
Łukasz J. Nowak
Department of Intelligent Technologies,

Institute of Fundamental Technological Research,

Polish Academy of Sciences,

ul. Pawinskiego 5B,

Warszawa 02-106, Poland

e-mail: lnowak@ippt.pan.pl

Tomasz G. Zieli�nski
Department of Intelligent Technologies,

Institute of Fundamental Technological Research,

Polish Academy of Sciences,

ul. Pawinskiego 5B,

Warszawa 02-106, Poland

e-mail: tzielins@ippt.pan.pl

Determination of the Free-Field
Acoustic Radiation
Characteristics of the Vibrating
Plate Structures With Arbitrary
Boundary Conditions
The paper presents the developed algorithm which implements the indirect variational
boundary element method (IVBEM) for computation of the free-field acoustic radiation
characteristics of vibrating rectangle-shaped plate structures with arbitrary boundary
conditions. In order to significantly reduce the computational time and cost, the algo-
rithm takes advantage of simple geometry of the considered problem and symmetries
between the elements. The procedure of determining the distribution of acoustic pressure
is illustrated on the example of thin, rectangular plate with a part of one edge clamped
and all other edges free. The eigenfrequencies and the corresponding vibrational mode
shapes of the plate are computed using the finite element method (FEM). The results of
the numerical simulations are compared to the results of the experiments carried out in
an anechoic chamber, proving good agreement between the predictions and the observa-
tions. The reliability of simulations and high computational efficiency make the developed
algorithm a useful tool in analysis of the acoustic radiation characteristics of vibrating
plate structures. [DOI: 10.1115/1.4030214]
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1 Introduction

Active structural acoustic control of noise emitted by vibrating
plate structures is a topic of great scientific interest for past several
decades. The research in this field was initiated by Fuller and
Silcox [1–3] and continued by Hansen and Snyder [4], Thi and
Zuniga [5], Thomas et al. [6], Baumann et al. [7], and other
researchers. The solutions to the problem are of great practical
importance, as the considered phenomena can be used to describe
many real-life mechanical systems [8]. In this context, computa-
tionally efficient mathematical methods and models that allow to
link the parameters of vibrations of the considered structures with
parameters of the generated acoustic pressure field in the ambient
space are highly desirable. Most of the studies presented in
literature consider only far-field acoustic radiation of baffled
plates. In such case, the distribution of acoustic pressure field can
be computed using Rayleigh’s integral formula (for instance, see
Ref. [9]). Such an approach is very convenient from the point of
view of numerical computations; however, its experimental vali-
dation encounters many significant technical difficulties. This is
especially true in case of structures with arbitrary boundary condi-
tions, particularly nonuniform and including free edges. On the
other hand, if the baffle is discarded from the considerations, the
mathematical and numerical complexity of the relevant problem
increases drastically. The present study addresses this issue by
introducing an original, computationally effective algorithm
for determining free-field acoustic radiation characteristics of

rectangle-shaped, unbaffled plate structures with arbitrary bound-
ary conditions.

The presence of the acoustic medium, which is necessary
for acoustic waves to propagate, influences the vibrational charac-
teristics of the considered structure, which is the source of the radi-
ation. The problem of determining the eigenfrequencies and the
corresponding modal shape functions of vibrating plate structures
submerged in different media has been the topic of numerous sci-
entific investigations (for example, see Refs. [10–14]), which
resulted in the development of various computational methods and
algorithms suitable for different systems and boundary conditions.
Despite the fact that in many cases the influence of the acoustic me-
dium cannot be neglected (this is particularly true for heavy fluids,
such as water), if the vibrating thin plate structures are relatively
small compared to the acoustic wavelength and the surrounding
medium can be treated as a light fluid—such as, for example, air—
then it can be shown [15] that in such case the eigenfrequencies
and vibrational mode shapes of the plate are not significantly
affected by the presence of the medium. This means that the me-
chanical analysis of the vibrational characteristics can be
decoupled from the acoustic analysis and performed independently
for the in vacuo case. Obtained results may be then used for the
computation of the distribution of generated acoustic pressure by
introducing them as the boundary conditions on the surface of the
considered structure. Such an approach is used in the present study.

