Table II.

Table II: Transport parameters computed from microstructure for the ran-
domly generated open foam with porosity 70%

Parameter | Symbol Unit Value

porosity o} % 69.980

tortuosity (at oo Hz) Qoo — 2.9518

viscous tortuosity at 0 Hz Qo — 3.9845
thermal tortuosity at 0 Hz Qg - 1.4286
viscous permeability ko 107%m? | 2.0871
thermal permeability k¢ 107%m? | 16.498
viscous characteristic length A 107%m | 70.335
thermal characteristic length A 107%m 138.32

C. Sound waves propagation in a rigid foam

The transport parameters computed from microstructure allowed
to calculate the viscous and thermal dynamic tortuosities o and o,
and then, the compressibility ratio 5 for the designed foam filled
with air, using formualas given in Section A. Figure 12 presents the
viscous dynamic tortuosity characteristics « in the wide frequency
range from 10 Hz to 10 kHz; this dynamic tortuosity « describes in
fact the density ratio of the effective equivalent fluid to the actual
pore-fluid (air). Figure 13 presents the ratio of the bulk moduli
of effective fluid and pore-fluid (air), which as a matter of fact,
equals 5.

3
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Figure 12: Dynamic viscous tortuosity (the ratio of the dynamic density
to the density of pore-fluid, ge (w)/or = a(w)) for the foam with porosity
70%

The dynamic viscous tortuosity and compressibility ratio allow
to determine the dynamic bulk modulus and density for the effec-
tive fluid equivalent to the designed foam filled with air, and then,
the effective speed of sound in such a medium, which equals

K. (w) _ ct
2e(w) a(w)Bw)’

ce(w) =
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Figure 13: The ratio of the dynamic bulk modulus to the bulk modulus of
pore-fluid, Ke(w)/ K¢ = 1/(w), for the foam with porosity 70%
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Figure 14: The complex wave number: its real part and the wave damping
(equal to a minus imaginary part of the wave-number) for the foam with
porosity 70%

where ¢t = \/K¢/or = \/ %P/ o is the speed of sound in fluid in
pores (air), and here, F; is the ambient mean pressure. The effec-
tive speed of sound is a complex-valued function of frequency, and
so is the corresponding effective wavenumber defined as

(10)

Figure 14 presents the complex wavenumber computed for the de-
signed foam in the frequency range up to 10kHz. The imaginary
part of wavenumber is always negative, and therefore, in the log-
arithmic graph in Figure 14 the minus imaginary part is shown,
which, as a matter of fact, represents the wave damping, since the
complex wavenumber can be also expressed as follows

w

— —idy,
Cw

kw = 1D
where ¢, is the wave celerity and d,, is the mentioned wave damp-
ing. Both these quantities are strongly frequency-dependent and
they are calculated here from the following formulas based on the
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determined wavenumber

CW:L dy = —Imk,(w).

Re ky(w)’ (12)

One should notice that — since the effective density, bulk modulus
and wave-number are complex — the first formula is not the same
as Re(w/kw) = Re /K¢/0. = Re c. which is the real part of the
complex effective speed of sound in the virtual fluid equivalent to
porous medium.

The frequency-dependent variation of wave celerity is shown in
Figure 15 where it is clear that it exhibits an asymptotic behaviour
at limiting cases of extremely low and very high frequencies. Thus,
the wave celerity reaches 171 m/s at 10 kHz, which is almost ex-
actly one half of the assumed speed of sound ¢y = 343 m/s in air
(pore-fluid) which fills the pore space; for even higher frequen-
cies this value is only slightly exceeded. It is important to mention
that the corresponding wave-lengths: 17.1 mm at 10kHz, and ap-
proximately 8 mm at the audible upper-limit of 22 kHz, are always
significantly greater than the characteristic sizes of pores listed in
Table I. (The wave-length is computed as ¢/ f, and the way it
varies with frequency f is presented in Figure 16.) In a wide range
of higher frequencies just below 10kHz the wave celerity slightly
decreases (see Figure 15), however, in a middle frequency range
it starts to drop: at 3kHz it is 155 m/s, and then only 124 m/s at
1 kHz. In fact, under 1 or 2 kHz it dramatically slows down to reach
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Figure 15: Acoustic wave celerity and its ratio with respect to the speed
of sound in air (pore-fluid) for the foam with porosity 70%
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Figure 16: The variation of wave-length with frequency for the foam with
porosity 70%

45 m/s at the frequency of 100 Hz. Then, the celerity curve asymp-
totically flattens and passes through 14 m/s at 10 Hz, to reach only
4.6m/s at 1 Hz. This is very slow yet one should remember that the
wave carrier medium is the pore-fluid only and a motionless “vac-
uum” of rigid skeleton fills 30% of the foam volume; moreover,
the pores are rather very small, and although there are many of
them, the microstructure is characterized by rather high tortuosity
numbers (see Table II).

