
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. http://creativecommons.org/licenses/by-nc-nd/4.0/

This is a preprint version of the article published in:
Composites Part B: Engineering, Vol. 220 (2021), 109006.
https://doi.org/10.1016/j.compositesb.2021.109006

Please, cite this document as:
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Abstract

Acoustic wave propagation in porous composites is investigated in this paper. The two-scale asymptotic homogeni-
sation method is used to obtain the macroscopic description of sound propagation in such composites. The developed
theory is both exemplified by introducing analytical models for the effective acoustical properties of porous composites
with canonical inclusion patterns (i.e. a porous matrix with a periodic array of cylindrical or spherical inclusions) and val-
idated by comparing the models predictions with the results of direct finite-element simulations and experimental testing,
showing good agreement in all cases. It is concluded that the developed theory correctly captures the acoustic interaction
between the constituents of the porous composite and elucidates the physical mechanisms underlying the dissipation of
sound energy in such composites. These correspond to classical visco-thermal dissipation in the porous constituents,
together with, for the case of composites made from constituents characterised by highly contrasted permeabilities, pres-
sure diffusion which provides additional and tunable sound energy dissipation. In addition, this work determines the
conditions for which a rigidly-backed porous composite layer can present improved sound absorption performance in
comparison with that of layers made from their individual constituents. Hence, the presented results are expected to
guide the rational design of porous composites with superior acoustic performance.
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1 Introduction
Gas-saturated conventional permeable materials, such as porous, fibrous, granular and cellular materials [1, 2], play a key
role in improving indoor sound quality [3] (e.g. in classrooms, concert venues, buildings) and reducing noise [1, 3] in
vehicles and outdoors thanks to their capability to attenuate sound due to gas viscosity and heat exchanges between their
solid frame and saturating fluid [1, 4–11]. In these materials, one can identify microstructural parameters, namely, a local
characteristic length, `, and a single porosity (i.e. the fraction of the voids volume over the total material volume) that
determine their acoustic properties; as well as a macroscopic characteristic length L determined by the sample size or a
characteristic length of a physical phenomenon, e.g. the sound wavelength λ.

In the long-wavelength regime, i.e. λ� `, and provided that the solid frame can be assumed motionless because either
the frame is much heavier or stiffer than the saturating fluid, conventional single porosity materials (SPM) can be modelled
as equivalent visco-thermal fluids with effective parameters [1, 6–8, 10, 11]. This well established modelling approach can
be rigorously justified via upscaling techniques [6, 10] such as the two-scale asymptotic method of homogenisation [11,
12], which is a technique to be used in this paper and will be referred to, for short, as homogenisation.

Homogenisation is a mathematical technique concerned with the derivation of macroscopic models, valid at a scale
much larger than that of the local heterogeneities, of physical phenomena occurring at the local scale. It relies on the
concept of separation of scales (i.e. `/L� 1 in acoustics) and its goal is to describe a heterogeneous medium as an equiv-
alent continuum with effective parameters that encapsulate the influence of the local physics on the medium’s macroscopic
properties. Thus, homogenisation links the large-scale observable behaviour to microscopic mechanisms governed by a
set of equations formulated at the local scale and known as local description.

For acoustic wave propagation in SPM with a rigid frame, the local description is formulated in the pore fluid net-
work of a representative elementary volume (REV) of the material and corresponds to the Stokes-Fourier system, which
comprises the linearised equations of conservation of momentum, mass, energy, and the equation of state; together with
the no-slip and zero temperature excess conditions set on the heterogeneities boundaries. Applying homogenisation (see
e.g. [11]) leads to the frequency-domain effective model given by the mass balance equation (1) and fluid flow constitutive
law or dynamic Darcy’s law (2), i.e.

∇ · V + jωpC(ω) = 0, (1)

V = −k(ω)

η
· ∇p, (2)

where ∇ is the vector differential operator, V is the mean fluid velocity, p is the acoustic pressure, η is the dynamic
viscosity of the fluid, ω is the angular frequency, and the effective parameters are the complex and frequency-dependent
dynamic viscous permeability tensor k and compressibility C of the equivalent fluid. These suffice to describe the long-
wavelength acoustic properties of rigid-frame SPM and can be calculated, for a material with known microstructure, from
the solution of leading-order boundary value problems (i.e. oscillatory Stokes and heat conduction problems) arising
from homogenisation [6, 10, 11, 13–17], or using either empirical models [1, 3] or models that make use of scaling
functions [7, 10, 13–18]. While k accounts for the acoustic losses due to gas viscosity, C does so for those due to heat
exchanges between the frame and the gas. Using these effective parameters, one can calculate the effective wavenumber
kc and characteristic impedance Zc as

kc = ω

√
ηk−1C

jω
, (3)

Zc =

√
ηk−1

jωC
. (4)

The effective parameters kc and Zc can then be used to calculate acoustic descriptors of material layers of thickness
d. For example, when placing an isotropic porous layer on a perfectly-rigid and impervious wall and the sound waves
impinge perpendicularly to its surface, the surface impedance Zw of the layer is a scalar given by

Zw(ω) = −jZc cot (kcd), (5)

while its sound absorption coefficientA(ω), which takes values between zero (perfect reflection) and one (perfect absorp-
tion), reads as

A(ω) =
4X

(1 +X)2 + Y 2
, (6)

where X = Re(Zw)/Z0 is the normalised resistance and Y = Im(Zw)/Z0 is the normalised reactance. In these expres-
sions, Z0 = ρ0c0 denotes the characteristic impedance of the fluid adjacent to the layer (i.e. air) and ρ0 and c0 are the
equilibrium density of and speed of sound in air, respectively.

From Eq. (6), it is clear that A is maximised when the following condition, known as impedance matching [1, 3], is
satisfied

X = 1, i.e. Re(Zw) = Z0, and Y = 0. (7)
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This condition is relatively easy to achieve by conventional SPM at mid and high frequencies but very difficult to do so at
low frequencies, unless one considers bulky materials, which are impractical for engineering applications where the space
is limited.

Several research avenues have been explored to overcome the lack of efficiency of conventional porous materials
in attenuating low-frequency sound waves. For example, low-frequency sound absorption can be improved by stacking
multiple layers of permeable materials [1, 3, 19, 20]. This could be achieved by judiciously selecting the first layer
(i.e. the one facing the waves) so that the real part of its surface impedance matches the characteristic impedance of
air and its reactance magnitude is as small as possible, while the inner layers provide additional sound attenuation. A
similar approach was taken in [21], where an impedance matching layer was used to improve the sound absorption
of a porous core. Even though the staking of layers or the use of an impedance matching layer can actually lead to
increase sound absorption, the overall thickness of the material could still be considerable. To tackle this issue, other
types of materials, such as metamaterials [22–32] and multiscale porous materials [33–40], have been investigated. In
addition to these investigations, one can mention experimental and numerical works on wave propagation in porous
composites that are relevant to this paper, e.g. [41–53]. In these works, the often superior sound absorptive properties of
porous composites in comparison with those of their constituents is demonstrated. However, a well established theory
that rigorously captures the acoustic interaction between the porous constituents of the composite as well as thorough
understanding of the physical mechanisms by which the sound attenuation by porous composites is achieved are, to our
knowledge, still lacking. Such an understanding can lead to determine the conditions for which porous composites can
present superior acoustic performance in comparison with that of their individual constituents, as well as to guide the
rational design of optimised noise mitigation solutions.

This paper investigates acoustic wave propagation in gas-saturated rigid-frame porous composites with arbitrary but
periodic microstructure. The macroscopic description of acoustic wave propagation in such composites is obtained by
using the two-scale asymptotic method of homogenisation and reveals the underlying physical mechanisms of dissipation
of sound energy. Through the analysis of the effective parameters and acoustic descriptors, the conditions under which
porous composites can provide more efficient noise reduction than their conventional permeable constituents are deter-
mined. The developed theory is exemplified by introducing analytical models for the effective acoustical properties of
porous composites with canonical inclusion patterns (i.e. a porous matrix with a periodic array of cylindrical or spherical
inclusions) as well as validated by comparing the models predictions with the results of direct finite-element simulations
and experimental testing. In short, the key contributions of this paper are: i) the introduction of a general homogenisation-
based theory of acoustic wave propagation in rigid-frame porous composites, ii) the derivation of analytical models for the
acoustic properties of porous composites with canonical microstructure, and iii) the numerical and experimental validation
of the upscaled theory.

2 Sound propagation in porous composites – Theory

2.1 Geometry
Let us consider a periodic rigid-frame porous composite saturated with air. A sketch of its geometry is shown in Fig. 1.
The representative elementary volume (REV) of the porous composite, denoted as Ω, comprises a connected porous matrix
Ωm that faces the incident waves and a single inclusion Ωi. From now on, the subscripts m and i label, respectively, the
porous matrix and the inclusion. The interface between the porous matrix and the inclusion is Γ = ∂Ωm ∩ ∂Ωi. The
volume fractions of the porous matrix and inclusion are respectively calculated as ϕm = Ωm/Ω and ϕi = Ωi/Ω, while
their porosities are φm and φi. Hence, the overall porosity of the porous composite is φ = ϕmφm + ϕiφi.