The present study concerns the free-field vibroacoustic emis-
sion of thin, rectangle-shaped plate structures. Analytical solu-
tions describing either selected vibrational characteristics or
parameters of the generated acoustic pressure field are known
only for a limited number of some special cases of prescribed
boundary conditions for such structures, like, for example, simply
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supported, baffled plates [9,16,17]. In general case, such exact sol-
utions cannot be given and the considered problem has to be
solved numerically. Taking into account that the considered ambi-
ent medium is air, the eigenfrequencies and the corresponding
vibrational mode shapes are determined independently from the
acoustic analysis using the FEM. The acoustic pressure field dis-
tribution could also be computed using the same method (for
example, see Refs. [18,19]) but it would require to expand the
mesh of elements into a large area of space surrounding the vibrat-
ing plate and would significantly increase the computational cost.
It would also require imposing special, absorbing boundary condi-
tions in order to approximate the unbounded character of the con-
sidered domain. Several different approaches expanding the range
of efficient applications of the FEM into the unbounded acoustic
domains, such as perfectly matched layers or infinite elements
exist. The detailed description of such methods can be found, for
instance, in Refs. [20–22]. Acoustic radiation of baffled plates can
be also analyzed using a fast multipole boundary element method
[23]. The comparison between the computational efficiency of the
FEM and the boundary element method in various acoustic prob-
lems falls beyond the scope of the present study, refer to Refs.
[24–26] for details.

The boundary element method has been extensively devel-
oped since the 60s of the last century for purposes of various
research and engineering fields. Some preliminaries of this
method with examples of applications in mechanics, acoustics,
and electromagnetics can be found in Refs. [27–30]. In the
considered case of the free-field acoustic radiation of the thin,
rectangular plate 2 of the specific features of the boundary ele-
ment method make it particularly convenient to use. First, the
dimension of the discretized domain is reduced by one, com-
pared to the FEM model and includes only the flat surface of
the plate. Second, the fundamental solution of the problem
which is used for the formulation of the solved equations obeys
the Sommerfeld radiation condition at infinity. This means that
there is no need in implementing any additional computational
techniques to take into account the unbounded character of the
acoustic domain. On the other hand, some complexities in the
computational process arise due to the fact that the considered
problem is an exterior acoustic problem with open boundary
surface for which the only applicable version of the chosen
numerical method is the IVBEM [26]. The variational compu-
tational scheme introduces double surface integrals and highly
singular terms to the solved equations. In the relevant litera-
ture, similar issues concerning plate structures have already
been described (for example, see Ref. [31]); however, none of
the sources include the detailed information about the imple-
mentation of the procedures for solving the derived equations.
The importance of such information is associated with some
significant simplifications that can be introduced at this stage
by taking into account the simple geometry and some special
features of the considered problem of a thin, rectangle-shaped,
vibrating plate structure. For that reason, these important issues
are included in the present study. The developed computational
algorithm described herein takes advantage of the fact that
the relevant IVBEM equations formulated for such a two-
dimensional surface consist a huge number of terms, which
values depend only on the geometry and mutual arrangement
of pairs of boundary elements. Thus, it is possible to drasti-
cally reduce the required computational cost compared to
direct implementation of the IVBEM method by using mapped
meshes of identical elements and employing the occurring
symmetries. The algorithm was implemented in MATLAB envi-
ronment and proved its usefulness and efficiency in numerous
performed computations. The obtained results of the numerical
simulations compared to the results of the experimental investi-
gations performed in an anechoic chamber are presented fur-
ther. The present paper contains all the necessary information
required for the straightforward reproduction of the developed
computational scheme.

2 Free-Field Acoustic Radiation—IVBEM Model

The geometry of the considered problem is presented in Fig. 1.
It is assumed that the considered rectangular plate is positioned in
the plane z¼ 0 of the global XYZ coordinate system and that one
of its edges has the coordinates (x,y) equal (0,0). The plate is thin
and its thickness is neglected in further considerations. Due to the
harmonic character of the considered excitation force and taking
into account the fact that the system is linear and undamped, the
acoustic pressure p at any point r of the surrounding space satis-
fies the Helmholtz equation

Dpþ k2p ¼ 0 (1)

where k is the wavenumber of the radiated acoustic wave and D is
the Laplacian.

