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Newtonian fluids and viscosity

Definition (Newtonian fluid)

A Newtonian fluid is a viscous fluid for which the shear stress is
proportional to the velocity gradient (i.e., to the rate of strain):

τ = µ
du
dy

.

Here: τ [Pa] is the shear stress (“drag”) exerted by the fluid,
µ [Pa · s] is the (dynamic or absolute) viscosity,
du
dy

[
1
s

]
is the velocity gradient perpendicular to the direction of shear.
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Non-Newtonian fluids
For a non-Newtonian fluid the viscosity changes with the applied
strain rate (velocity gradient). As a result, non-Newtonian fluids may
not have a well-defined viscosity.
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Newtonian fluids and viscosity

Definition (Newtonian fluid)

A Newtonian fluid is a viscous fluid for which the shear stress is
proportional to the velocity gradient (i.e., to the rate of strain):

τ = µ
du
dy

.

Here: τ [Pa] is the shear stress (“drag”) exerted by the fluid,
µ [Pa · s] is the (dynamic or absolute) viscosity,
du
dy

[
1
s

]
is the velocity gradient perpendicular to the direction of shear.

Definition (Kinematic viscosity)

The kinematic viscosity of a fluid is defined as the quotient of its
absolute viscosity µ and density %:

ν =
µ

%

[
m2

s

]
.

Non-Newtonian fluids
For a non-Newtonian fluid the viscosity changes with the applied
strain rate (velocity gradient). As a result, non-Newtonian fluids may
not have a well-defined viscosity.
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Newtonian fluids and viscosity

Definition (Newtonian fluid)

A Newtonian fluid is a viscous fluid for which the shear stress is
proportional to the velocity gradient (i.e., to the rate of strain):

τ = µ
du
dy

.

Here: τ [Pa] is the shear stress (“drag”) exerted by the fluid,
µ [Pa · s] is the (dynamic or absolute) viscosity,
du
dy

[
1
s

]
is the velocity gradient perpendicular to the direction of shear.

Definition (Kinematic viscosity)

ν =
µ

%

[
m2

s

]
fluid µ

[
10−5Pa · s

]
ν
[
10−5m2/s

]
air (at 20◦C) 1.82 1.51
water (at 20◦C) 100.2 0.1004

Non-Newtonian fluids
For a non-Newtonian fluid the viscosity changes with the applied
strain rate (velocity gradient). As a result, non-Newtonian fluids may
not have a well-defined viscosity.
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Constitutive relation for Newtonian fluids

The stress tensor can be decomposed into spherical and
deviatoric parts:

σ = τ − p I or σij = τij − p δij , where p = −1
3
trσ = −1

3
σii

is the (mechanical) pressure and τ is the the stress deviator (shear
stress tensor).

1 τ should be linear function of the velocity gradient;
2 this relationship should be isotropic, as the physical properties

of the fluid are assumed to show no preferred direction;
3 τ should vanish if the flow involves no deformation of fluid

elements.

Constitutive relation for Newtonian fluids

σ = µ
(
∇u + (∇u)T

)
︸ ︷︷ ︸
τ for incompressible

−p I or σij = µ
(
ui|j + uj|i

)
− p δij .

This is a relation for incompressible fluid (i.e., when ∇ · u = 0).
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Constitutive relation for Newtonian fluids

The stress tensor can be decomposed into spherical and
deviatoric parts:

σ = τ − p I or σij = τij − p δij , where p = −1
3
trσ = −1

3
σii

is the (mechanical) pressure and τ is the the stress deviator (shear
stress tensor).

Using this decomposition Stokes (1845) deduced his constitutive
relation for Newtonian fluids from three elementary hypotheses:

1 τ should be linear function of the velocity gradient;
2 this relationship should be isotropic, as the physical properties

of the fluid are assumed to show no preferred direction;
3 τ should vanish if the flow involves no deformation of fluid

elements.

Moreover, the principle of conservation of moment of momentum
implies the symmetry of stress tensor: σ = σT, i.e., σij = σji.
Therefore, the stress deviator τ should also be symmetric: τ = τ T,
i.e., τij = τji (since the spherical part is always symmetric).