D. Surface acoustic impedance and absorption for rigid foam
layers of various thickness

The homogenised microstructure-based model of porous material
was used to estimate the sound absorption in the designed rigid
foam of porosity 70%, by considering three layers of different
thickness ¢ (set to a rigid wall), namely: ¢ = 20 mm, 30 mm, and
40mm. To this end, firstly, the surface acoustic impedance was

calculated for each of three cases, using the following formula?!'*
Z(w) = —ige(w)ce(w) cot —— (13)
w 10e(w)ce(w) c .
Qe € Ce( )

The results presented for all three layers in Figure 17 show ac-
tually the ratio of the surface impedance Z(w) to the character-
istic impedance of air (pore-fluid) Z;y = 413.3Pa-s/m. The sur-
face impedance for porous medium is complex, therefore for each
case, two curves are shown: the real and imaginary parts of the
impedance ratio.

N
~
3
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= 1
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Figure 17: Surface acoustic impedance for the foam layers with open-cell
porosity 70% and thickness of 20 mm, 30 mm and 40 mm

Basing on the results of surface acoustic impedance the acous-
tic absorption coefficient A(w) was computed using the following

formulas 240
A4 — 7
A(w) =1— |R(w)|?, where R@):M (14)

Here, R(w) is the frequency-dependent complex reflection coef-
ficient which essentially depends on the surface impedance. The
absorption coefficient A(w) is a real-valued frequency-dependent
quantity. Three absorption curves computed for three layers with
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Figure 18: Acoustic absorption for the foam layers with open-cell poros-
ity 70% and thickness of 20 mm, 30 mm and 40 mm

the specified thickness — in the frequency range from 100 Hz to
6 kHz — are shown in Figure 18 to illustrate good sound absorption
properties of the designed foam (cf. these results for example with
the measurements of real foams in Zielinski e al.'! or Zielinski
and Rak*!).

IV. LIMITATIONS

In this Section some limitations of the proposed approach will be
discussed in the context of the results obtained for an existing ce-
ramic foam.

A sample of alumina (aluminium oxide) ceramic foam of rel-
atively high open porosity of 88% and the thickness of 16.5 mm
was cut into a cylindrical shape with diameter of 29 mm, so that
it could be fitted into the impedance tube, where the acoustic ab-
sorption coefficient for the sample was measured. As reported in
Ref.!! the size of minimum 150 pores and 350 windows was ex-
amined for such foam to assess that the pores are spherical in shape
and their average diameter is 380 um, whereas the average size of
widows linking the pores is only 60 pm which gives a very small
window-to-pore-size ratio of 0.16. Since, at the same time, the to-
tal porosity is relatively high, it means a rather large variety of pore
sizes (i.e., there are very small pores/channels linking large pores
and increasing the porosity).

In order to make the finite element calculations feasible the algo-
rithm for random generation of representative microstructure was
effectuated with only five pores of various sizes in a periodic cell
and the standard deviation of pore size was 25% of the mean value.
Thus, the microstructure with the required porosity of 88% could
be generated only by assuming a higher penetration factor, so that
the final window-to-pore-size ratio was 0.46. Figure 19 shows the
final periodic arrangement of bubbles (pores) and the resulting pe-
riodic geometry of solid frame (skeleton) and fluid domain (with a
visible mesh of finite elements).

Because of the restriction of the low number of complete pores
(or, as a matter of fact, the reasonable number of degrees of free-
dom in finite element mesh), the generated microstructure seems
to be only weakly representative for the ceramic foam. Therefore,
two cases were investigated: (1) the Representative Volume Ele-
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Figure 19: Periodic RVE for an open-cell foam with porosity 88%:, the
periodic arrangement of bubbles (pores), the solid frame (skeleton) and a
finite-element mesh of the corresponding fluid domain

ment RVE-1 set so that the average pore size is 380 um, i.e., equal
to the value reported for the ceramic foam, and in that case the
average size of windows linking the pores is 176 um; (2) the Rep-
resentative Volume Element RVE-2 scaled so that the average pore
size is 300 um and the average size of windows linking the pores
is 139 um. For both cases, the transport parameters were calculated
(for the propagation direction X) and they are presented in Ta-
ble III. One may expect that the RVE-1 estimations may be rather
correct (although slightly higher) in the case of thermal character-
istic length and thermal permeability, while in the case of viscous
characteristic length and permeability their values are certainly ex-
aggerated, because the typical size of windows is much larger than
in the ceramic foam. The scaling applied in the case of RVE-2 may
to some extent alleviate that problem.