We solve Eq. (1) for Neumann boundary conditions imposed
on the whole surface X of the considered plate

@p

@n

����
x;yð Þ
¼ �ixqaVn x; yð Þ for x; yð Þ 2 X (2)

Here, Vn(x,y) is the amplitude of the normal velocity of the surface
of the plate at a point with coordinates (x,y), x is the angular fre-
quency of the radiated acoustic wave, and qa is the density of air.
For the sake of brevity the coordinates will be omitted in formulas
presented further, unless they are important for clarity of the
description. The distribution of the amplitude value of the normal
velocity on the surface X is computed directly from the FEM
model of plate vibrations and scaled to the results of measure-
ments carried out using laser vibrometer.

The considered problem of the plate radiation in the free space
is an exterior acoustic problem with an open boundary surface. It
may be regarded as a special case of an exterior problem with
closed boundary by considering both sides of the plate as separate
surfaces denoted Xþ and X�, where X¼Xþ[X�. We now intro-
duce the following quantities:

• The single layer potential

r ra

� �
¼
@p rþa

� �
@n

�
@p r�a

� �
@n

(3)

• The double layer potential

l ra

� �
¼ p rþa

� �
� p r�a

� �
(4)

where rþa and r�a denote the position of the acoustic point
sources at surfaces Xþ and X�, respectively. We can now
rewrite the boundary conditions (2) as follows:

Fig. 1 The geometry of the considered problem: plate domain
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@p r�a

� �
@n

¼ �ixqaVn r�a

� �
on X� ð5Þ

@p rþa

� �
@n

¼ �ixqaVn rþa

� �
on Xþ (6)

By assuming for thin plate Xþ�X��X and substituting
Eqs. (5) and (6) into Eq. (3), we obtain

r ¼ 0 and
@p

@n
¼ �ixqVn on X (7)

The acoustic pressure at any point of the ambient space indicated
by a vector r is described with the following boundary integral
formulation [26]:

p rð Þ ¼
ð

X
l ra

� � @G r; ra

� �
@n

dX ra

� �
(8)

where G is the Green’s function, which satisfies following
equation:

DG r; ra

� �
þ k2G r; ra

� �
¼ d r; ra

� �
(9)

where d r; ra

� �
denotes the Dirac delta function. The considered

fundamental solution should also satisfy the Sommerfeld radiation
condition

lim
r�raj j!1

r� ra

�� �� @G r; ra

� �
@ r� ra

�� �� þ ikG r; ra

� � !
¼ 0 (10)

Fulfillment of the condition (10) ensures that the obtained solution
is valid for the free-field acoustic environment. The considered
Green’s function in the three-dimensional space has the form

G r; ra

� �
¼ e�ik r�raj j

4p r� ra

�� �� (11)

By taking into account the boundary conditions (7), the integral
equation (8) can be rewritten as

� ixqVn ¼
ð

X
l ra

� � @2G r; ra

� �
@n rð Þ@n ra

� � dX ra

� �
(12)

Equation (12) has to be solved for the unknown double layer
potential l on X. To this end, the equivalent variational statement
is used, namely, the solution l will minimize the following func-
tional [26]:

J ¼ 2

ð
X

ixql rð ÞVn rð Þ

þ
ð

X

ð
X

l rð Þl ra

� � @2G r; ra

� �
@n rð Þ@n ra

� � dX rð ÞdX ra

� �
(13)

The properties of the Green’s function and the continuity of l
allow to rewrite the second, highly singular integral in an equiva-
lent, less singular form, better suited for numerical calculations

ð
X

ð
X

l rð Þl ra

� � @2G r; ra

� �
@n rð Þ@n ra

� � dX rð ÞdX ra

� �

¼
ð

X

ð
X

G r; ra

� �h
k2l rð Þl ra

� �
n rð Þ � n ra

� �� �
� r� l rð Þð Þ � r � l ra

� �� �i
dX rð ÞdX ra

� �
(14)

where

r� l ¼ n� $l (15)

and n is the unit vector normal to the surface of the boundary
plate.