Constitutive relation for Newtonian fluids
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)
︸ ︷︷ ︸
τ for incompressible

−p I or σij = µ
(
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)
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Constitutive relation for Newtonian fluids

σ = τ − p I or σij = τij − p δij , where p = −1
3
trσ = −1

3
σii

1 τ should be linear function of the velocity gradient;
2 this relationship should be isotropic, as the physical properties

of the fluid are assumed to show no preferred direction;
3 τ should vanish if the flow involves no deformation of fluid

elements;
4 τ is symmetric, i.e., τ = τ T or τij = τji.

Constitutive relation for Newtonian fluids

σ = µ
(
∇u + (∇u)T

)
︸ ︷︷ ︸
τ for incompressible

−p I or σij = µ
(
ui|j + uj|i

)
− p δij .

This is a relation for incompressible fluid (i.e., when ∇ · u = 0).
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Constitutive relation for compressible viscous flow

Definition (Rate of strain)

ε̇ = 1
2

(
∇u + (∇u)T

)
The deviatoric (shear) and volumetric strain rates are given as

(
ε̇− 1

3 (tr ε̇) I
)

and tr ε̇ = ε̇ · I = ∇ · u, respectively.

Newtonian fluids are characterized by a linear, isotropic relation between
stresses and strain rates. That requires two constants:

the viscosity µ – to relate the deviatoric (shear) stresses to the
deviatoric (shear) strain rates:

τ = 2µ
(
ε̇− 1

3 (tr ε̇) I
)
,

the so-called volumetric viscosity κ – to relate the mechanical
pressure (the mean stress) to the volumetric strain rate:

p ≡ − 1
3 trσ = −κ tr ε̇+ p0 .

Here, p0 is the initial hydrostatic pressure independent of the strain
rate.

Constitutive relation for compressible Newtonian fluids

σ = 2µ
(
ε̇− 1

3 (tr ε̇) I
)
− p I = 2µ ε̇−

(
p + 2

3µ tr ε̇
)

I ,

and after using the definition for strain rate:

σ = µ
(
∇u+(∇u)T

)
−
(

p+ 2
3µ∇ · u

)
I or σij = µ

(
ui|j+uj|i

)
−
(

p+ 2
3µ uk|k

)
δij .
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Constitutive relation for compressible viscous flow
Newtonian fluids are characterized by a linear, isotropic relation between
stresses and strain rates. That requires two constants:

the viscosity µ – to relate the deviatoric (shear) stresses to the
deviatoric (shear) strain rates:

τ = 2µ
(
ε̇− 1

3 (tr ε̇) I
)
,

the so-called volumetric viscosity κ – to relate the mechanical
pressure (the mean stress) to the volumetric strain rate:

p ≡ − 1
3 trσ = −κ tr ε̇+ p0 .

Here, p0 is the initial hydrostatic pressure independent of the strain
rate.

Volumetric viscosity

There is little evidence about the existence of volumetric viscosity and Stokes
made the hypothesis that

�� ��κ = 0 . This is frequently used though it has not
been definitely confirmed.
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)
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)
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(
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)
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)
δij .
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Continuity equation

Continuity (or mass conservation) equation

The balance of mass flow entering and leaving an infinitesimal control
volume is equal to the rate of change in density:

D%
Dt

+ %∇ · u =
∂%

∂t
+∇ · (%u) = 0 .

For incompressible flows the density does not change (% = %0
where %0 is the constant initial density) so

D%
Dt

= 0 → ∇ · u = 0 .

This last kinematic constraint for the velocity field is called the
incompressibility condition.
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Cauchy’s equation of motion

The general equation of motion valid for any continuous medium is
obtained from the principle of conservation of linear momentum:

D
Dt

∫
V

% u dV =

∫
V

b dV+

∫
S

t dS

where b is the body (or volume) force, and t is the surface traction.

Use the Reynolds’ transport theorem and the continuity equation
for the inertial term:

D
Dt

∫
V

% u dV =

∫
V

[
D(% u)

Dt
+ % u∇ · u

]
dV =

∫
V

%
Du
Dt

dV .

Apply the Cauchy’s formula: t = σ · n, and the divergence theorem
for the surface traction term:∫

S

t dS =

∫
S

σ · n dS =

∫
V

∇ · σ dV .