The period of the material is `� L = λ/2π and the existence of two distinct characteristic sizes enables to define the
small parameter ε = `/L� 1.

2.2 Local description
The air-saturated porous constituents of the composites have a perfectly rigid and motionless solid frame. As such, only
propagation of waves in the fluid saturating the porous constituents is allowed. The porous constituents, i.e. the matrix
and inclusions, are modelled as equivalent Darcy media with known effective parameters. The effective parameters of the
porous matrix are the dynamic viscous permeability tensor km and effective compressibility Cm. Similarly, the effective
parameters of the porous inclusions are ki and Ci and these, unless otherwise explicitly stated, satisfy the conditions
|ki| � |km| and |Ci| = O(|Cm|), i.e. the porous inclusion is much less permeable than the porous matrix, while the
effective compressibilities are comparable.

Acoustic wave propagation in the porous matrix is governed by the effective equation of conservation of mass (8) and
the dynamic Darcy’s law (9), namely

∇ · Vm + jωpmCm(ω) = 0 in Ωm, (8)
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Figure 1: Sketch of the geometry of a generic porous composite (a), its 3D representative elementary volume REV (b), and a 2D representation
of the REV (c).

Vm = −km(ω)

η
· ∇pm in Ωm, (9)

where Vm and pm are the Darcy velocity and pressure in the porous matrix, respectively. Note that harmonic dependence
of the type ejωt is adopted and, for the sake of simplicity, this term is omitted throughout the paper.

Similarly, the propagation of acoustic waves in the porous inclusions is governed by the effective equation of conser-
vation of mass (10) and the dynamic Darcy’s law (11), namely

∇ · Vi + jωpiCi(ω) = 0 in Ωi, (10)

Vi = −ki(ω)

η
· ∇pi in Ωi, (11)

where Vi and pi are the Darcy velocity and pressure in the porous inclusion, respectively.
The Eqs. (8)-(11) are coupled via boundary conditions which represent the continuity of normal velocity (12) and of

pressure (13), i.e. (with n being a unit normal vector, see Fig. 1c)

Vm · n = Vi · n on Γ, (12)

pm = pi on Γ. (13)

The set of equations (8)-(13) is upscaled using the two-scale asymptotic homogenisation method (see Appendix A).
The general steps of the method are: the rescaling of the local description based on a physical analysis, the formulation of
the unknown variables as series expansion in terms of the small parameter ε, the identification of leading-order boundary
value problems, and the derivation of the macroscopic effective equations. This final result is presented in the next
subsection. Note also that the homogenisation procedure provides the recipe to calculate the effective parameters of the
porous composite modelled as an equivalent fluid.

2.3 Macroscopic description
The derivation of the macroscopic equations that describe acoustic wave propagation in porous composites with highly
contrasted permeabilities is detailed in Appendix A. These equations correspond to the macroscopic mass balance equation
(14) and the dynamic Darcy’s law written further below. With V(0)

m and p(0)
m being the leading-order Darcy velocity and

pressure, the former reads as
∇x · 〈V(0)

m 〉+ jωp(0)
m C(ω) = 0. (14)
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This equation takes the same mathematical form as the macroscopic mass balance equation for single porosity materials
[see Eq. (1)]. However, the effective compressibility is rather different and given by

C(ω) = ϕmCm(ω) + ϕiCi(ω)F(ω). (15)

Here, it is recalled that ϕm and ϕi are the volume fractions of the porous matrix and inclusions, respectively; while Cm
and Ci are the effective compressibilities of the porous constituents. The function F is given by

F(ω) = 1− jωB(ω)

ϕiD(ω)
, (16)

where, for isotropic inclusions, the pressure diffusivity, given by D(ω) = Ki/ηCi, depends on the dynamic viscous per-
meability Ki and effective compressibility Ci of the porous inclusion. The pressure diffusion function B(ω) is calculated
as

B(ω) =
1

Ω

∫
Ωi

b̄(y, ω)dΩ, (17)

where b̄(y, ω) is determined from the solution of Eqs. (A.18)–(A.19), as discussed in Appendix A.
The dynamic Darcy’s law of the porous composite also takes the same mathematical form as that for single porosity

materials [see Eq. (2)], i.e.

〈V(0)
m 〉 = −k(ω)

η
· ∇xp(0)

m . (18)

However, the dynamic viscous permeability tensor k(ω) is given by

k = ϕmkm ·α−1
∞ . (19)

where α∞ is a tortuosity tensor induced by the presence of the inclusions (see Appendix A).
The macroscopic wave equation is then obtained by eliminating the Darcy velocity in Eq. (14). From the resulting

equation, it is direct to derive the expressions for the wave number and characteristic impedance given by Eqs. (3) and (4),
respectively. However, the effective parameters k and C are now calculated from Eqs. (19) and (15). Note that this is also
the case for porous composites with perfectly impervious inclusions; nonetheless, for this case Ci = 0 and, therefore, the
effective compressibility is calculated as

C(ω) = ϕmCm(ω). (20)

For the sake of completeness, the expressions for the effective compressibilities of the porous constituents are calculated
as [10]

Cu(ω) =
φu
P0

(
1− γ − 1

γ

jω

ωtu

Θu(ω)

Θ0u

)
with u = m, i, (21)

where Θu(ω) are the thermal permeabilities, Θ0u = Θu(ω = 0) are the static thermal permeabilities, ωtu = φu
α

Θ0u

are the thermal characteristic frequencies, and φu are the porosities of the porous matrix (u = m) and porous inclusions
(u = i). The physical parameters are the equilibrium pressure P0 and the specific heat ratio γ and thermal diffusivity α
of the saturating fluid.

To summarise, the introduced macroscopic description of acoustic wave propagation in rigid-frame porous composites,
given by Eqs. (14) and (18), reveals that the dynamic viscous permeability [see Eq. (19)] is modified by the presence of
the porous inclusions. In comparison with the dynamic viscous permeability of a single porosity material made from the
porous matrix material, k is reduced by both the tortuosity effect induced by the inclusions and the volume fraction of
the porous matrix. On the other hand, the effective compressibility [see Eq. (15)], similarly to double [34–37] or multiple
porosity [38–40] media, becomes significantly modified by the pressure diffusion phenomenon, characterised by B(ω),
which induces additional and tunable sound energy dissipation.

At this point, it is pertinent to point out that the macroscopic equations that describe acoustic wave propagation in rigid-
frame porous composites whose constituents have comparable permeabilities and compressibilities, i.e. |ki| = O(|km|)
and |Ci| = O(|Cm|), take the same mathematical form as Eqs. (14) and (18). However, as derived in Appendix B, the
effective compressibility and dynamic viscous permeability tensor are given by

C(ω) = ϕmCm(ω) + ϕiCi(ω), (22)

k = ϕmkm ·Ξm + ϕiki ·Ξi, (23)

where Ξm and Ξi, defined in Eq. (B.3), are, in general, complex-valued frequency-dependent tensors that also depend
on the geometry of the composite. However, for composites with inclusions having constant cross-section and sound
propagation in the direction along the inclusions axis, the said tensors become the identity tensors, i.e. Ξm = Ξi = I.
Moreover, Eqs. (22) and (23) allow to conclude that the dissipation of sound energy in composites with weakly contrasted
permeabilities is due to the combination of classical visco-thermal dissipation mechanisms in the matrix and inclusion.
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2.4 Analysis of the acoustic properties
This section analyses the low-frequency asymptotic behaviour of the effective parameters of porous composites and the
acoustic descriptors of porous composite layers. For simplicity, the analysis is conducted for macroscopically isotropic
porous composites. This means that we will consider that k = KI, km = KmI, ki = KiI, and α∞ = α∞I. It
should however be stressed that the identified generic features hold for anisotropic porous composites when considering
a preferential flow direction. Moreover, the analysis will be conducted for composites for which the matrix is much more
permeable than the inclusions. For the opposite case, and provided that the most permeable constituent faces the sound
waves, the results hold by swapping the subscripts m and i.

Following [7], the dynamic viscous permeability of the porous matrix tends to Km(ω � ωvm) = K0m, where K0m,
ωvm = φmν/K0mα∞m and α∞m are, respectively, the static viscous permeability, viscous characteristic frequency, and
tortuosity of the porous matrix material, while ν = η/ρ0 is the kinematic viscosity of air. The limiting value of the
dynamic viscous permeability of the porous composite, in the quoted frequency range, is therefore given by

K(ω � ωvm) ≈ ϕm
α∞
K0m = K0. (24)

From this equation, it is clear that the static viscous permeability of the porous composite K0 is smaller than that of the
material the porous matrix is made from. In other words, the static viscous permeability of the porous matrix material is
reduced by a factor of (1− ϕi)/α∞ due to the presence of the weakly permeable inclusions.