The considered area X is discretized into a number ne of small
boundary elements with corresponding areas Xe; e 2 1; 2;…; nef g
and nn nodes defined at some particular locations of the elements.
nen is the number of nodes belonging to a single element. Note
that the elements may (and usually do) share common nodes, so,
in general, nn 6¼ nenen. It is assumed, that the sought double layer
potential at every single element can be approximated by a
product of the unknown nodal values li and the element shape
functions Ne

i (which take the value of one in the corresponding
node i and are zero in every other nodes), namely,

l rð Þ � l̂ rð Þ ¼
Xnen

i¼1

Ne
i rð Þli r 2 Xeð Þ (16)

The discretized form of the functional (13) can be now written as

J ¼
Xnn

i¼1

Xnn

j¼1

liBijlj � 2
Xnn

i¼1

liCi (17)

where

Bij ¼
ð

Xi

ð
Xj

G r; ra

� �
½k2Ni rð ÞNj ra

� �
� $Ni rð Þ � nð Þ � $Nj ra

� �
� n

� �
�dXi rð ÞdXj ra

� �
(18)

and

Ci ¼ �ixqVi
n

ð
Xi

Ni rð ÞdXi rð Þ (19)

where Vi
n denotes the normal velocity at point i. The global shape

functions Ni(r) are defined in the whole boundary surface X.
Inside every element to which node i belongs functions Ni are
identical to the corresponding local shape functions Ne

i and are
zero in all other domains. Thus, the integration surfaces Xi and Xj

include all of the elements that contain interpolation nodes i and j,
respectively.

To find the double layer potential values in the specified nodes
using the variational scheme the following equation is solved:

@J
@l
¼ 0 (20)

which yields

B l ¼ C (21)

where B is the (nn� nn) size matrix composed of elements Bij

described by relation (18), C is the (nn� 1) vector composed of
elements Ci described by relation (19) and l is the (nn� 1) vector
of unknown nodal values of the double layer potential.

Now, the acoustic pressure in any point of the ambient space is
given by the following relation:

p rð Þ ¼ DTl (22)

where the elements of vector D are given with the following
formula [26]:
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Di ¼
ð

X
Ni ra

� � @G r; ra

� �
@n ra

� � dX ra

� �
(23)

Assuming that the observation point indicated by the vector r has
coordinates (x, y, z) and the source point on the plate indicated by
the vector ra has coordinates (xa, ya, 0), the normal derivative of
the Green’s function is equal

@G r; ra

� �
@n ra

� � ¼ ze�ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�xað Þ2þ y�yað Þ2þz2

p

�
�1� ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xað Þ2þ y� yað Þ2þz2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xað Þ2þ y� yað Þ2þz2

q� 	3
(24)

After solving Eq. (21) with the coefficients of Eqs. (18) and
(19) for the unknown nodal values li of the double layer potential
in the whole considered plate domain X, Eq. (22) is solved only
for those points of the ambient space in which the values of acous-
tic pressure are sought.

3 Model Implementation

The developed algorithm for computation of the free-field
acoustic radiation characteristics of the vibrating rectangular plate
has been tailored to exploit the simple geometry of the considered
problem (see Fig. 1). The domain X is divided into ne identical,
first-order rectangular boundary elements. The elements are
arranged in nrow rows and ncol columns. The resolution of the
division can be adapted to the considered form of vibrations with
an adequate reserve as the computation time and cost will be
significantly reduced by taking the advantage of the occurring
symmetries. Inside every single element a local coordinate system
n; gð Þ; n 2 �1; 1h i; g 2 �1; 1h i with axes parallel to the X- and Y-

axes of the global coordinate system, respectively.
The application of linear shape functions definitely ensures the

convergence of solution, as they satisfy the completeness and
compatibility conditions for the considered problem [26]. The
chosen functions defined for any boundary element e are as
follows:

