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1 Introduction

� Surface Acoustic Waves (SAW) are acoustic waves which travel along the sur-
face of an elastic material; typically, their amplitude decays exponentially with
depth into the substrate.
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� Wave propagation in anisotropic media is much more complex than in iso-
tropic materials.

� Piezoelectric materials are inherently anisotropic.

Research milestones – on anisotropic wave propagation and Surface Acoustic Waves:

� plane waves in anisotropic media (CHRISTOFFEL, 1877)

� surface wave in an isotropic elastic half-space (RAYLEIGH, 1885)

� double-surface, planar, isotropic, elastic waveguide (LAMB, 1917)

� Rayleigh wave on an anisotropic half-space with cubic crystal symmetry (STONE-
LEY, 1955)

� “forbidden” directions for surface wave propagation do not exist! (LIM and FAR-
NELL, 1968)

� pseudosurface waves (LIM, FARNELL and ROLLINS, 1968, 1969, 1970)

� Bleustein-Gulyaev surface piezoelectric wave (BLEUSTEIN, 1968; GULYAEV, 1969)

� Lamb waves in elastic, anisotropic (cubic) plates (SOLIE and AULD, 1973)

� (decoupling of) Rayleigh waves in orthorhombic, tetragonal, hexagonal, and cubic
crystals (ROYER and DIEULESAINT, 1984)

2 Piezoelectricity

2.1 The piezoelectric phenomena

(Direct) piezoelectric effect

Piezoelectricity is the ability of some materials (notably crystals and certain ce-
ramics) to generate an electric charge in response to applied mechanical stress.
If the material is not short-circuited, the applied charge induces a voltage across
the material.

Elastic behaviour Piezoelectric←−−−−−−−−−−−−→
coupling

Dielectric behaviour

I A simple molecular model

A simple molecular model of the direct piezoelectric effect is shown in Figure 1. The
explanations are given below.

Before subjecting the material to some external stress:

� the centres of the negative and positive charges of each molecule coincide,
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FIGURE 1: A molecular model of piezoelectricity

� the external effects of the charges are reciprocally cancelled,

� as a result, an electrically neutral molecule appears.

After exerting some pressure on the material:

� the internal structure is deformed,

� that causes the separation of the positive and negative centres of the molecules,

� as a result, little dipoles are generated.

Eventually :

� the facing poles inside the material are mutually cancelled,

� a distribution of a linked charge appears in the material’s surfaces and the mate-
rial is polarized,

� the polarization generates an electric field and can be used to transform the me-
chanical energy of the material’s deformation into electrical energy.

I Reversibility

The piezoelectric effect is reversible, that is, piezoelectric materials always exhibit
both:

� the direct piezoelectric effect – the production of electricity when stress is ap-
plied,

� the converse piezoelectric effect – the production of stress and/or strain when
an electric field is applied. (For example, lead zirconate titanate crystals will
exhibit a maximum shape change of about 0.1% of the original dimension.)

I Some historical facts and etymology

� The (direct) piezoelectric phenomenon was discovered in 1880 by the brothers
Pierre and Jacques Curie during experiments on quartz.
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� The existence of the reverse process was predicted by Lippmann in 1881 and
then immediately confirmed by the Curies.

� The word piezoelectricity means “electricity by pressure” and is derived from the
Greek piezein, which means to squeeze or press.

2.2 Piezoelectric equations

I Elastodynamics

Equation of motion :
ρü = ∇ · T + f (1)

ρ – the mass density of the material
u – the mechanical displacement vector
T – the 2nd-rank Cauchy stress tensor
f – the body force vector

Kinematic relations :
S =

1

2

(
∇u+ (∇u)ᵀ

)
(2)

S – the 2nd-rank strain tensor

Constitutive relations for elasticity :

T = c : S (3)

c – the 4th-rank elasticity tensor

Boundary conditions :
T · n = t̂ or u = û (4)

t̂ – the surface load
û – the prescribed displacements

I Electrostatics

Gauss’ law :
∇ ·D = q (5)

D – the electric displacement vector
q – the body electric charge

Maxwell’s law :
E = −∇φ (6)