The low-frequency behaviour of the effective compressibilities Cu(ω) (with u = m, i) is characterised by that of the
dynamic thermal permeabilities Θu. For ω � ωtu, Θu tends to Θ0u = Θu(ω = 0). Hence, one has that

Cu(ω � ωtu) ≈ φu
P0

(
1− γ − 1

γ

jω

ωtu

)
i.e. C0u = Cu(ω = 0) =

φu
P0
. (25)

Since B(ω) varies [33, 34] from B(ω � ωb) ≈ B0 = B(ω = 0) to B(ω � ωb) ≈ −jϕiδ
2
b , where ωb = ϕiD0/B0

is the pressure diffusion characteristic frequency, δb =
√
D0/ω is the pressure diffusion boundary layer thickness, and

D0 = K0iP0/ηφi is the static pressure diffusivity, the function F takes the following asymptotic values

F(ω � ωb) ≈ 1− jω

ωb
, F(ω � ωb) ≈ 0. (26)

The latter equation shows that the influence of the porous inclusions on the effective compressibility vanishes for frequen-
cies much higher than the pressure diffusion characteristic frequency. In other words, for ω � ωb, the weakly permeable
inclusions acoustically behave as if they were perfectly impervious.

By inserting Eqs. (25) and (26) into Eq. (15) and retaining only linear terms in frequency, one obtains that the effective
compressibility of the porous composites exhibits the following low-frequency asymptotic behaviour

Clf = C(ω � min(ωtp, ωb, ωti)) ≈
1

P0

(
φ− jω

ωg

)
, (27)

where ωg is a characteristic frequency of the porous composite defined by

1

ωg
=
γ − 1

γ

ϕmφm
ωtm

+ ϕiφi

(
γ − 1

γ

1

ωti
+

1

ωb

)
. (28)

Then, the static effective compressibility of the porous composite is given by

C0 =
φ

P0
. (29)

Using the asymptotic low-frequency values for C(ω) and K(ω), the following limiting values for the wave number kc,
effective speed of sound ce = ω/kc, and characteristic impedance Zc are derived (with Φ = 1 + ϕiφi

ϕmφm
≥ 1)

kc(ω → 0)

kcm(ω → 0)
=
√
α∞Φ with kcm(ω → 0) = ω

√
η

jωK0m

φm
P0

, (30)

ce(ω → 0)

cem(ω → 0)
=

1√
α∞Φ

with cem(ω → 0) =
ω

kcm(ω → 0)
, (31)

Zc(ω → 0)

Zcm(ω → 0)
=

1

ϕm

√
α∞
Φ

with Zcm(ω → 0) =

√
ηP0

jωK0mφm
. (32)
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In comparison with the wave number of the porous matrix material (subscript m), the wave number of the porous com-
posite is increased, as shown in Eq. (30), by a factor of

√
α∞Φ. Recalling that the attenuation coefficient is defined as

At = −Im(kc), it is concluded that in the frequency range where the approximations made in the analysis are valid,
i.e. for ω � ωmin with ωmin = min(ωtm, ωti, ωvm, ωvi, ωb), the sound attenuation by the highly permeable matrix is
increased when adding much less permeable inclusions to it. On the other hand, Eq. (31) shows that the effective speed
of sound in the porous composite is slowed down in the presence of the inclusions. Moreover, Eq. (32) reveals that the
characteristic impedance of the porous composite is larger than that of the porous matrix material.

To gain insight into the acoustic behaviour of a hard-backed porous composite layer of thickness d, its surface
impedance is approximated, for the case |kcd| � 1 and ω � ωmin, by expanding Eq. (5) to obtain Zw/Z0 = X + jY ,
where the normalised resistance X and reactance Y are given by

X ≈ η

K0

d

3Z0
= Xm

d

dm

α∞
ϕm

with Xm =
η

K0m

dm
3Z0

, (33)

Y ≈ − P0

ωφdZ0
= Ym

φm
φ

dm
d

with Ym = − P0

ωφmdmZ0
. (34)

Eq. (33) indicates that for a porous composite with the same thickness of a hypothetical porous layer made from the
porous matrix material with thickness dm = d, its normalised resistance is α∞/ϕm times larger. Recalling that one
of the requirements to fully satisfy the impedance matching condition is X = 1, one has that if Xm < 1, then adding
inclusions to the porous matrix appears as a practical way of matching the real part of the surface impedance with the
characteristic impedance of air, which in turn can lead to maximising the sound absorption coefficientA, defined in Eq. (6).
Indeed, a simple expression that can guide the optimisation of the sound absorptive behaviour of a porous composite is
α∞d/ϕmdm = 1/Xm or, equivalently, α∞d/ϕm = 3Z0/σ0m, where σ0m = η/K0m is the static flow resistivity of the
porous matrix material. Since the tortuosity α∞, as will be shown below, depends mainly on the volume fraction of the
porous matrix ϕm, it is remarkable that only ϕm and d are required to induce the impedance matching. On the other hand,
ifXm > 1, then the sound absorption coefficient of the porous composite is expected to take smaller values in comparison
with that of the porous matrix without inclusions but the same thickness.

Regarding the normalised reactance and for dm = d, Eq. (34) shows that its magnitude increases, which is detrimental
to maximising low-frequency sound absorption, unless φ > φm which is obtained for φi > φm. The latter inequality
is certainly possible but might not contribute to satisfy a key condition, i.e. Ki � Km, the developed theory is based
on. On the other hand, it is recalled that the approximations made so far in the analysis are restricted to ω � ωmin and
|kcd| � 1. A more general case is one in which the effective parameters cannot be approximated by simple expressions.
It is however possible to determine for materials with real-valued characteristic impedance and wave number, which is
approximately the case when sound propagation is dominated by the inertia of the effective fluid, that the first peak in the
absorption coefficient appears when the cotangent in Eq. (5) is zero. This occurs when Re(kc) = π/2d or, in terms of
the ratio between the layer thickness and the effective wavelength λc = 2π/kc, when Re(d/λc) = 1/4. This is usually
known as the quarter-wavelength ’rule’. It shows that the first peak of absorption occurs at a frequency, say f0, for which
the layer thickness is a quarter of the sound wavelength. Since low-frequency sound waves have long wavelengths, thick
materials are generally required to absorb them efficiently.

Using Eqs. (3), (15) and (19), it is direct to show that, for all frequencies, the effective wavelength in the porous matrix
material, i.e. λm = 2π/kcm, is longer than that in a porous composite λc. Specifically, one has that λm/λc =

√
α∞Φ̃.

Note that Φ̃ = 1 for a composite with impervious inclusions. For a composite with porous inclusions one has that
Φ̃ = 1 + ϕiCiF/ϕmCm, which equals to Φ = 1 + ϕiφi

ϕmφm
when ω � ωmin while it takes its maximum value when: i)

F(ω � ωb) = 1, ii) the effective compressibility of the porous inclusion takes its isothermal value, i.e. Ci(ω � ωti) =
φi/P0, and iii) the effective compressibility of the porous matrix takes its adiabatic value, i.e. Cm(ω � ωtm) = φm/γP0.
Under these conditions, which favour the difference in effective wavelengths, one has that Φ̃ = 1 + γϕiφi/ϕmφm.

The analysis for both types of porous composites leads to the conclusion that the first absorption peak of a porous
composite layer is usually located at a lower frequency than that of a layer made solely from the porous matrix material
since for composites Y → 0 at a lower frequency. This condition, together with ensuring that X → 1 which can be
achieved by tuning the layer thickness and ϕm as discussed above, yields a simple design criterion for improving the
sound absorption properties of a highly permeable matrix by adding weakly permeable or impervious inclusions to it.

To finalise this section, let us remark that the analysis of the acoustic properties of composites with weakly contrasted
permeabilities is similar. Specifically, for frequencies much smaller than either the viscous or thermal characteristic
frequencies of the constituents, the dynamic permeability tends to K0 = ϕmK0mΞ0m + ϕiK0iΞ0i, where Ξ0m and Ξ0i

are defined by Eq. (B.3) (for ω = 0), while the compressibility tends to its static value given by Eq. (29). Then, the
low-frequency asymptotic values of the effective wave number, speed of sound, and characteristic impedance are obtained
by making the replacement α∞ → Ξ−1

0m(1 + ϕiK0iΞ0i/ϕmK0mΞ0m)−1 in Eqs. (30)–(32). As discussed at the end of
§2.3, Ξ0m = Ξ0i = 1 for composites with inclusions having constant cross-section and sound propagation in the direction
along the inclusions axis. Hence, for such composites, and provided that K0i/ϕi ≤ K0m/ϕm, it results that the analysis
of the surface impedance [see Eq. (33)–(34) and related discussion] holds. In addition, similar results are obtained when
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the quoted inequality is reversed but the subscripts m and i shall be adequately swapped in the numbered expressions of
this section.

2.5 Analytical models
To exemplify the developed theory, analytical models for porous composites with i) cylindrical and ii) spherical inclusions
are introduced. The geometry for both types of porous composites is depicted in Fig. 2. The porous matrix and porous
inclusions are assumed as made from a fibrous material with regularly-arranged cylindrical fibres [54] and a granular
material [55, 56], respectively. For the sake of brevity, their effective parameters, namely Km, Cm, Ki, and Ci, are
calculated with models that rely on scaling functions, as detailed in Appendix C.