Ne
1 n; gð Þ ¼ 1

4
1� nð Þ 1� gð Þ

Ne
2 n; gð Þ ¼ 1

4
1þ nð Þ 1� gð Þ

Ne
3 n; gð Þ ¼ 1

4
1þ nð Þ 1þ gð Þ

Ne
4 n; gð Þ ¼ 1

4
1� nð Þ 1þ gð Þ

(25)

Based on the chosen element shape functions and taking into
account, the fact that due to the considered geometry and mesh
properties a single interpolation node can belong to one, two, or
four neighboring boundary elements, the coefficients Bij, Ci, and
Di are computed using Eqs. (18), (19), and (24). The surface inte-
grals are determined numerically using four-point Gauss integra-
tion scheme, except for the cases in which the integration surfaces
overlap over the same boundary element. In such situation, results
obtained with the standard numerical method would be burdened
with significant error due to singularities in the integrand. To
avoid this obstacle, the special algorithm for dealing with such
double surface integrals with 1=R singularity proposed by Wang
and Atalla [31,32] has been implemented. The algorithm is briefly
described below.

Taking into account the form of the Green’s function for the
considered problem, given with Eq. (11) and transforming
Eq. (18) into the local coordinate system, the double surface

integral over the same boundary element may be expressed as
follows:ð

Xe
i

ð
Xe

j

G r; ra

� �
½k2Ne

i rð ÞNe
j ra

� �
� $Ne

i rð Þ � n
� �

� $Ne
j ra

� �
� n

� �
�dXe

i rð ÞdXe
j ra

� �
¼
ð1

�1

ð1

�1

ð1

�1

ð1

�1

e�ikr�ra

4p r� ra

�� ��½k2Ne
i rð ÞNe

j ra

� �
� $Ne

i rð Þ � n
� �

� $Ne
j ra

� �
� n

� �
�JiJjdnidgidnjdgj

(26)

where Ji and Jj are the Jacobians of the transformation of the local
coordinate system to the global coordinate system which satisfy
the following relation:

dXe
i ¼ Jidnidgi; dXe

j ¼ Jjdnjdgj (27)

Taking into account the considered geometry

Ji ¼ Jj ¼
aebe

4
(28)

where ae and be are the lengths of edges of the rectangular bound-
ary element e parallel to the X- and Y-axis of the global coordinate
system, respectively. Equation (26) can now be rewritten in the
following form:

ð1

�1

ð1

�1

ð1

�1

ð1

�1

e�ik r�rað Þ
4p r� ra

�� ��½k2Ne
i rð ÞNe

j ra

� �
� $Ne

i rð Þ � n
� �

� $Ne
j ra

� �
� n

� �
�JiJjdnidgidnjdgj

¼
ð1

�1

ð1

�1

ð1

�1

ð1

�1

f ni; gi; nj; gj

� �
re

dnidgidnjdgj (29)

where

f ni; gi; nj; gj

� �
¼ e�ikR

4p
½k2Ne

i rð ÞNe
j ra

� �
� $Ne

i rð Þ � n
� �

� $Ne
j ra

� �
� n

� �
�JiJj

re

R
(30)

and

R ¼ Rj j ¼ r� ra

�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj

� �2þ yi � yj

� �2
q

(31)

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni � nj

� �2þ gi � gj

� �2
q

(32)

The integration variables are converted as follows:

xi ¼ xp þ
ae 1þ nið Þ

2
(33)

xj ¼ xp þ
ae 1þ nj

� �
2

(34)

yi ¼ yp þ
be 1þ gið Þ

2
(35)

yj ¼ yp þ
be 1þ gj

� �
2

(36)

where (xp,yp) are coordinates of the center point of element e.
Therefore
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R ni; gi; nj; gj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ae

2
ni � nj

� �
 �2

þ be

2
gi � gj

� �
 �2
s

(37)

The integral (29) is computed using four-point numerical scheme
described in Ref. [32]

ð1

�1

ð1

�1

ð1

�1

ð1

�1

f ni; gi; nj; gj

� �
re

dnidgidnjdgj

¼
XMm

m¼1

XMn

n¼1

XMo

o¼1

XMp

p¼1

f nm; gn; no; gp

� �
Wmnop (38)

where

Mm ¼ Mn ¼ Mo ¼ Mp ¼ 4 (39)

denote the Wang’s integration order. The values of weight coeffi-
cients Wmnop and the coordinates of the integration points nm, gn,
no, gp are given in Ref. [32].