E – the electric filed vector
φ – the electric potential
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Constitutive relations for dielectrics :

D = ε ·E (7)

ε – the 2nd-rank dielectric tensor

Boundary conditions :
D · n = Q̂ or φ = φ̂ (8)

Q̂ – the surface charge
φ̂ – the prescribed electric potential

I Elastodynamics and electrostatics combined

Sourceless equation of motion and Gauss’ law :

ρü = ∇ · T , ∇ ·D = 0 (9)

Kinematic relations and Maxwell’s law :

S =
1

2

(
∇u+ (∇u)ᵀ

)
, E = −∇φ (10)

Boundary conditions :

– mechanical: T · n = t̂ or u = û (11)

– electrical: D · n = Q̂ or φ = φ̂ (12)

Piezoelectric materials are anisotropic!
(There is no isotropic piezoelectric medium.)

The piezoelectric effects are realised by coupling terms
in the anisotropic constitutive relations.

I Piezoelectric coupling

Constitutive relations for piezoelectric materials (stress-charge form) :

T =
elasticity
c : S −

inverse effect
eᵀ ·E (13)

D = e : S
direct effect

+ ε ·E
dielectricity

(14)

e – the 3rd-rank piezoelectric coupling tensor
c – the 4th-rank elasticity tensor in the absence of electric field (E = 0)
ε – the 2nd-rank dielectric tensor in the absence of strains (S = 0)
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2.3 Voigt-Kelvin notation

Voigt-Kelvin convention for index substitution:

11→ 1, 22→ 2, 33→ 3, 23→ 4, 31→ 5, 12→ 6 (15)

This notation allows to represent:

the 4th-rank tensor of elasticity c → (6×6) matrix c
the 3rd-rank tensor of piezoelectric coupling e → (3×6) matrix e

the 2nd-rank tensor of dielectric constants ε → (3×3) matrix �
the 2nd-rank tensors of strain S and stress T → (6×1) vectors:

S =
[
S11 S22 S33 2S23 2S31 2S12

]ᵀ
T =

[
T11 T22 T33 T23 T31 T12

]ᵀ (16)

Consistently, denote also: u ≡ u, D ≡D, E ≡ E, n ≡ n.

� Constitutive relations:

T = cS− eᵀE, D = eS + �E. (17)

� Kinematic relations and Maxwell’s law:

S = ∇ᵀu, E = −∇φ. (18)

� Sourceless field equations:

∇T− ρü = 0, ∇ᵀD = 0. (19)

Here:

∇ =

∂x1 0 0 0 ∂x3 ∂x2
0 ∂x2 0 ∂x3 0 ∂x1
0 0 ∂x3 ∂x2 ∂x1 0

 , ∇ =

∂x1∂x2
∂x3

 , 0 =

0
0
0

 . (20)

� Neumann boundary conditions – e.g., homogeneous:

NT = 0, nᵀD = 0, (21)

where

N =

n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0

 , n =

n1

n2

n3

 . (22)
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3 Anisotropic media

3.1 Crystalline materials

Crystalline materials are homogeneous – different macroscopic samples, with the same
dimensions and crystalline orientation, behave identically.

At the atomic scale, where the medium is discontinuous, homogeneity remains in the
sense described by Bravais – there are in the crystal three distinct directions each
having an infinity of discrete points which are equivalent to any one point, that is, they
possess the same environment.

� The crystal can be developed in very different forms, yet the relative orientation
of the faces is constant.

� The angles between the various faces of a crystal remain unchanged throughout
its growth a law. This is the law of constant angles in crystallography.

The law of constant angles

The normals to the crystal faces, drawn from a fixed point, form a geometri-
cally invariant figure (the relative orientation of the faces is constant, although
the crystal can be developed in very different forms).

� The macroscopic properties of crystals suggest their classification according to
the symmetry shown by the normals to the natural faces, known as the point
group.

� The crystalline medium is characterized by an infinity of geometrical points (the
nodes), which are equivalent, that is they have the same environment of other
points. The set of these nodes forms a three-dimensional lattice, which ex-
presses the periodicity of the crystal in all directions.