Table III: Transport parameters computed using two RVEs of different
size and the same shape of microstructure with porosity 88%

Parameter | Symbol Unit RVE-1 | RVE-2
porosity 10} % 87.92 87.92
tortuosity (at oo Hz) Qoo — 1.264 1.266
viscous tortuosity at 0 Hz Qo — 1.892 1.898
thermal tortuosity at 0 Hz g — 1.346 1.405
viscous permeability ko 107°m? | 1.199 | 0.746
thermal permeability kg 10™°m? | 3.999 | 2.845
viscous charact. length A 10~ %m 125.2 97.60
thermal charact. length A 107 %m 240.9 190.2

Figure 20 shows the acoustic absorption coefficient measured for
the ceramic sample in the frequency range from 100 Hz to 6 kHz.
The results are compared with the absorption curves determined
numerically using the transport parameters calculated from RVE-
1 or RVE-2. Although, as mentioned above, the periodic geom-
etry is rather weakly representative for the ceramic foam, it ap-

10
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Figure 20: Acoustic absorption measured for a sample of ceramic foam
with porosity 88% and thickness 16.5 mm, and the corresponding numeri-
cal results calculated for two Representative Volume Elements of the same
geometrical shape but with different size (of pores)

pears that the numerical results are similar in character to the ex-
perimental curve, undoubtedly, because the most crucial parame-
ters like the porosity, average size and shape of pores are exactly
the same or very similar as in the real ceramic foam. (In case
of the RVE-2 calculations, the discrepancies tend to be even ac-
ceptable.) Nevertheless, it is expected that a more representative
micro-geometry should provide better results. In the case of the
investigated ceramic foam such microstructure would certainly in-
volve more pores (bubbles) with more diversified sizes (this may
also require some additional techniques, for example, an initial-
izing procedure which appropriately puts small bubbles between
the large ones). Anyway, the main problem would be eventually
the size of finite element mesh which may result in a very large
number of degrees of freedom, especially, in the case of the vis-
cous flow problem. Thus, one may conclude that the approach is
now computationally suitable (especially) for foams with spherical
pores of not very diversified sizes.

V. CONCLUSIONS

The methodology of rigorous estimation of sound velocity and ab-
sorption for foams with spherical pores, characterised by a few
morphological parameters, has been discussed. It involves a semi-
random generation of a representative microstructure described by
the morphological parameters and then the microstructure-based
multi-scale modelling of sound propagation in such a medium.
The generation algorithm, which ensures the required periodicity
of microstructure, is controlled by the designed open porosity and
the penetration factor which describes the maximal allowed mutual
penetration of neighbouring pores. The standard deviation of pore
sizes is imposed directly by the initial sizes of spheres which even-
tually become pores. The main phase of the algorithm is finished
when the designed value of porosity is achieved; then, the porous
representative cell is re-scaled to set the desired value for the aver-
age pore size. In that way, the two main independent parameters:
the total open porosity and the average pore size are exactly set.
The dependent average value of windows linking the pores is ap-
proximately controlled by the penetration factor.

11

The multi-scale analysis of the generated exemplary microstruc-
ture of foam with the open porosity of 70% and average pore di-
ameter 330 um proved good sound absorbing properties of such a
design, comparable to the sound absorption of rigid foams of much
higher porosity of about 90%. On the other hand, the analysed de-
sign should certainly have better bearing capacity which may opt
for a multi-functionality of such sound absorbing material.

It is proposed that new designs of sound absorbing foams should
be tested in that way with at least a few randomly generated
RVE:s of the same typical features discussed above. Such approach
should be more realistic with respect to the real foams than the one
using manually generated (usually quite regular) RVEs. The pro-
posed approach may be used for the optimization as well as sensi-
tivity analyses in poro-acoustics with respect to some morpholog-
ical parameters. Moreover, it is worth to note that the procedure
for microstructure generation can also be used to construct peri-
odic Representative Volume Elements for porous media composed
from mixed rigid spheres of various size.

The discussed example of an existing ceramic foam with poros-
ity 88% shows that a large number of pores (bubbles) with more
diversified sizes may be required in order to generate representa-
tive microstructures for such foams. It means, however, a large
RVE with very fine meshing and that would require more computa-
tional power. Moreover, the size of a large RVE may at higher fre-
quencies become comparable with the wavelengths, which would
worsen the accuracy and reliability of estimations, because of a
weak separation of scales.
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