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Introduction: the piezoelectric effects

Observed phenomenon

Piezoelectricity is the ability of some materials to generate an
electric charge in response to applied mechanical stress. If the
material is not short-circuited, the applied charge induces a voltage
across the material.

1 the direct piezoelectric effect – the production of electricity
when stress is applied,

2 the converse piezoelectric effect – the production of stress
and/or strain when an electric field is applied.

Some historical facts and etymology

The (direct) piezoelectric phenomenon was discovered in 1880 by the
brothers Pierre and Jacques Curie during experiments on quartz.

The existence of the reverse process was predicted by Lippmann
in 1881 and then immediately confirmed by the Curies.

The word piezoelectricity means “electricity by pressure” and is derived
from the Greek piezein, which means to squeeze or press.
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Introduction: a simple molecular model
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neutral molecule

Before subjecting the material to some
external stress:

the centres of the negative and
positive charges of each molecule
coincide,
the external effects of the charges
are reciprocally cancelled,
as a result, an electrically neutral
molecule appears.
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Introduction: a simple molecular model
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small dipole

After exerting some pressure on the
material:

the internal structure is deformed,
that causes the separation of the
positive and negative centres of the
molecules,
as a result, little dipoles are
generated.
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Introduction: a simple molecular model
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Eventually:

the facing poles inside the material
are mutually cancelled,
a distribution of a linked charge
appears in the material’s surfaces
and the material is polarized,
the polarization generates an electric
field and can be used to transform
the mechanical energy of the
material’s deformation into electrical
energy.
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Equations of piezoelectricity
Piezoelectricity viewed as electro-mechanical coupling

Scalar, vector, and tensor quantities
(M) – mechanical behaviour (E) – electrical behaviour (i, j, k, l = 1, 2, 3)

(M) ui – [m] the mechanical displacements
(E) ϕ –

[
V = J

C

]
the electric field potential

(M) Sij –
[m

m

]
the strain tensor

(E) Ei –
[

V
m = N

C

]
the electric field vector

(M) Tij –
[

N
m2

]
the stress tensor

(E) Di –
[

C
m2

]
the electric displacements

(M) fi –
[

N
m3

]
the mechanical body forces

(E) q –
[

C
m3

]
the electric body charge

(M) % –
[

kg
m3

]
the mass density

(M) cijkl –
[

N
m2

]
the elastic constants

ekij –
[

C
m2

]
the piezoelectric constants

(E) εij –
[

F
m = C

V m

]
the dielectric constants

ELASTIC material

DIELECTRIC material

+

(M)

(E)

Piezoelectric Effects

Boundary conditions (“uncoupled”)

(essential) (natural)

(M) mechanical : ui = ûi or Tij nj = F̂i

(E) electrical : ϕ = ϕ̂ or Di ni = −Q̂

ûi, ϕ̂ – the specified mechanical displacements [m] and electric potential [V]

F̂i, Q̂ – the specified surface forces
[

N
m2

]
and surface charge

[
C

m2

]
ni – the outward unit normal vector components
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Equations of piezoelectricity
Field equations of linear piezoelectricity

Scalar, vector, and tensor quantities
(M) – mechanical behaviour (E) – electrical behaviour (i, j, k, l = 1, 2, 3)

(M) ui – [m] the mechanical displacements
(E) ϕ –
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the piezoelectric constants
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F
m = C
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the dielectric constants

(M) Equations of motion
(Elastodynamics)

Tij|j + fi = % üi

(E) Gauss’ law
(Electrostatics)

Di|i − q = 0

(M) Kinematic relations

Sij =
1
2 (ui|j + uj|i)

(E) Maxwell’s law

Ei = −ϕ|i

Constitutive equations
– with Piezoelectric Effects

Tij = cijkl Skl − ekij Ek

Dk = ekij Sij + εki Ei

ELECTROMECHANICAL
COUPLING !

Boundary conditions (“uncoupled”)

(essential) (natural)

(M) mechanical : ui = ûi or Tij nj = F̂i
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m2

]
ni – the outward unit normal vector components
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Equations of piezoelectricity
Final set of partial differential equations

Piezoelectric equations in primary dependent variables

Coupled field equations for mechanical displacement (u) and electric
potential (ϕ) in a piezoelectric medium are as follows:

−% ü +∇ ·
[
c : (∇u)

]
+∇ ·

[
e · (∇ϕ)

]
+ f = 0 ,

∇ ·
[
e : (∇u)

]
−∇ ·

[
ε · (∇ϕ)

]
− q = 0 ;

or, in index notation and assuming constant material properties:

−% üi + cijkl uk|lj + ekij ϕ|kj + fi = 0 [3 eqs. (in 3D)] ,

ekij ui|kj − εkj ϕ|kj − q = 0 [1 eq.] .

In a general three-dimensional case, this system contains 4 partial
differential equations in 4 unknown fields (4 DOFs in FE model),
namely, three mechanical displacements and an electric potential:

ui =? (i = 1, 2, 3) , ϕ =?
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Four forms of constitutive relations

Stress
[

N
m2

]
Strain

[m
m

]
“Charge”

[
C

m2

]
T, D e←−−−−−

cE=0, εS=0
(S, E) S, D d←−−−−−

sE=0, εT=0
(T, E)

(“voltage”)

“Voltage”
[

V
m

]
T, E q←−−−−−

cD=0, ε
−1
S=0

(S, D) S, E g←−−−−−
sD=0, ε

−1
T=0

(T, D)
(“charge”)

(strain) (stress)

1 Stress-Charge form:

T = cE=0 : S− eT · E ,

D = e : S + εS=0 · E .