Now, the global (integral) form of equation of motion is obtained which,
being true for arbitrary V and provided that the integrand is continuous,
yields the local (differential) form.

Cauchy’s equation of motion

%
Du
Dt

= ∇ · σ + b or %
Dui

Dt
= σij|j + bi
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Cauchy’s equation of motion
D
Dt

∫
V

% u dV =

∫
V

b dV+

∫
S

t dS

Use the Reynolds’ transport theorem
D
Dt

∫
V

f dV =

∫
V

(Df
Dt

+ f ∇ · u
)
dV ,

and the continuity equation
D%
Dt

+ %∇ · u = 0 ,

for the inertial term:
D
Dt

∫
V

% u dV =

∫
V

[
D(% u)

Dt
+ % u∇ · u

]
dV

=

∫
V

[
%

Du
Dt

+ u
(

D%
Dt

+ %∇ · u︸ ︷︷ ︸
0

)]
dV =

∫
V

%
Du
Dt

dV .

Apply the Cauchy’s formula: t = σ · n, and the divergence theorem
for the surface traction term:∫

S

t dS =

∫
S

σ · n dS =

∫
V

∇ · σ dV .

Now, the global (integral) form of equation of motion is obtained which,
being true for arbitrary V and provided that the integrand is continuous,
yields the local (differential) form.

Cauchy’s equation of motion

%
Du
Dt

= ∇ · σ + b or %
Dui

Dt
= σij|j + bi
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Cauchy’s equation of motion
D
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Cauchy’s equation of motion
D
Dt

∫
V

% u dV =

∫
V

b dV+

∫
S

t dS

Use the Reynolds’ transport theorem and the continuity equation
for the inertial term:

D
Dt

∫
V

% u dV =

∫
V

[
D(% u)

Dt
+ % u∇ · u

]
dV =

∫
V

%
Du
Dt

dV .

Apply the Cauchy’s formula: t = σ · n, and the divergence theorem
for the surface traction term:∫

S

t dS =

∫
S

σ · n dS =

∫
V

∇ · σ dV .

Now, the global (integral) form of equation of motion is obtained:∫
V

(
%

Du
Dt
−∇ · σ − b

)
dV = 0 ,

which, being true for arbitrary V and provided that the integrand is
continuous, yields the local (differential) form.

Cauchy’s equation of motion

%
Du
Dt

= ∇ · σ + b or %
Dui

Dt
= σij|j + bi
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Cauchy’s equation of motion
D
Dt

∫
V

% u dV =

∫
V

b dV+

∫
S

t dS

Use the Reynolds’ transport theorem and the continuity equation
for the inertial term:

D
Dt

∫
V

% u dV =

∫
V

[
D(% u)

Dt
+ % u∇ · u

]
dV =

∫
V

%
Du
Dt

dV .

Apply the Cauchy’s formula: t = σ · n, and the divergence theorem
for the surface traction term:∫

S

t dS =

∫
S

σ · n dS =

∫
V

∇ · σ dV .

Now, the global (integral) form of equation of motion is obtained which,
being true for arbitrary V and provided that the integrand is continuous,
yields the local (differential) form – the Cauchy’s equation of motion.

Cauchy’s equation of motion

%
Du
Dt

= ∇ · σ + b or %
Dui

Dt
= σij|j + bi
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Navier–Stokes equations of motion

On applying the constitutive relations of Newtonian incompressible
fluids to the Cauchy’s equation of motion of continuous media, the
so-called incompressible Navier–Stokes equations are obtained.

Incompressible Navier–Stokes equations

%0
Du
Dt

= µ4u−∇p + %0 g or %0
Dui

Dt
= µ ui|jj − p|i + %0 gi ,

(+ the incompressibility constraint:) ∇ · u = 0 or ui|i = 0 .

Here, the density is constant % = %0, and the body force b has been
substituted by the the gravitational force %0 g, where g is the gravitaty
acceleration. Now, on dividing by %0, using ν = µ

%0
, and expanding the

total-time derivative the main relations can be written as

∂u
∂t

+
(
u·∇

)
u = ν4u− 1

%0
∇p+g or

∂ui

∂t
+uj ui|j = ν ui|jj−

1
%0

p|i+gi .