1

Figure 2: Illustrations of the 3D geometry (top) and unit cell (bottom) of an air-saturated porous composite with cylindrical (left) and spherical
(right) inclusions. For the latter, the 3D unit cell is cut off to make the inclusion visible.

2.6 Porous composites with cylindrical inclusions
For porous composites having cylindrical porous inclusions, with radius ri, arranged in a square lattice, sound propagation
in the direction perpendicular to the inclusions axes is considered. The unit cell of the composite is a square with area b2.
Hence, the volume fraction occupied by the porous matrix is ϕm = 1 − πr2

i /b
2, while that of the porous cylindrical

inclusions is ϕi = 1− ϕm. The dynamic viscous permeability of the composite is calculated using Eq. (19) and is given
by (see [54] for the derivation of α∞)

K(ω) =
ϕmKm(ω)

α∞
=
ϕmKm(ω)

2− ϕm
. (35)

The effective compressibility of the porous composite with cylindrical porous inclusions is calculated from Eq. (15).
This requires knowing Cm and Ci (see Appendix C for their expressions) and F which depends on B. For the latter,
a model has been derived in [37] by noting that the pressure diffusion boundary-value problem [Eqs. (A.18)–(A.19)]
formulated in a porous cylindrical inclusion is formally identical to an oscillatory fluid flow or heat conduction problem
formulated in a cylindrical pore. Hence, the pressure diffusion function reads as

B(ω) = −jϕiδ
2
d

(
1− 2

ξ

J1(ξ)

J0(ξ)

)
, (36)

where ξ = j3/2riδ
−1
d , δd =

√
D/ω, D = Ki/ηCi, and J0 and J1 are Bessel functions of the first kind of order 0

and 1, respectively. Note also that the static value of B for the porous composite with cylindrical porous inclusions is
B0 = ϕir

2
i /8.

It must be recalled that the expressions (35)–(36) are valid for composites for which the porous matrix is much more
permeable than the porous inclusions. The situation where the porous matrix is much less permeable than the cylindrical
porous inclusions can be dealt with, for the case of sound propagation parallel to the inclusion axis, as follows. The
dynamic viscous permeability is given by Eq. (35) with the subscriptm replaced by i and noting that for this case α∞ = 1
(see [54]). The effective compressibility is given by Eq. (15) with the subscripts m and i being swapped. The function F
depends on B, which can be calculated by using the equation 66 in [39].
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For porous composites with cylindrical impervious inclusions, the dynamic viscous permeability is given by Eq. (35)
(with α∞ = 2− ϕm for perpendicular and α∞ = 1 for parallel wave propagation with respect the inclusion axis), while
the effective compressibility is given by Eq. (20).

2.7 Porous composites with spherical inclusions
For porous composites having spherical inclusions with radius ri and a cubic unit cell with size b, the volume fraction of
the porous matrix is ϕm = 1 − 4πr3

i /3b
3, while that of the spherical inclusions is ϕi = 1 − ϕm. The dynamic viscous

permeability of the composite is calculated using Eq. (19) and is given by (see [55] for the derivation of α∞)

K(ω) =
2ϕmKm(ω)

3− ϕm
. (37)

The effective compressibility of the porous composite with spherical porous inclusions is calculated by using Eq. (15).
This requires knowing Cm and Ci (see Appendix C), and also F which depends on B. The latter has been derived in [35]
and is given by

B(ω) = −jϕiδ
2
d

(
1− 3

ξ2
(1− ξ cot (ξ))

)
, (38)

where ξ = j3/2 riδd , δd =
√
D/ω, D = Ki/ηCi. Note also that B0 = ϕir

2
i /15.

For porous composites with spherical impervious inclusions, the dynamic viscous permeability and effective com-
pressibility are given by Eqs. (37) and (20), respectively.

3 Illustrative examples and validation

3.1 Effective parameters
Figure 3 shows the normalised dynamic viscous permeability of a porous composite with cylindrical porous inclusions
in comparison with that of the porous matrix material. The normalisation is made with respect to the static viscous
permeability of the porous matrix material (i.e. K0m). The porous composite comprises a matrix and inclusions made
from fibrous and granular materials, respectively. The microstructural parameters (see Appendix C) of these constituent
materials are set to typical values, i.e. am = 28 µm, φm = 0.96, ai = 28 µm, and φi = 0.32. Moreover, these values
ensure the separation of scales required in the developed theory. The geometrical parameters of the composite are ri = 2
mm and b = 5.5 mm, which lead to ϕm = 0.5846 and ϕi = 0.4154. Sound propagation perpendicular to the inclusions
axis is considered. Normal pressure (P0 = 101325 Pa) and temperature (τ0 = 293.15 K) conditions are set here and in
what follows. The plot shows that the dynamic viscous permeability of the porous matrix is reduced in presence of the
porous inclusions. The viscous characteristic frequency, which denotes the transition from viscosity- to inertia-dominated
flow, remains unchanged, as it is evidenced by the peaks of the imaginary parts, both located at the same frequency.
Thus, the dynamic viscous permeability is scaled in amplitude but not in frequency. Note also that if the inclusions were
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Figure 3: Real part and negative of the imaginary part of the normalised dynamic viscous permeability of the porous matrix material (dashed
lines) and of the porous composite (solid lines).
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(subscript m), porous inclusion material (subscript i), and the corresponding porous composite with porous or solid (subscript s) impervious
inclusions. The vertical dashed lines denote characteristic frequencies while the dashed dotted line represents the asymptotic value of the
negative of the imaginary part of the normalised effective compressibility of the porous composite [see Eq. (27)].

perfectly impervious, the dynamic viscous permeability coincides with that of the composite with resistive inclusions. For
the sake of clarity, this is not shown in the plot.

Figure 4 shows the normalised effective compressibility of the porous composite with porous cylindrical inclusions
compared with the normalised effective compressibility of the porous matrix material, the porous inclusion material, and
the composite with impervious inclusions. The isothermal compressibility of air 1/P0 is used to normalise the effective
compressibilities. Focusing the discussion on the key trends, the plot shows the monotonically decreasing nature of the real
part of the effective compressibility that is also characterised by transitions determined by the characteristic frequencies
ωtm and ωb. Moreover, as expected from the analysis presented in §2.4, the normalised effective compressibilities of the
porous composites and both constituents tend to their respective porosities at low frequencies. Hence, the normalised
effective compressibility tends to φ or ϕmφm in the case of porous or impervious inclusions, respectively. At high
frequencies, the effective compressibility of both types of composites tends to the same value. This is because F → 0
when ω � ωb, which means that the porous inclusions behave as impervious ones for frequencies much higher than the
pressure diffusion characteristic frequency. This highlights the crucial role of ωb on the acoustic behaviour of porous
composite with highly contrasted permeabilities. Indeed, it is around this frequency that the sound energy dissipation is
significantly increased, as shown in Fig. 4 where a local maximum of −Im(C) around ωb can be seen. Such a feature
is shared by classical double porosity media [34, 35]. In addition, it is also shown that the low-frequency asymptotic
behaviour of the imaginary part of the effective compressibility is well predicted by Eq. (27).

The model introduced in §2.7 for porous composites with spherical inclusions is now used to exemplify the behaviour
of the normalised attenuation coefficient and effective speed of sound of such composites. The geometrical parameters
of the composite are: ri = 5 mm and b = 11 mm, which lead to ϕm = 0.6066 and ϕi = 0.3934. The porous matrix
and inclusions are made from fibrous and granular materials having the same parameters as above, i.e. am = 28 µm,
φm = 0.96, ai = 28 µm, and φi = 0.32.

Figure 5 shows that the normalised attenuation coefficient of the porous composite with spherical porous inclusions is
higher than that of the porous composite with impervious inclusions. This confirms the analysis of the effective properties
presented in §2.4 and highlights the effect of the pressure diffusion phenomenon on the sound attenuating behaviour
of a permeable matrix with porous inclusions. As expected, the effective speed of sound in the composite with porous

10

https://doi.org/10.1016/j.compositesb.2021.109006


Preprint of: 10.1016/j.compositesb.2021.109006 Compos. B Eng. 220 (2021) 109006

10−2

10−1

100

101

N
or

m
al

is
ed

at
te

nu
at

io
n

co
ef

fic
ie

nt

− Im kcm/k0
− Im kcs/k0
− Im kc/k0

101 102 103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

N
or

m
al

is
ed

re
al

pa
rt

of
th

e
ef

fe
ct

iv
e

sp
ee

d
of

so
un

d

Re Cm/c0
Re Cs/c0
Re C/c0

Figure 5: Normalised attenuation coefficient (top) and real part of the speed of sound (bottom) as a function of frequency for a porous
composite with porous (solid line) or solid impervious (dash-dotted line) spherical inclusions and the porous matrix material (dashed line).

inclusions is slower, in the whole frequency range, than that in the same composite but with impervious inclusions, as also
shown in Fig. 5. In addition, the presented results also confirm that by adding inclusions to the porous matrix an increase
(respectively, decrease) in normalised attenuation coefficient (respectively, effective speed of sound) is achieved.