2 Stress-Voltage form:

T = cD=0 : S− qT · D ,

E = −q : S + ε−1
S=0 · D .

3 Strain-Charge form:

S = sE=0 : T + dT · E ,

D = d : T + εT=0 · E .

4 Strain-Voltage form:

S = sD=0 : T + gT · D ,

E = −g : T + ε−1
T=0 · D .

Here, the following tensors of constitutive coefficients appear:

third-order tensors of piezoelectric coupling coefficients:
e
[

C
m2

]
– the piezoelectric coefficients for Stress-Charge form,

q
[

m2

C

]
– the piezoelectric coefficients for Stress-Voltage form,

d
[

C
N

]
– the piezoelectric coefficients for Strain-Charge form,

g
[

N
C

]
– the piezoelectric coefficients for Strain-Voltage form.
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Transformations for converting constitutive data

1 Strain-Charge � Stress-Charge:

cE=0 = s−1
E=0 , e = d : s−1

E=0 , εS=0 = εT=0 − d · s−1
E=0 · d

T .

2 Strain-Charge � Strain-Voltage:

sD=0 = sE=0 − dT · ε−1
T=0 · d , g = ε−1

T=0 · d .

3 Strain-Charge � Stress-Voltage: . . .
4 Stress-Charge � Stress-Voltage:

cD=0 = cE=0 − eT · ε−1
S=0 · e , q = ε−1

S=0 · e .

5 Stress-Charge � Strain-Voltage: . . .
6 Strain-Voltage � Stress-Voltage:

cD=0 = s−1
D=0 , q = g : s−1

D=0 , ε−1
S=0 = ε−1

T=0 + g · s−1
D=0 · gT .
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Piezoelectric relations in matrix notation

Rule of change of subscripts (Kelvin-Voigt notation)

11→ 1 , 22→ 2 , 33→ 3 , 23→ 4 , 13→ 5 , 12→ 6 .

Tij → [Tα](6×1) , Sij → [Sα](6×1) , Ei → [Ei](3×1) , Di → [Di](3×1) ,

cijkl → [cαβ ](6×6) , sijkl → [sαβ ](6×6) , εij → [εij](3×3) , ε−1
ij → [ε−1

ij ](3×3) ,

ekij → [ekα](3×6) , dkij → [dkα](3×6) , qkij → [qkα](3×6) , gkij → [gkα](3×6) .

Here: i, j, k, l = 1, 2, 3, and α, β = 1, . . . 6. Exceptionally: S4 = 2S23, S5 = 2S13, S6 = 2S12.

Strain-Charge form:

S(6×1) = s(6×6) T(6×1) + dT
(6×3) E(3×1) ,

D(3×1) = d(3×6) T(6×1) + εεε(3×3) E(3×1) .

Stress-Charge form:

T(6×1) = c(6×6) S(6×1) − eT
(6×3) E(3×1) ,

D(3×1) = e(3×6) S(6×1) + εεεεεεεεε(3×3) E(3×1) .
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Matrix notation of constitutive relations
For orthotropic piezoelectric materials there are 9 + 5 + 3 = 17
material constants, and the matrices of material constants read:

c(6×6) =


c11 c12 c13 0 0 0

c22 c23 0 0 0
c33 0 0 0

c44 0 0
sym. c55 0

c66

 ,

e(3×6) =

 0 0 0 0 e15 0
0 0 0 e24 0 0

e31 e32 e33 0 0 0

 , εεεεεεεεε(3×3) =

ε11 0 0
0 ε22 0
0 0 ε33

 .

Many piezoelectric materials (e.g., PZT ceramics) can be treated as
transversally isotropic. Then, there are only 10 material constants,
since 4 + 2 + 1 = 7 of the orthotropic constants depend on the others:

c22 = c11 , c23 = c13 , c55 = c44 , c66 =
c11 − c12

2
,

e24 = e15 , e32 = e31 , ε22 = ε11 .
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Thermoelastic analogy

Thermal analogy approach

It is a simple but useful approximation of the converse piezoelectric
effect based on the resemblance between the thermoelastic and
converse piezoelectric constitutive equations.

The stress vs. strain and voltage relation (i.e., the first from the
Stress-Charge form of piezoelectric constitutive equations), namely:

Tij = cijkl Skl − emij Em = cijkl
(
Skl − dmkl Em

) (
with dmkl = emij c−1

ijkl

)
resembles the Hooke’s constitutive relation with initial strain S0

kl or
initial temperature θ0

Tij = cijkl
(
Skl − S0

kl

)
= cijkl

(
Skl − αkl θ

0) .
Thus, this thermoelastic law (or, simply, initial strains) can be used
to approximate the converse piezoelectric problem. In this case the
thermal expansion coefficients (or initial strains) are determined as

αkl =
1
θ0 S0

kl where S0
kl = dmkl Em = −dmkl ϕ|m .
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