They differ from the Euler equations by virtue of the viscous term.
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Boundary conditions (for incompressible flow)

Let n be the unit normal vector to the boundary, and m(1), m(2) be two
(non-parallel) unit tangential vectors.
Let û, ûn, p̂ be values prescribed on the boundary, namely, the
prescribed velocity vector, normal velocity, and pressure, respectively.

Inflow/Outflow velocity or No-slip condition:

u = û (û = 0 for the no-slip condition) .

Slip or Symmetry condition:
u · n = ûn (ûn = 0 for the symmetry condition) ,

(σ n) ·m(1) = 0 , (σ n) ·m(2) = 0
(or: (τ n) ·m(1) = 0 , (τ n) ·m(2) = 0) .

Pressure condition:

σ n = −p̂ n (or: p = p̂ , τ n = 0) .

Normal flow: {
u ·m(1) = 0 , u ·m(2) = 0 ,

(σ n) · n = −p̂ (or: p = p̂ , (τ n) · n = 0) .
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Compressible Navier–Stokes equations of motion

On applying the constitutive relations of Newtonian compressible flow to the
Cauchy’s equation of motion, the compressible Navier–Stokes equations
of motion are obtained.

Compressible Navier–Stokes equations of motion

%
Du
Dt

= µ4u +
µ

3
∇
(
∇ · u

)
−∇p + % g or %

Dui

Dt
= µ ui|jj +

µ

3
uj|ji − p|i + % gi

(+ the continuity equation:)
D%
Dt

+ %∇ · u = 0 or
D%
Dt

+ % ui|i = 0 .

These equations are incomplete – there are only 4 relations for 5
unknown fields: %, u, p.

They can be completed by a state relationship between % and p.

However, this would normally introduce also another state variable: the
temperature T, and that would involve the requirement for energy
balance (yet another equations). Such approach is governed by the
complete Navier–Stokes equations for compressible flow.

More simplified yet complete set of equations can be used to describe
an isothermal flow with small compressibility.
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On applying the constitutive relations of Newtonian compressible flow to the
Cauchy’s equation of motion, the compressible Navier–Stokes equations
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However, this would normally introduce also another state variable: the
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balance (yet another equations). Such approach is governed by the
complete Navier–Stokes equations for compressible flow.

More simplified yet complete set of equations can be used to describe
an isothermal flow with small compressibility.
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Small-compressibility Navier–Stokes equations

Assumptions:
1 The problem is isothermal.
2 The variation of % with p is very small, such that in product

terms of u and % the latter can be assumed constant: % = %0.

Small compressibility is allowed: density changes are, as a
consequence of elastic deformability, related to pressure changes.

Navier–Stokes equations for nearly incompressible flow

∂u
∂t

+
(
u · ∇

)
u = ν4u +

ν

3
∇
(
∇ · u

)
− 1
%0
∇p + g

or
∂ui

∂t
+ uj ui|j = ν ui|jj +

ν

3
uj|ji −

1
%0

p|i + gi ,

(+ small-compressibility equation:)
∂p
∂t

= −K∇ · u or
∂p
∂t

= −K ui|i .

These are 4 equations for 4 unknown fields: u, p.
After solution the density can be computed as % = %0

(
1 + p−p0

K

)
.
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Complete Navier–Stokes equations

Mass conservation: D%
Dt + %∇ · u =

∂%

∂t
+∇ · (%u) = 0.

This is also called the continuity equation.

Momentum conservation: % Du
Dt = ∇ · σ + % g , (here: σ = σT).

Energy conservation: D
Dt

(
% e+ 1

2% u ·u
)
= −∇· q+∇· (σ ·u)+% g ·u+ h.

Equations of state and constitutive relations:

Thermal equation of state: % = %(p,T).
Constitutive law for fluid: σ = σ(u, p) = τ (u)− p I.
Thermodynamic relation: e = e(p,T).
Heat conduction law: q = q(u,T).