The proposed algorithm for determination of the free-field
acoustic radiation characteristics of the vibrating plate structure
includes the following steps:

(1) Generation of mesh consisting of identical, rectangular ele-
ments covering the whole surface of the considered plate
with a given resolution.

(2) Interpolation of values of the normal velocities in the nodes
basing on the scaled results of the FEM analysis of the
eigenvalue problem for the considered plate.

(3) Computation of the elements of matrix B and vectors C and
D using formulas (18), (19), (23), and (24).

(4) Solution of Eq. (21) for the unknown double layer potential
values in the interpolation nodes.

(5) Solution of Eq. (22) for the unknown values of the acoustic
pressure in selected points of the ambient space.

(6) Postprocessing and visualization of the results.

Note that step 3 is crucial from the point of view of the compu-
tational time and cost. It involves each with each element double
surface integrals for every corresponding interpolation node to
compute the coefficients Bij and for that reason it is the bottleneck
of the whole process, as the number of the required operations
increases dramatically with increasing resolution of discretization.
Moreover, due to the fact that the coefficients Bij are frequency-
dependent this step of the algorithm has to be repeated for every
single considered frequency of vibrations. Thus, it is highly desir-
able to reduce the duration of this step as possible. The following
features concerning this problem should be taken into account:

• The Green’s function for the considered problem (11) is sym-
metrical with respect to its arguments r and ra;

• the unit vector n is constant on the whole surface of the
boundary plate;

• the Jacobians (28) are equal for all elements; and
• the values of the double surface integral over a single bound-

ary element (29) concerning the same pairs of the shape func-
tions are equal for all elements of the mesh.

Based on the observations mentioned above, two important
conclusions regarding the solved equations may be derived.
The first, quite obvious, attribute of the matrix B that should be
noticed is that it is symmetrical. This property actually results
from the variational formulation used for the problem and is com-
mon for all IVBEM based models. The symmetry of the matrix
allows to reduce the number of the computed elements; however,
the overall computational cost is still high as the number of
required operations increases rapidly with increasing resolution
(ne) of discretization. More significant reduction of the computa-
tional time and cost may be obtained by taking advantage of the
simple geometry of the plate domain and the properties of the

regular mesh of elements. The second important conclusion is that
the value of the double surface integral over two surfaces of the
boundary elements in Eq. (18) in the considered case depends
only on the absolute distance between the elements.

Based on the above observations and conclusions, the following
algorithm for computation of the elements of matrix B given with
Eq. (18) is proposed:

(1) A single mesh element s,1� s� ne, in the corner of the rec-
tangular domain is chosen. The values of the following
expression are computed for all mesh elements e; e
2 1; 2;…; nef g and for all possible pairs of the element
shape functions ðNs

i ;N
e
j Þ; i 2 1;…; 4f g; j 2 1;…; 4f g:ð

Xs

ð
Xe

G r; ra

� �h
k2Ns

i rð ÞNe
j ra

� �
� $Ns

i rð Þ � n
� �

� $Ne
j ra

� �
� n

� �i
dXs rð ÞdXe ra

� �
(40)

The results are stored in memory. In the case when s¼ e
the described above four-point special integration scheme
(26) is used to deal with singularities.

(2) For every pair of the mesh interpolation nodes with indices
i; jð Þ; i 2 1;…; nnf g; j 2 1;…; if g the numbers of the

boundary elements to which the nodes belong, distance
between the elements and the corresponding numbers of
the element shape functions are determined. The adequate
values of the expression (40) computed in the previous step
of the algorithm are loaded from the memory and added to
the values of the corresponding elements Bij.

(3) Using the symmetry property of the matrix B the values
from the upper diagonal part are copied to the correspond-
ing elements in the lower diagonal part.