To conclude, the results presented in this section show that both effective parameters, i.e. the dynamic viscous per-
meability and effective compressibility, contribute to explain the improvement in intrinsic acoustic performance of the
composite over that of the highly permeable matrix material alone. Such an improvement, evidenced by the higher atten-
uation coefficient of the composite (see Fig. 5), is determined, on the one hand, by the reduction of the matrix volume
fraction due to the presence of the weakly permeable or impervious inclusions as well the tortuosity effect such inclusions
induce; and, on the other hand, by the additional sound energy dissipation caused by the pressure diffusion phenomenon,
particularly around the associated characteristic frequency ωb (see, e.g., the bottom plot in Fig. 4), that strongly determines
the effective compressibility of composites with weakly permeable inclusions. The two main effects, i.e. tortuosity and
pressure diffusion, will also influence the acoustic descriptors of rigidly-backed composite layers, as will be discussed in
the next subsection where the upscaled theory is also numerically validated.

3.2 Numerical validation and further discussion
To validate the developed homogenisation-based theory, analytical and direct numerical calculations of the surface imped-
ance Zw and sound absorption coefficient A of rigidly-backed layers of porous composites with cylindrical or spherical
inclusions are compared.

The surface impedance is determined analytically using Eq. (5), in which the effective wave number kc and character-
istic impedance Zc are determined thanks to the dynamic viscous permeability and effective compressibility analytically
calculated for a homogenised porous composite, as described in § 2 in general, and in subsections 2.5–2.7, and 3.1 for the
particular cases of porous composites with periodically embedded cylindrical or spherical inclusions.

In the direct numerical approach, the local equations that govern the propagation of acoustic waves in the porous
composite, i.e. Eqs. (8)–(13), are solved using the finite element method. That is, the Helmholtz equation for linear
acoustics is formulated in each constituent of the composite. Note that the Helmholtz equation formulated in the porous
matrix is obtained by combining Eqs. (8) and (9), while the one for the inclusions is obtained by combining Eqs. (10)
and (11). The effective wave numbers are calculated for both porous media (i.e. the fibrous material of the matrix and the
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granular material of the inclusions) using the same models that were used in the analytical calculations (see Appendix C).
The microstructural parameters of the the porous constituents are as in the previous sections.

To efficiently simulate the propagation of acoustic waves in the porous composites, the symmetry of their geometry
is exploited in the numerical model by only considering a fragment of the porous composite geometry. Consequently,
symmetry boundary conditions are applied on the symmetry boundaries of each porous composites. It should be noted
that these conditions mean that the velocity normal to the symmetry plane is zero. From a mathematical point of view,
these conditions require that the normal pressure gradient is set to zero at the respective boundaries, i.e. homogeneous
Neumann conditions for the Helmholtz equation are set.

For the case of composites with porous inclusions, the continuity of normal velocity (12) and of pressure (13) is
set on the interfaces between the matrix and the porous inclusions, while in the case of impervious inclusions, the rigid
impermeable (i.e. homogeneous Neumann) boundary condition is applied on the inclusion surfaces. Note that the pressure
gradient and the dynamic viscous permeabilities of both porous media are involved in the velocity continuity condition,
which can be seen after inserting Eqs. (9) and (11) into the interface condition.

In each numerical validation example, the back face of the composite layer of thickness d is mounted on a rigid
impermeable wall, while the front face is subjected to a unitary acoustic pressure. Note that Zw(ω) is numerically
calculated from the ratio between the acoustic pressure and the normal velocity spatially averaged on the front face of the
porous composite layer. This is then inserted into Eq. (6) to obtain A(ω), which is to be compared with the respective
analytical prediction.

Finite element meshes for the relevant fragments of the composite layers with cylindrical inclusions are depicted in
Fig. 6a for the case with impervious inclusions, and in Fig. 6b for the case of porous inclusions (where the mesh of the
cylinders is marked in grey). In both cases, the geometry is two-dimensional due to geometric invariance along the axis of
the cylindrical inclusions. Moreover, the symmetry is exploited by only modelling the upper halves of the cylinders. Recall
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Figure 6: Real part of the acoustic pressure distributions in the porous composite with (a) impervious, or (b) porous cylindrical inclusions,
modelled using the shown finite element meshes, and the corresponding pressure fields inside the homogenised layer.
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that the cylindrical inclusion radius is ri = 2 mm, while the periodic cell size is b = 5.5 mm (leading to ϕm = 0.5846 and
ϕi = 0.4154). Twelve inclusions (i.e. periodic cells) along the composite layer thickness are considered in this validation
example, which means that the layer thickness is d = 12b = 66 mm. Fig. 6 also shows the acoustic pressure distributions
(at certain frequencies) inside the porous composites with cylindrical inclusions juxtaposed, for comparison, with the
corresponding pressure fields inside the homogenised layers equivalent to these composites. The latter has been obtained
by solving the Helmholtz equation in a rigidly-backed layer of the porous composite modelled as an equivalent fluid with
analytically determined effective wave number.

Similarly, the normalised surface impedances calculated from the finite-element solutions of the porous composite
problems for frequencies ranging from 200 Hz up to 3.2 kHz are compared in Fig. 7 with the corresponding analytical
predictions, while the curves of the corresponding sound absorption coefficients are compared in Fig. 8. In addition, the
normalised surface impedance and absorption curves determined for a porous layer of thickness d, made solely of the
fibrous material of the matrix, are shown in the respective graphs to better demonstrate the change in acoustical properties

0

1

2

3

4

5

Normalised resistance X

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

−3

−2

−1

0

1

2
Normalised reactance Y

Frequency (Hz)

N
or

m
al

is
ed

su
rf

ac
e

ac
ou

st
ic

im
pe

da
nc

e
Z

w
/Z

0

Porous inclusions: Impervious inclusions: No inclusions:
analytical solution analytical solution fibrous matrix
numerical calculation numerical calculation

Figure 7: Normalised resistance and reactance of the porous composites with cylindrical inclusions and of the porous matrix material.
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Figure 8: Sound absorption coefficient of rigidly-backed layers of the porous composites with cylindrical inclusions and of the porous matrix
material.
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due to the introduction of inclusions, which leads to nearly perfect absorption at the peaks, thanks to the rational composite
design that permits to achieve the impedance matching condition, as shown in Figs. 7 and 8. The advantage of adding
resistive porous inclusions to the highly permeable matrix is clear. In both cases, i.e. the composite with porous cylindrical
inclusions as well as the one with impervious inclusions, the corresponding surface impedance and absorption results
obtained from the numerical and analytical solutions are nearly identical with only small discrepancies seen mainly at
higher frequencies (cf. Figs. 7 and 8). Moreover, a good overall agreement is found between the pressure fields obtained
from the direct numerical calculations and the analytical results, compared in Fig. 6. Discrepancies are only visible at the
higher frequencies corresponding to the second peak in absorption (i.e. at 3080 Hz in the case of impervious inclusions, or
at 2700 Hz for porous inclusions). The discrepancies may be caused by the onset of weak scattering effects [57, 58]. These
effects are captured in the direct numerical simulation but are not accounted for in the developed homogenisation-based
theory.

Finally, it is worth noting that, contrarily to the case of conventional porous material where the pressure is locally
constant, the pressure fields in the porous constituents, shown in Fig. 6b, exhibit significant differences at the first and
second absorption peaks frequencies, i.e. at 920 Hz and 2700 Hz. This is a direct consequence of the pressure diffusion
phenomenon and is particularly visible at the frequency of the second absorption peak.