Remarks:

There are 5 conservation equations for 14 unknown fields: %, u, σ, e, q.
The constitutive and state relations provide another 11 equations and
introduce 2 additional state variables: p, T.
That gives the total number of 16 equations for 16 unknown field
variables: %, u, σ (or τ ), e, q, p, T.
Using the constitutive and state relations for the conservation equations
leaves only 5 equations in 5 unknowns: % (or p), u, T.
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∂t
+∇ · (%u) = 0.

Momentum conservation: % Du
Dt = ∇ · σ + % g , (here: σ = σT).

These are 3 equations of motion (a.k.a. balance or equilibrium
equations). The symmetry of stress tensor (additional 3 equations)
results from the conservation of angular momentum.
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Momentum conservation: % Du
Dt = ∇ · σ + % g , (here: σ = σT).

Energy conservation: D
Dt

(
% e+ 1

2% u ·u
)
= −∇· q+∇· (σ ·u)+% g ·u+ h.

Here: e is the intrinsic energy per unit mass, q is the heat flux
vector, and h is the power of heat source per unit volume.
Moreover, notice that the term 1

2%u · u is the kinetic energy,
∇ · (σ · u) is the energy change due to internal stresses, and
% g · u is the change of potential energy of gravity forces.
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introduce 2 additional state variables: p, T.
That gives the total number of 16 equations for 16 unknown field
variables: %, u, σ (or τ ), e, q, p, T.
Using the constitutive and state relations for the conservation equations
leaves only 5 equations in 5 unknowns: % (or p), u, T.
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= −∇· q+∇· (σ ·u)+% g ·u+ h.

Equations of state and constitutive relations:

Thermal equation of state: % = %(p,T).
For a perfect gas: % = p

R T , where R is the universal gas
constant.

Constitutive law for fluid: σ = σ(u, p) = τ (u)− p I.
Thermodynamic relation: e = e(p,T).
Heat conduction law: q = q(u,T).
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Dt = ∇ · σ + % g , (here: σ = σT).

Energy conservation: D
Dt

(
% e+ 1

2% u ·u
)
= −∇· q+∇· (σ ·u)+% g ·u+ h.

Equations of state and constitutive relations:

Thermal equation of state: % = %(p,T).
Constitutive law for fluid: σ = σ(u, p) = τ (u)− p I.
For Newtonian fluids: τ = µ

(
∇u + (∇u)T

)
− 2

3µ (∇ · u) I .
Other relations may be used, for example: τ = 0 for an inviscid
fluid, or some nonlinear relationships for non-Newtonian fluids.

Thermodynamic relation: e = e(p,T).
Heat conduction law: q = q(u,T).

Remarks:

There are 5 conservation equations for 14 unknown fields: %, u, σ, e, q.
The constitutive and state relations provide another 11 equations and
introduce 2 additional state variables: p, T.
That gives the total number of 16 equations for 16 unknown field
variables: %, u, σ (or τ ), e, q, p, T.
Using the constitutive and state relations for the conservation equations
leaves only 5 equations in 5 unknowns: % (or p), u, T.
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Energy conservation: D
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(
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= −∇· q+∇· (σ ·u)+% g ·u+ h.

Equations of state and constitutive relations:

Thermal equation of state: % = %(p,T).
Constitutive law for fluid: σ = σ(u, p) = τ (u)− p I.
Thermodynamic relation for state variables: e = e(p,T).
For a calorically perfect fluid: e = cV T, where cV is the specific
heat at constant volume. This equation is sometimes called
the caloric equation of state.

Heat conduction law: q = q(u,T).
Remarks:

There are 5 conservation equations for 14 unknown fields: %, u, σ, e, q.
The constitutive and state relations provide another 11 equations and
introduce 2 additional state variables: p, T.
That gives the total number of 16 equations for 16 unknown field
variables: %, u, σ (or τ ), e, q, p, T.
Using the constitutive and state relations for the conservation equations
leaves only 5 equations in 5 unknowns: % (or p), u, T.
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Thermodynamic relation: e = e(p,T).
Heat conduction law: q = q(u,T).
Fourier’s law of thermal conduction with convection:
q = −k∇T + % c u T, where k is the thermal conductivity and
c is the thermal capacity (the specific heat).
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The constitutive and state relations provide another 11 equations and
introduce 2 additional state variables: p, T.
That gives the total number of 16 equations for 16 unknown field
variables: %, u, σ (or τ ), e, q, p, T.
Using the constitutive and state relations for the conservation equations
leaves only 5 equations in 5 unknowns: % (or p), u, T.
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Remarks:
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The constitutive and state relations provide another 11 equations and
introduce 2 additional state variables: p, T.
That gives the total number of 16 equations for 16 unknown field
variables: %, u, σ (or τ ), e, q, p, T.
Using the constitutive and state relations for the conservation equations
leaves only 5 equations in 5 unknowns: % (or p), u, T.
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Complete Navier–Stokes equations
Boundary conditions for compressible flow