The first step of the algorithm requires n2
ennn times computation

of the double surface integral given by the expression (40). The
two following steps are computationally cheap and do not affect
significantly the total duration of the process. In case if only the
symmetry property of the matrix B was used the complexity of

the algorithm would be O n2
enn2

n

� �
. Taking into account the fact

that in practical applications nen � nn and the total number of
interpolation nodes is usually of the order 102 or greater the sav-
ings of computational time and cost associated with the use of the
presented algorithm is significant.

The developed algorithm has been implemented using the
MATLAB environment and tested on a standard personal computer
with 4-core processor. The total computational time of determin-
ing the value of acoustic pressure in a single point of space was
less than 1 min for a mesh consisting of one thousand elements.

4 Experimental Investigations, Results,

and Discussion

The experimental investigations regarding the free-field acous-
tic radiation characteristics have been carried out in an anechoic
chamber using 20 cm wide, 30 cm high, and 1 mm thick rectangu-
lar plate made of aluminum. The plate was clamped in the central
part of one of its shorter edges while all other edges were free, as
presented in Fig. 2.

The plate was excited to vibrate by a pair of piezoelectric trans-
ducers, mounted symmetrically on both sides of the structure and
driven with reversely polarized harmonic voltage signal from an
amplifier connected to a generator. Low-order vibrational modes
with corresponding eigenfrequencies up to 400 Hz were
examined. The plate revealed sharp resonant characteristics and
acoustic radiation for off-resonant frequencies turned out to be
very low.

The amplitude of the acoustic pressure in selected points
of ambient space was measured using half-inch condenser
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microphone by Br€uel & Kjær (Nærum, Denmark, type 4193 with
preamplifiers type 2664) connected to the Nexus 2690 condition-
ing amplifier, from the same manufacturer. The output of the am-
plifier was connected to an oscilloscope (Tektronix, Beaverton,
OR, TDS 2004C).

The amplitude of the acoustic pressure was measured along the
axis perpendicular to the surface of the plate and passing through
its center and in several planes parallel to the plate’s surface for
different excitation frequencies equal to several selected eigenfre-
quencies of vibrations. The results of the measurements are pre-
sented in Figs. 3–9. Figures 3–6 present computed and measured
sound pressure level values in the z-axis as functions of the dis-
tance from the center point of the plate. The measurements were
taken at distances varying from 1 cm to 1 m. However, in case of
the fifth structural mode (Fig. 3), the maximum range was short-
ened to 20 cm due to the low level of the observed amplitude of
acoustic pressure. Figures 7–9 present computed and measured
sound pressure level values in the plane z¼ 2 cm. The surface
graphs illustrate the results of the numerical simulations,
while the circles show values measured experimentally in the
corresponding points of space.

One should notice that to compute the correct, absolute values
of the acoustic pressure the normal velocity values introduced as
the boundary conditions in the IVBEM model (see Eq. (2)) should
correspond to the true normal velocity amplitudes of the

vibrations excited during experiments. However, by solving the
eigenproblem for an undamped system the velocity field is deter-
mined with accuracy of a scalar scaling factor. For that reason the
results from the FEM model of plate vibrations have been scaled
to the maximum amplitudes of velocities measured using the laser
vibrometer for each vibrational mode, with specified excitation
conditions.

The comparison of the measured and computed results reveals
fair agreement between the experiments and numerical predic-
tions. The computed distribution of the sound pressure level in the
ambient space and the values of the amplitude of acoustic pressure
have been largely proved correct. However, some significant dis-
crepancies between simulations and measurements may be also
observed (especially see Figs. 4 and 5). The errors result from
imperfections in both laboratory stand (worse low-frequency per-
formance of the anechoic chamber, propagation of vibrations
through fastening elements, sound reflections from measurement
equipment) and the developed mechanical and acoustic numerical
models (assumption of ideal boundary conditions and material

Fig. 2 Aluminum plate structure used in the experimental
investigations in an anechoic chamber

Fig. 3 Sound pressure level as a function of the distance in
the z-axis from the center of the investigated plate structure
vibrating in the fifth mode: numerical simulation and
measurements

Fig. 4 Sound pressure level as a function of the distance in
the z-axis from the center of the investigated plate structure
vibrating in the sixth mode: numerical simulation and
measurements

Fig. 5 Sound pressure level as a function of the distance in
the z-axis from the center of the investigated plate structure
vibrating in the ninth mode: numerical simulation and
measurements
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properties, disregarding the influence of the piezoelectric trans-
ducers and electrical connections attached to the surface of the
plate). The accuracy of the simulations can be probably further
increased by improving the described issues.