Three-dimensional modelling has to be used for numerical validation of the composites with spherical inclusions.
Nevertheless, by taking the full advantage of symmetry, the modelled fragment of the composite layer has a small trian-
gular base (i.e. only one eighth of the square base of the cubic periodic cell) and it contains seven inclusions (periodic
cells) along the whole layer thickness. The corresponding finite element meshes are shown in Fig. 9a for the impervious
inclusion case and in Fig. 9b for the case with porous spherical inclusions (with the mesh of the inclusions marked in
grey). Thus, as a consequence of symmetry on all three lateral sides, the modelled geometry contains only representative
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Figure 9: Real part of the acoustic pressure distributions in the porous composite with (a) impervious, or (b) porous spherical inclusions,
modelled using the shown finite element meshes, and the corresponding pressure fields inside the homogenised layer.
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fragments (sections) of the spherical inclusions. Recall that the spherical inclusion radius is ri = 5 mm, while the periodic
cell size is b = 11 mm (yielding ϕm = 0.6066 and ϕi = 0.3934), and since seven inclusions (periodic cells) along the
composite layer thickness are assumed in this validation example, the layer thickness is d = 7b = 77 mm. The results
of the numerical and analytical solutions of the problem of sound propagation and absorption in such porous composites
with spherical inclusions are confronted in the same way as in the previous case of cylindrical inclusions, leading to simi-
lar observations, conclusions, and model validation. The normalised surface impedance and sound absorption coefficient
are compared in Figs. 10 and 11, respectively, while the sound pressure fields at two frequencies corresponding to the
absorption peaks are juxtaposed for comparison in Fig. 9. In particular, note that the sound absorption coefficient of the
inclusion material alone is not shown because it takes very small values. The discrepancies between the numerical and
analytical results are again very small and mainly at higher frequencies, where a slight shift ofA in frequency is observed
at the second absorption peak.
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Figure 10: Normalised resistance and reactance of the porous composites with spherical inclusions and of the porous matrix material.
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Figure 11: Sound absorption coefficient of rigidly-backed layers of the porous composites with spherical inclusions and of the porous matrix
material.
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It is emphasised that Fig. 10 exemplifies that adding inclusions to the chosen highly permeable matrix leads to a
better match between the real part of the surface impedance of the hard-back composite layer and the characteristic
impedance of air for frequencies around the frequency at which the reactance of the hard-backed composite layer is zero.
In turn, this results in a nearly perfect sound absorption coefficient value at the peak frequencies (e.g. at around 880
Hz and 2660 Hz for the composite with weakly permeable inclusions, see Fig. 11), thanks to satisfying the impedance
matching condition. It is clear that the acoustic performance of the composite, quantified through the sound absorption
coefficient at low frequencies, is improved over that of the chosen highly permeable matrix material alone. Such improved
acoustic performance is due to visco-thermal losses in the porous matrix as well as the tortuosity effect induced by the
inclusion pattern (i.e. the shape, size and arrangement of inclusions) in composites with impervious inclusions, or due
to the visco-thermal losses and both the tortuosity effect and pressure diffusion in composites with weakly permeable
inclusions. The tortuosity effect reduces the dynamic viscous permeability of the porous matrix material (or increases
its dynamic flow resistivity), leading to a larger value of the real part of the surface impedance at low frequencies. This,
together with pressure diffusion in the weakly permeable inclusions, yields a shorter effective wavelength in the composite
in comparison with that in the porous matrix material alone. In turn, such a shorter effective wavelength brings as a
consequence that the reactance of the hard-backed composite layer takes a zero value at a lower frequency, which results
in a sound absorption spectrum with peaks at frequencies lower than those of the absorptive peaks of the hard-backed
layer of the porous matrix material alone.

In summary, the results presented in this section not only allow to conclude that the introduced homogenisation-based
analytical models capture the physics correctly and can therefore be considered as validated, but also to exemplify the
conditions for which rigidly-backed layers of porous composites can be designed to exhibit superior sound absorption
performance in comparison with that of layers made from either the porous matrix material or inclusion material alone. If
a hard-backed layer of a permeable material has a normalised resistance smaller than 1, then judiciously adding inclusions
having a much lower permeability appears as a simple way of both increasing the normalised resistance and decreasing the
magnitude of the reactance. This permits both satisfying the impedance matching condition and achieving ideal or nearly-
perfect absorption at the peaks with such a designed composite hard-backed layer. One should bear in mind, however,
that it is not always possible to improve the acoustic absorption performance of a hard-backed porous matrix by adding
weakly permeable inclusions, particularly when its normalised resistance is greater than one.

3.3 Experimental validation
This section experimentally validates the developed theory by comparing the theoretically calculated results with the
measured sound absorption coefficient [59] of a rigidly-backed porous composite layer. The experiment was carried out
in an impedance tube, according to the procedure described in the standard ISO 10534-2 [60]. Such a commonly used
device to measure the normal-incidence sound absorption coefficient of material layers is, in its simplest set up, a closed
tube where a loudspeaker generating plane waves is placed on one end of the tube, while the sample is placed on the
other end. The acoustic pressure is sensed with a flush-mounted microphone at two positions along the tube. Based on
a classical plane-wave decomposition, the transfer function between the two sensed acoustic pressures is related to the
reflection coefficient of the hard-backed layer. The reflection coefficient is then used to determine the surface impedance
and sound absorption coefficient. For more details about the procedure, the reader is referred to the ISO standard [60].

The sound absorption coefficient measurement reported below was taken in a commercial impedance tube B&K type
4206 (see Fig. 12). The diameter of the impedance tube is 100 mm, which ensured a regime of plane waves under normal
incidence in the frequency range [100,2000] Hz. However, the results are reported up to 1300 Hz in order to fully ensure
the validity of the long-wavelength assumption the developed theory relies on. The matrix material is a heavy rock wool
having a bulk density of 140 kg/m3. A 100-mm-diameter sample was cut with a die cutter to ensure a tight fit in the
impedance tube. The inclusion, made from a melamine foam having a bulk density of 10 kg/m3, was cut using a 46-mm
diameter die cutter. A careful assembly prevented any air gaps between the matrix and inclusion materials (see Fig 12).

As previously, the dynamic permeabilities of the porous matrix and inclusion materials are calculated with the JCAL
model (see Eqs. (C.2) and (C.6) in Appendix C). The input parameters [59] are reported in Table 1. Note that fv = ωv/2π
and ft = ωt/2π. Since the static permeability of the porous matrix is comparable to that of the porous inclusion, the
effective parameters are calculated from Eqs. (23) and (22). In these calculations: ri = 2.3 cm, rm = 5 cm (see Fig. 12),
ϕi = 0.2116, ϕm = 1− ϕi, and the layer thickness is d = 4 cm.

Material φ K0 fv Mv Θ0 ft Mt

[–] [m2] [kHz] [–] [m2] [kHz] [–]
Matrix 0.97 2.08× 10−10 11.22 4.79 1.0× 10−9 3.27 3.58

Inclusion 0.98 11.85× 10−10 1.98 0.97 2.7× 10−9 1.22 0.44

Table 1: Macroparameters of the porous matrix and inclusion materials of the porous composite used for the experimental validation of the
developed theory.

16

https://doi.org/10.1016/j.compositesb.2021.109006


Preprint of: 10.1016/j.compositesb.2021.109006 Compos. B Eng. 220 (2021) 109006

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

So
un

d
ab

so
rp

tio
n

co
ef

fic
ie

nt
A

Porous layers:
matrix material
inclusion material

Porous composite:
prediction
measurements

matrix

inclusion

46
m

m
10

0m
m

impedance tube

Figure 12: Predicted and measured sound absorption coefficient of a porous composite with cylindrical inclusions. The same acoustical
descriptor for the porous matrix and inclusion materials is also plotted for comparison. The measured sample and the impedance tube are
shown as inset images.

Figure 12 compares the analytically predicted and measured values of the sound absorption coefficient of the porous
composite. Direct finite-element results have also been successfully compared to the analytical predictions but, for the
sake of clarity, the purely numerical results are not shown in the plot.

It is clear that the analytical prediction closely agrees with the measured data. The relative error is smaller than 5% in
frequencies higher than 400 Hz. For lower frequencies, the results tend to differ more, specially around 300 Hz. This is
explained by the fact that the analytical model assumes that the solid frame of the porous constituents is perfectly rigid and
motionless, while the local minimum that appears in the measured data around 300 Hz is caused by the vibration of the
elastic frame of the porous constituents, i.e. due to poroelastic effects. It is also relevant that the analytical prediction and
measured sound absorption coefficient of the composite are shown to be higher than that of both the porous matrix and
inclusion materials, particularly in middle-range frequencies around 600 Hz. This is a direct consequence of the visco-
thermal dissipation occurring in each porous constituent. In summary, the theory can be considered as experimentally
validated.

4 Conclusions
In this work, the macroscopic equations that govern acoustic wave propagation in rigid-frame porous composites with ar-
bitrary but periodic geometry were derived by using the two-scale asymptotic homogenisation method. Analytical models
for the acoustical properties of porous composites comprising a matrix with periodically embedded cylindrical or spherical
inclusions were introduced. The predictions of these models closely agreed with both the results of direct finite-element
simulations and experimental testing. In addition, the conditions for which rigidly-backed layers of porous composites can
present superior sound absorption performance in comparison with that of layers made from their individual constituents
were determined. Based on the theoretical analysis and the numerical and experimental verifications, the following main
conclusions are drawn:

1. In composites with constituents characterised by highly contrasted permeabilities, the presence of the inclusions
leads to i) a decrease of the dynamic viscous permeability of the highly permeable matrix due to both the tortuosity
effect and the reduction of the volume fraction of the matrix, and ii) the emergence of pressure diffusion which
alters the effective compressibility of the composite.

2. In composites with constituents that have weakly contrasted permeabilities and particular geometries, their dynamic
permeability can be, depending on the permeability of the inclusions and the space these take up, either decreased
or increased with respect to the permeability of the porous matrix material, while their effective compressibility is
determined by a simple mixture law.
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3. The developed theory both rigorously captures the acoustic interaction between the porous constituents of the
composite, and permits to elucidate the physical mechanisms underlying the dissipation of sound energy in rigid-
frame porous composites. These correspond to classical visco-thermal dissipation in the constituents together with,
for composites characterised by highly contrasted permeabilities, pressure diffusion which provides additional and
tunable sound energy dissipation.