Density condition:
% = %̂ on S% ,

where %̂ is the density prescribed on the boundary.

Velocity or traction condition:

u = û on Su , or σ · n = t̂ on St , (or mixed),

where û is the velocity vector and t̂ is the traction vector prescribed
on the boundary.

Temperature or heat flux condition:

T = T̂ on ST , or q · n = q̂ on Sq , (or mixed),

where T̂ is the temperature and q̂ is the inward heat flux prescribed
on the boundary.
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Complete Navier–Stokes equations
Boundary conditions for compressible flow

Density condition:
% = %̂ on S% ,

where %̂ is the density prescribed on the boundary.

Velocity or traction condition:

u = û on Su , or σ · n = t̂ on St , (or mixed),

where û is the velocity vector and t̂ is the traction vector prescribed
on the boundary.

Temperature or heat flux condition:

T = T̂ on ST , or q · n = q̂ on Sq , (or mixed),

where T̂ is the temperature and q̂ is the inward heat flux prescribed
on the boundary.
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Outline
1 Newtonian fluids

Newtonian fluids and viscosity
Constitutive relation for Newtonian fluids
Constitutive relation for compressible viscous flow

2 Navier–Stokes equations
Continuity equation
Cauchy’s equation of motion
Navier–Stokes equations of motion
Boundary conditions (for incompressible flow)
Compressible Navier–Stokes equations of motion
Small-compressibility Navier–Stokes equations
Complete Navier–Stokes equations
Boundary conditions for compressible flow

3 Reynolds number
4 Features of viscous flow

Viscous diffusion of vorticity
Convection and diffusion of vorticity
Boundary layers
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Reynolds number

Definition (Reynolds number)

The Reynolds number is a dimensionless parameter defined as

Re =
U L
ν

where: U denotes a typical flow speed,
L is a characteristic length scale of the flow,
ν is the kinematic viscosity of the fluid.

There are two extreme cases of viscous flow:
1 High Reynolds number flow – for Re� 1: a flow of a fluid of small

viscosity, where viscous effects can be on the whole negligible.

2 Low Reynolds number flow – for Re� 1: a very viscous flow.
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Reynolds number

Definition (Reynolds number)

The Reynolds number is a dimensionless parameter defined as

Re =
U L
ν

where: U denotes a typical flow speed,
L is a characteristic length scale of the flow,
ν is the kinematic viscosity of the fluid.

The Reynolds number gives a rough indication of the relative
amplitudes of two key terms in the equations of motion, namely,
1 the inertial term: |(u · ∇)u|,
2 the viscous term: |ν4u|.

|inertial term|
|viscous term|

= O
(

U2/L
ν U/L2

)
= O(Re) .

There are two extreme cases of viscous flow:
1 High Reynolds number flow – for Re� 1: a flow of a fluid of small

viscosity, where viscous effects can be on the whole negligible.

2 Low Reynolds number flow – for Re� 1: a very viscous flow.



Newtonian fluids Navier–Stokes equations Reynolds number Features of viscous flow
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Definition (Reynolds number)

The Reynolds number is a dimensionless parameter defined as

Re =
U L
ν

where: U denotes a typical flow speed,
L is a characteristic length scale of the flow,
ν is the kinematic viscosity of the fluid.

The Reynolds number gives a rough indication of the relative
amplitudes of two key terms in the equations of motion, namely,
1 the inertial term: |(u · ∇)u| = O(U2/L),
2 the viscous term: |ν4u|.

Derivatives of the velocity components, such as ∂u
∂x , will typically

be of order U/L, that is, the components of u change by amounts
of order U over distances of order L.