The agreement between values obtained numerically and exper-
imentally in general improves with the distance from the plate.
This effect is caused by the fact that the complex character of the
sound field distribution in the near-field zone promotes the intensi-
fication of errors caused by the mentioned imperfections. The
results of the measurements carried out in XY-plane, 2 cm from
the surface of the plate (Figs. 7–9) generally well agree with the
computations. Significant discrepancies reaching up to few dB are
observed in several isolated points (especially close to the edges),
but the character of the distribution of sound pressure level in the
immediate vicinity of the structure is in all cases reflected
correctly. The numerical predictions become most reliable at
distances greater than about 10–20 cm from the surface of the
considered structure. Beyond this range about 6 dB drop in
sound pressure level with doubling the distance is observed (see
Figs. 4–9). This corresponds to the free-field spherical wave
propagation.

5 Conclusions

The developed algorithm for determination of the free-field
acoustic radiation characteristics of the vibrating plate structures

with arbitrary boundary conditions has been described in the
paper. The algorithm is based on the IVBEM and takes advantage
of the features of simple geometry of the considered problem to
optimize the computational time and cost. The presented results
of numerical simulations, compared to the results of experimental
investigations performed in an anechoic chamber prove high effi-
ciency of the proposed method.

Modeling of the acoustic radiation of vibrating plate structures
is an important practical problem, as it concerns lots of real-world
technical applications such as machinery or cabin interior noise.
Among a variety of numerical methods capable of handling the
problem, the boundary element method is distinguished by reduc-
tion of the discretized domain to the plate’s surface only and by
ease of dealing with unbounded character of considered environ-
ment. However, exterior acoustic problems with open boundary
surfaces require utilization of the variational computational
scheme, which introduces double surface integrals with highly
singular integrands. The present paper shows that in the consid-
ered case the resulting equations may be effectively solved in
reasonable time.

The comparison between the results of numerical simulations
and experiments performed in an anechoic chamber revealed
good agreement between the obtained values of predictions and
measurements, however some significant discrepancies in the
near-field zone, at distances lower than about 10–20 cm from the
surface of the plate were also observed. This effect is caused by
the fact that the complex character of the sound field distribution
close to the vibrating plate enhances the negative impact of both
imperfections in laboratory stand and idealized model assump-
tions. At greater distances the agreement between results may be
regarded as satisfactory. Taking into account the described

Fig. 6 Sound pressure level as a function of the distance
in the z-axis from the center of the investigated plate
structure vibrating in the thirteenth mode: numerical simulation
and measurements

Fig. 7 The distribution of sound pressure levels (dB) in
the plane z 5 2 cm for vibrational mode no. 5 with frequency
f 5 120 Hz. The surface graph illustrates the results of the nu-
merical simulations, while the circles show values measured
experimentally in corresponding points of space.

Fig. 8 The distribution of sound pressure levels (dB) in
the plane z 5 2 cm for vibrational mode no. 9 with frequency
f 5 269 Hz. The surface graph illustrates the results of the nu-
merical simulations, while the circles show values measured
experimentally in corresponding points of space.

Fig. 9 The distribution of sound pressure levels (dB) in the
plane z 5 2 cm for vibrational mode no. 11 with frequency
f 5 320 Hz. The surface graph illustrates the results of the nu-
merical simulations, while the circles show values measured
experimentally in corresponding points of space.
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limitations, the developed algorithm may be regarded as a useful
and effective tool in analysis of free-field acoustic radiation char-
acteristics of vibrating plate structures with arbitrary boundary
conditions.
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