In summary, this work provides a theoretical framework to guide the rational design of optimised noise mitigation
solutions for engineering applications where the space is limited. One should note, however, that the developed theory
neither describes the acoustical properties of porous composites with different types of porous inclusions per representa-
tive elementary volume (which could represent highly heterogeneous porous composites) nor considers the elasticity of
the solid frame of the porous constituents. Research on these topics may be undertaken to extend the results of this work.
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Ing2030. T. G. Zieliński acknowledges the financial support from the project “Relations between the micro-geometry and
sound propagation and absorption in porous and poroelastic media”, under Grant Agreement No. 2015/19/B/ST8/03979
by the National Science Centre (NCN), Poland. The COST action CA15125 (DENORMS) initiated and facilitated this
work.

A Upscaling of the wave equation in porous composites with highly contrasted
permeabilities

A.1 Physical analysis
The purpose of the physical analysis of the local description, i.e. Eqs. (8)–(13), is to determine whether the variables
fluctuate locally or macroscopically as well as the relative order of magnitude of the different terms in the equations. This
analysis will be used in the rescaling of the local description to be upscaled.

Assuming that the porous matrix is much more permeable than the porous inclusions, i.e. |km| � |ki|, implies that
the porous matrix carries the long wave while the pressure in the porous inclusions varies locally. As a consequence,
the pressure in the porous matrix fluctuates at the macroscopic scale with the sound wavelength and this leads to the
following estimate |∇pm| = O(pm/L). On the other hand, while the Darcy velocity in the porous matrix, estimated as
Vm = |Vm|, fluctuates at the local scale, its divergence varies with the sound wavelength and, consequently, it can be
estimated as |∇ · Vm| = O(Vm/L). Moreover, the terms in the mass balance Eq. (8) are of the same order of magnitude,
i.e. O(Vm/L) = O(|ωpmCm|), which is also the case for those in the Darcy’s law (9), i.e. O(Vm) = O(|kmpm/ηL|).

In the porous inclusion, the Darcy velocity Vi and the pressure pi fluctuate at the local scale. Moreover, the terms in
the mass balance equation (10), as well as those in the dynamic Darcy’s law (11), are of the same order of magnitude,
i.e. O(Vi/`) = O(|ωpiCi|) and O(Vi) = O(|kipi/η`|), respectively. Combining these estimates reveal that the porous
inclusions experience local dynamics around the characteristic frequency ω = O(|ki/ηCi`2|)).

On the interface Γ, the continuity of pressure results in O(pp) = O(pi) while the long-wavelength condition imposes
that the Darcy velocity in the porous inclusions is, in terms of the small parameter ε, of one order lower than the Darcy
velocity generated by the incident wave in the porous matrix, i.e. V = |Vi · n|/|Vm · n| = O(ε). In terms of physical
parameters, the ratio V can be written as V = |kipi/η`|/|kmpm/ηL| = ε−1|ki|/|km| = O(ε), which is consistent with
the physical estimation of V provided that the ratio between the permeabilities of the porous inclusion and matrix is of the
order of ε2, i.e. the permeabilities are highly contrasted. As in double porosity [34–37] or multiporosity media [38–40],
permeability ratio values in the order of 10−6–10−4 suffice to satisfy the estimation of V .

A.2 Rescaled local description
Following the presentation of the homogenisation procedure applied to multiscale porous media in [39, 40], one observes
that the scale separation between the local and macroscopic characteristic sizes, i.e. `/L = ε� 1, permits the use of the
two-scale asymptotic method of homogenisation to derive an equivalent macroscopic model [11] starting from the set of
equations presented in §2.2 that governs the physics of acoustic wave propagation in the porous composite.

To account for the evolution at the two spatial scales, one can take the macroscopic characteristic length L as the
reference length and use the dimensional space variables x (i.e. the usual space variable) and y = ε−1x to describe the
variations at the (slow) macroscopic and (fast) local scales, respectively. Then, the usual vector differential operator is
changed into∇ = ∇x + ε−1∇y . On the other hand, the use of the two space variables is combined with a rescaling of the
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local equations based upon only one of them and the physical analysis. The rescaling is justified because when expressed
with the two space variables (x, y), the actual physical gradient of a quantity Q that varies macroscopically, i.e. ∇xQ,
becomes ∇Q. On the other hand, if the quantity varies at the local scale, the actual physical gradient ∇yQ should be
expressed as ε∇Q. Therefore, the gradient of variables oscillating at the local scale is rescaled.

Adopting the usual homogenisation convention of keeping the same notation as for the single-space-variable formu-
lation for both the variables and the gradient operator, the rescaled local description of wave propagation in the porous
composite, comprising the rescaled equations of conservation of mass (A.1) and (A.3), Darcy’s laws (A.2) and (A.4), and
boundary conditions (A.5) and (A.6), is given by (with∇ = ∇x + ε−1∇y)

∇ · Vm + jωpmCm(ω) = 0 in Ωm, (A.1)

Vm = −km(ω)

η
· ∇pm in Ωm, (A.2)

ε∇ · Vi + jωpiCi(ω) = 0 in Ωi, (A.3)

Vi = −ki(ω)

η
· ε∇pi in Ωi, (A.4)

Vm · n = εVi · n on Γ, (A.5)

pm = pi on Γ. (A.6)

In particular, it should be noted here that the divergence of the Darcy velocity in Eq. (A.1) is not rescaled since, as
previously discussed, it varies with the sound wavelength. On the other hand, the ε-scaling in Eqs. (A.3) and (A.4) is due
to the fact that the respective Darcy velocity and pressure vary locally and consequently the gradient operator is rescaled,
while the ε-scaling in Eq. (A.5) accounts for the physical estimate of V , as discussed in the previous section.

A.3 Boundary-value problems
The unknown variables are looked for in the form of series expansion in terms of the small parameter ε, i.e. as Q =∑
k ε

kQ(k), where k = 0, 1, ..., and the superscript (k) indicates the order of approximation, whileQ = {Vm, pm,Vi, pi}.
The unknown variables are then inserted into Eqs. (A.1)–(A.6) and the terms of the same order are identified.

At ε−1, it follows from Eq. (A.2) that∇yp(0)
m = 0. Hence, the pressure in the porous matrix is a macroscopic variable,

i.e. p(0)
m = p

(0)
m (x). Further identification leads to the following problem

∇y · V(0)
m = 0 in Ωm, (A.7)

V(0)
m = −km(ω)

η
· (∇xp(0)

m +∇yp(1)
m ) in Ωm, (A.8)

V(0)
m · n = 0 on Γ, (A.9)

which can be rewritten as
∇y · (∇yp(1)

m +∇xp(0)
m ) = 0 in Ωm, (A.10)(

∇yp(1)
m +∇xp(0)

m

)
· n = 0 on Γ. (A.11)

To determine the equivalent weak formulation of this problem, Eq. (A.10) is multiplied by a test Ω-periodic pressure field
q, the resulting equation is integrated over Ωm, and the divergence theorem is used to obtain∫

∂Ωm

q(∇yp(1) +∇xp(0)
m ) · ndΓ−

∫
Ωm

(∇yp(1)
m +∇xp(0)

m ) · ∇yqdΩ = 0. (A.12)

The first integral vanishes because of the periodicity and the boundary condition (A.11). Hence, one has that∫
Ωm

∇yp(1)
m · ∇yqdΩ = −

∫
Ωm

∇xp(0)
m · ∇yqdΩ. (A.13)

The Lax-Milgram theorem ensures the existence and uniqueness of the solution of this problem of conduction through a
matrix with non-conducting inclusions [30]. The solution is given by

p(1)
m = ξ(y) · ∇xp(0)

m , (A.14)

where the three components of the zero-mean vector ξ are the solutions for unitary pressure gradient in the three spatial
directions. Note that a constant in the solution Eq. (A.14) has been omitted since it has no influence on further calculations.
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Inserting Eq. (A.14) into Eq. (A.8) yields the leading-order Darcy velocity in the porous matrix, i.e.