Typically, these derivatives of velocity will themselves change by
amounts of order U/L over distances of order L so the second
derivatives, such as ∂2u

∂x2 , will be of order U/L2.

|inertial term|
|viscous term|

= O
(

U2/L
ν U/L2

)
= O(Re) .

There are two extreme cases of viscous flow:
1 High Reynolds number flow – for Re� 1: a flow of a fluid of small

viscosity, where viscous effects can be on the whole negligible.

2 Low Reynolds number flow – for Re� 1: a very viscous flow.
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Reynolds number

Definition (Reynolds number)

Re =
U L
ν

There are two extreme cases of viscous flow:
1 High Reynolds number flow – for Re� 1: a flow of a fluid of small

viscosity, where viscous effects can be on the whole negligible.

Even then, however, viscous effects become important in thin
boundary layers, where the unusually large velocity gradients
make the viscous term much larger than the estimate ν U/L2.
The larger the Reynolds number, the thinner the boundary layer:
δ/L = O(1/

√
Re) (δ – typical thickness of boundary layer).

A large Reynolds number is necessary for inviscid theory to apply
over most of the flow field, but it is not sufficient.
At high Reynolds number (Re ∼ 2000) steady flows are often
unstable to small disturbances, and may, as a result become
turbulent (in fact, Re was first employed in this context).

2 Low Reynolds number flow – for Re� 1: a very viscous flow.
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Reynolds number

Definition (Reynolds number)

Re =
U L
ν

There are two extreme cases of viscous flow:
1 High Reynolds number flow – for Re� 1: a flow of a fluid of small

viscosity, where viscous effects can be on the whole negligible.

2 Low Reynolds number flow – for Re� 1: a very viscous flow.

There is no turbulence and the flow is extremely ordered and
nearly reversible (Re ∼ 10−2).
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1 Newtonian fluids

Newtonian fluids and viscosity
Constitutive relation for Newtonian fluids
Constitutive relation for compressible viscous flow

2 Navier–Stokes equations
Continuity equation
Cauchy’s equation of motion
Navier–Stokes equations of motion
Boundary conditions (for incompressible flow)
Compressible Navier–Stokes equations of motion
Small-compressibility Navier–Stokes equations
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Plane parallel shear flow

Plane parallel shear flow

u = u(y, t) =
[
u(y, t), 0, 0

]
Such flow automatically satisfies the incompressibility condition:
∇ · u = 0, and in the absence of gravity the incompressibile
Navier–Stokes equations of motion reduce to:

∂u
∂t

= − 1
%0

∂p
∂x

+ ν
∂2u
∂y2 ,

∂p
∂y

=
∂p
∂z

= 0 .

(The gravity can be ignored if it simply modifies the pressure
distribution in the fluid and does nothing to change the velocity.)

Diffusion equation for viscous incompressible flow

For a gravity-independent plane parallel shear flow, not driven by any
externally applied pressure gradient, the velocity u(y, t) must satisfy
the one-dimensional diffusion equation:

∂u
∂t

= ν
∂2u
∂y2 .
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Plane parallel shear flow

Plane parallel shear flow

u = u(y, t) =
[
u(y, t), 0, 0

]
Such flow automatically satisfies the incompressibility condition:
∇ · u = 0, and in the absence of gravity the incompressibile
Navier–Stokes equations of motion reduce to:

∂u
∂t

= − 1
%0

∂p
∂x

+ ν
∂2u
∂y2 ,

∂p
∂y

=
∂p
∂z

= 0 .

The first equation implies that ∂p
∂x cannot depend on x, while the

remaining two equations imply that p = p(x, t); therefore, ∂p
∂x may

only depend on t.
There are important circumstances when the flow is not being
driven by any externally applied pressure gradient, which permits
to assert that the pressures at x = ±∞ are equal. All this means
that ∂p

∂x = 0.

Diffusion equation for viscous incompressible flow

For a gravity-independent plane parallel shear flow, not driven by any
externally applied pressure gradient, the velocity u(y, t) must satisfy
the one-dimensional diffusion equation:

∂u
∂t

= ν
∂2u
∂y2 .
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Viscous diffusion of vorticity

Example (The flow due to impulsively moved plane boundary)

Viscous fluid lies at rest in the region:
(Problem A) 0 < y <∞, (Problem B) 0 < y < h.

At t = 0 the rigid boundary at y = 0 is suddenly jerked into motion
in the x-direction with constant speed U.
By virtue of the no-slip condition the fluid elements in contact
with the boundary will immediately move with velocity U.

I Mathematical statement of the problem

The flow velocity u(y, t) must satisfy the one-dimensional diffusion
equation ∂u

∂t = ν ∂
2u
∂y2 , together with the following conditions:

1 initial condition:
u(y, 0) = 0 (for y ≥ 0),

2 boundary conditions:
(Problem A) u(0, t) = U and u(∞, t) = 0 (for t ≥ 0),
(Problem B) u(0, t) = U and u(h, t) = 0 (for t ≥ 0).
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Viscous diffusion of vorticity

I Solution to Problem A:

u = U
[
1− 1√

π

η∫
0

exp
(−s2

4

)
ds
]

with η = y√
ν t

, ω = − ∂u
∂y

=
U√
πν t

exp
(−y2

4ν t

)
.

The flow is largely confined to a distance of order
√
ν t from the moving

boundary: the velocity and vorticity are very small beyond that region.

Vorticity diffuses a distance of order
√
ν t in time t. Equivalently, the

time taken for vosticity to diffuse a distance h is of the order h2

ν
.
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Viscous diffusion of vorticity

I Solution to Problem B:

u = U
(

1− y
h

)
︸ ︷︷ ︸

steady state

−2U
π

∞∑
n=1

1
n
exp

(
− n2π2 ν t

h2

)
.

t� h2

ν
t & h2

ν

For times greater than h2

ν
the flow has almost reached its steady state

and the vorticity is almost distributed uniformly throughout the fluid.
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Convection and diffusion of vorticity

Vorticity equation for viscous flows

In general:

Incompress. Navier–Stokes
∇×−→ ∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν4ω.

For a two-dimensional flow (ω ⊥ u):

∂ω

∂t
+ (u · ∇)ω︸ ︷︷ ︸

convection

= ν
( ∂2ω

∂x2 +
∂2ω

∂y2

)
︸ ︷︷ ︸

diffusion

.

Observation: In general, there is both convection and diffusion
of vorticity in a viscous flow.
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Convection and diffusion of vorticity

Example (Plane flow towards a stagnation point)

There is an inviscid ‘mainstream’ flow: u = α x, v = −α y (here,
α > 0 is a constant), towards a stagnation boundary at y = 0.
This fails to satisfy the no-slip condition at the boundary, but the
mainstream flow speed α|x| increases with distance |x| along the
boundary. By the Bernoulli’s theorem, the mainstream pressure
decreases with distance along the boundary in the flow direction.
Thus, one may hope for a thin, unseparated boundary layer
which adjusts the velocity to satisfy the no-slip condition.
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Convection and diffusion of vorticity

Example (Plane flow towards a stagnation point)

The boundary layer, in which all the vorticity in concentrated, has
thickness of order

√
ν
α .

In this boundary layer there is a steady state balance between
the viscous diffusion of vorticity from the wall and the convection
of vorticity towards the wall by the flow.
If ν decreases the diffusive effect is weakened, while if α
increases the convective effect is enhanced (in either case the
boundary layer becomes thinner).
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Boundary layers

Steady flow past a fixed wing may seem to be wholly accounted
for by inviscid theory. In particular, the fluid in contact with the
wing appears to slip along the boundary.
In fact, there is no such slip. Instead there is a very thin
boundary layer where the inviscid theory fails and viscous
effects are very important.

Boundary layer

A boundary layer is a very thin layer along the boundary across
which the flow velocity undergoes a smooth but rapid adjustment to
precisely zero (i.e. no-slip) on the boundary itself.
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Boundary layers
Layer separation

In certain circumstances boundary layers may separate from
the boundary, thus causing the whole flow of low-viscosity fluid
to be quite different to that predicted by inviscid theory.

The behaviour of a fluid of even very small viscosity may, on
account of boundary layer separation, be completely different
to that of a (hypothetical) fluid of no viscosity at all.
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