V(0)
m = −km

η
· (∇yξ(y) + I) · ∇xp(0)

m , (A.15)

where I is the second-rank unitary tensor.
From Eqs. (A.3), (A.4) and (A.6), one identifies the following boundary-value problem for the pressure in the porous

inclusion
∇y · (D · ∇yp(0)

i ) = jωp
(0)
i in Ωi, (A.16)

p
(0)
i = p(0)

m on Γ. (A.17)

where D = ki/ηCi is the pressure diffusivity tensor, which for isotropic porous inclusions reduces to D = DI with D =

Ki/ηCi and ki = KiI. Considering the latter approximation (for simplicity) and the auxiliary variable P = p
(0)
i − p

(0)
m ,

the pressure diffusion problem is rewritten as

∇y · (D∇yP)− jωP = jωp(0)
m in Ωi, (A.18)

P = 0 on Γ. (A.19)

This a linear problem forced by the porous matrix macroscopic pressure p(0)
m . Hence, as in [33, 34, 39, 40], the unknown

P can be linearly related to p(0)
m via

P = − b̄(y, ω)

D jωp(0)
m , (A.20)

where b̄ carries units of m2 and represents the unknown Ω-periodic local diffusive pressure field [34, 39, 40] normalised
by −jωp

(0)
m /D. Using the original variables, Eq. (A.20) can be rewritten as

p
(0)
i = p(0)

m

(
1− jωb̄(y, ω)

D

)
. (A.21)

A.4 Derivation of the macroscopic effective equations
Applying the following averaging operator

〈·〉 =
1

Ω

∫
Ωm

· dΩ, (A.22)

to the mass balance equation (A.1) identified at ε0 leads to

∇x · 〈V(0)
m 〉+ 〈∇y · V(1)

m 〉+ jωp(0)
m ϕmCm = 0. (A.23)

The term 〈∇y · V(1)
m 〉 in Eq. (A.23) is calculated by making successive use of the divergence theorem, noting that the

surface integrals on the opposite boundaries of the cell cancel out due to periodicity, and using Eq. (A.5) at ε1, i.e.
V(1)
m · n = V(0)

i · n on Γ, and Eq. (A.3) at ε0. The final result is

〈∇y · V(1)
m 〉 = jωCi

1

Ω

∫
Ωi

p
(0)
i dΩ. (A.24)

Combining Eqs. (A.21), (A.24) and (A.23) one obtains the macroscopic mass balance equation (14).
On the other hand, applying the operator (A.22) to Eq. (A.15) at ε0 leads to the dynamic Darcy’s law (18), for which

the dynamic viscous permeability tensor is calculated as

k = 〈km · (∇yξ(y) + I)〉 = ϕmkm ·Ψ, (A.25)

where the tensor Ψ is defined as
Ψ =

1

Ωm

∫
Ωm

(∇yξ(y) + I)dΩ. (A.26)

Noting that the leading-order boundary value problem (A.10)–(A.11) is formally identical to a potential flow problem (see
§9.4.4.3 in [11], and in particular Eq. 9.15 and the related discussion), the tensor Ψ is directly identified as the inverse of
the tortuosity tensor α∞ induced by the presence of the inclusions. Hence, the dynamic viscous permeability tensor can
be rewritten as in Eq. (19). Note that this result was also found in [31] but for the case of an array of Helmholtz resonators.

As a remark, the derivation of the macroscopic description of wave propagation in porous composites comprising a
porous matrix and a single perfectly impervious inclusion per REV is outlined. For such a case, the local description is
given by Eqs. (8)–(9), together with Eq. (12) being replaced by Vm · n = 0 on Γ. The rescaled local description is given
by Eqs. (A.1)–(A.2) and Vm · n = 0 on Γ. The homogenisation procedure closely follows that described in the previous
sections, with the particularity that 〈∇y · V(1)

m 〉 in Eq. (A.23) is null. Finally, the macroscopic description is given by
Eqs. (14) and (18), where the effective compressibility and dynamic viscous permeability are given by Eqs. (20) and (19),
respectively.
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B Upscaling of the wave equation in porous composites with weakly contrasted
permeabilities

The upscaling of acoustic wave propagation in porous composites with weakly contrasted permeabilities, i.e. |ki| =
O(|km|), and |Ci| = O(|Cm|) is succinctly presented in this section. The local description is as in §2.2 while the physical
analysis closely follows that presented in §A.1, with the difference being that the incident wave is carried by both the
porous matrix and inclusions. This means that the pressure (in both constituents) varies with the sound wavelength which
is also the case of the divergence of the velocities and this allows to account for the macroscopic compressibility of the
composite. Furthermore, the continuity of velocity and pressure on Γ leads, in this case, to the estimate V = O(1)
and the rescaled local description given by Eqs. (8)–(13) (with ∇ = ∇x + ε−1∇y). Having inserted the series into the
rescaled description, the identification process yields at ε−1 that ∇yp(0)

m = 0 and ∇yp(0)
i = 0. Hence, the pressure in the

constituents is a macroscopic variable, i.e. p(0)
m = p

(0)
m (x) = p(0) and p(0)

i = p
(0)
i (x) = p(0). Further identification leads

to the following coupled problem (with u = m, i)

∇y · V(0)
u = 0 in Ωu with V(0)

u = −η−1ku · (∇yp(1)
u +∇xp(0)), (B.1)

V(0)
m · n = V(0)

i · n and p(1)
m = p

(1)
i on Γ. (B.2)

This a conduction problem [11] that is linear and forced by the macroscopic pressure gradient [see the equation 4.25 in
[11] for its weak formulation]. The solution can then be written as Eq. (A.14). It then follows that the leading-order
velocities are given by V(0)

u = −η−1ku · (∇yξu(y) + I) · ∇xp(0). Spatially averaging the overall velocity V(0) (= V(0)
u

in Ωu, with u = m, i), one obtains the macroscopic Darcy’s law (18) (with V(0)
m replaced by V(0)) for which the dynamic

viscous permeability tensor is calculated as in Eq. (23), i.e. k = ϕmkm · Ξm + ϕiki · Ξi. Here the tensors Ξu (with
u = m, i) are defined as

Ξu =
1

Ωu

∫
Ωu

(∇yξ(y) + I)dΩ. (B.3)

In general, these tensors are complex valued and depend on frequency and the geometry of the matrix and inclusions.
However, for composites with inclusions having constant cross-section and sound propagation in the direction along the
inclusions axis, one has that Ξm = ΞmI and Ξi = ΞiI, which means that for such composites the dynamic viscous
permeability is given by a simple mixture law.

C Effective parameters of the porous composites constituents
For the sake of brevity, the dynamic permeabilities of the porous constituents are calculated using semi-phenomenological
models [7, 10] based on the scaling function X given by

X (ω,X0, $,M) = X0

(
jω

$
+

√
1 +

jω

$

M
2

)−1

, (C.1)

where X0 = X (ω = 0), $ is a characteristic frequency, andM is a shape factor.
The porous matrix is assumed as made of a fibrous material with regularly arranged cylindrical fibres [54]. Its porosity

is φm and the fiber radius is am. Sound propagation perpendicular to the fibres axis is considered. The dynamic viscous
and thermal permeabilities are calculated as

Km(ω) = X (ω,K0m, ωvm,Mvm), Θm(ω) = X (ω,Θ0m, ωtm,Mtm), (C.2)

where the input parameters are given by [54]

K0m = a2
m

(−2 ln (1− φm)− 2φm − φ2
m)

16(1− φm)
, Θ0m = 2K0m, (C.3)

ωvm =
ν

K0m

φm
2− φm

, ωtm =
2− φm

2

ωvm
Pr

, (C.4)

Mvm = 32
K0m

a2
m

(1− φm)2

φ3
m(2− φm)

, Mtm = Mvm
2− φm

2
. (C.5)

Here, ν and Pr are the kinematic viscosity and Prandlt number of the saturating gas, respectively. Note that Eq. (21) is
used in conjunction with Eqs. (C.2)–(C.5) to calculate Cm.
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The porous inclusions are assumed as made of a granular material with porosity φi and grain radius ai. The dynamic
viscous and thermal permeabilities are calculated as

Ki(ω) = X (ω,K0i, ωvi,Mvi), Θi(ω) = X (ω,Θ0i, ωti,Mti), (C.6)

where the input parameters are given by

K0i =
a2
i

3β2
i

(
2 + 3β5

i

βi(3 + 2β5
i )
− 1

)
, Θ0i =

a2
i

15

(5− 9βi + 5β3
i − β6

i )

β3
i

, (C.7)

ωvi = 2
ν

K0i

1− β3
i

2 + β3
i

, ωti = (1− β3
i )

α

Θ0i
, (C.8)

Mvi = 81
K0i

a2
i

β6
i

(2 + β3
i )(1− β3

i )3
, Mti = 18

Θ0i

a2
i

β6
i

(1− β3
i )3

, (C.9)

with βi = (1 − φi)1/3. Note that Ci is calculated using Eqs. (21) and (C.6)–(C.9). However, it should be noticed that
if ω � ωvi, one can approximate the dynamic viscous permeability and compressibility by their static values K0i and
φi/P0, respectively. Then, consequently, the pressure diffusivity is approximated as D = D0 = K0iP0/ηφi.
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[46] Chevillotte, F.; Jaouen, L.; Bécot, F.-X. On the modeling of visco-thermal dissipations in heterogeneous porous media. J Acoust Soc Am 2015;
138:3922–3929.

[47] Le, A.; Gacoin, A.; Li, A.; Mai, T. H.; Wakil, N. E. Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-
hemp composite materials. Compos B Eng 2015; 75:201–211.

[48] Pan, G.; Zhao, Y.; Xu, H.; Ma, B.; Yang, Y. Acoustical and mechanical properties of thermoplastic composites from discarded carpets. Com-
pos B Eng 2016; 99:98–105.

[49] Ligoda-Chmiel, J.; Sliwa, R. E.; Potoczek, M. Flammability and acoustic absorption of alumina foam/tri-functional epoxy resin composites
manufactured by the infiltration process. Compos B Eng 2017; 112:196–202.

[50] Tiuc, A. E.; Nemes, O.; Vermesan, H.; Toma, A. C. New sound absorbent composite materials based on sawdust and polyurethane foam. Com-
pos B Eng 2019; 165:120–130.
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