� There are 14 lattices organized in 7 crystal systems – see Table 1 and Figure 2.

� The atomic structure of crystal is determined by the lattice and the atomic group
(a group of atoms) assigned to each node:

Crystal = Lattice + Atomic group

� The crystal symmetry is at most equal to that of the lattice → a crystal does
not necessarily possesses a centre of symmetry.

� There are 32 point symmetry classes of crystals.
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TABLE 1: The 7 crystal systems and 14 Bravais lattices

System Lattices
1. Triclinic P α 6= β 6= γ 6= 90◦ a 6= b 6= c
2. Monoclinic P, C α = γ = 90◦, β 6= 90◦ a 6= b 6= c
3. Orthorhombic P, I, C, F α = β = γ = 90◦ a 6= b 6= c
4. Trigonal (rhombohedral) P (or R) α = β = γ 6= 90◦ a = b = c
5. Tetragonal (quadratic) P, I α = β = γ = 90◦ a = b 6= c
6. Hexagonal P α = β = 90◦, γ = 120◦ a = b 6= c
7. Cubic P, I, F α = β = γ = 90◦ a = b = c

Triclinic Monoclinic Orthorhombic

P P C P I C F

Trigonal Tetragonal Hexagonal Cubic

P P I P P I F

FIGURE 2: The 7 crystal systems and 14 Bravais lattices

I Example: Lithium niobate (LiNbO3)

Figures 3 and 4 show the atomic and crystallographic structure of the lithium niobate
crystal. A few characteristic features of this piezoelectric material are listed here:

� trigonal system, class 3m,

� strongly piezoelectric,

� large crystals available (cylinders of diameter 10 cm and length more than 10 cm).

3.2 Constitutive matrices for some classes of anisotropy

Figures 5-8 present non-zero components of the constitutive matrices for some sym-
metry classes. The number of independent material constants is given in every case,
and in fact, for each of the constitutive matrices (see the numbers in parentheses at c,
e, and ε). The inter-dependencies between the relevant components are also shown,
assuming that the system of reference is consistent with the material axes. This is
demonstrated for four systems:

� cubic – see Figure 5,

� hexagonal – see Figure 6,

� orthorhombic – see Figure 7,

� trigonal – see Figure 8.
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paraelectric ferroelectric

FIGURE 3: Lithium niobate crystal: positions of the lithium and niobium atoms (dou-
ble and singe cross-hatched circles, respectively) with respect to the oxygen octahe-
dra in the paraelectric and ferroelectric phase

FIGURE 4: Lithium niobate crystal: (left) the conventional rhombohedral unit cell
(shown with respect to the hexagonal unit cell), and (middle & right) the standard and
nonstandard orientations of the principal axes and the planes of mirror symmetry
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Cubic system – class 4̄3m

1
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3

3

(3) c→

(1) e→

← eᵀ

← ε (1)

: zero component

: non-zero component
: equal components

(symmetry about the
main diagonal is not

shown)

Materials: Gallium arsenide (GaAs) – class 4̄3m, Bismuth and
germanium oxide (Bi12GeO20) – class 23

FIGURE 5: The components of constitutive matrices for the cubic system and sym-
metry class 4̄3m

Hexagonal system – class 6mm
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3

(5) c→

(3) e→

← eᵀ

← ε (2)

: zero component
: component c11−c12

2
: non-zero component
: equal components

(symmetry about the
main diagonal is not

shown)

Materials: Zinc oxide (ZnO), Cadmium sulphide (CdS), Ceramic
PZT-4

FIGURE 6: The components of constitutive matrices for the hexagonal system and
symmetry class 6mm
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Orthorhombic system – class 2mm
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(9) c→

(5) e→

← eᵀ

← ε (3)

: zero component
: non-zero component

(symmetry about the
main diagonal is not

shown)

Materials: Barium sodium niobate (Ba2NaNb5O15)

FIGURE 7: The components of constitutive matrices for the hexagonal system and
symmetry class 6mm

Trigonal system – class 3m
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(6) c→

(4) e→

← eᵀ

← ε (2)

: zero component
: component c11−c12

2
: non-zero component
: equal components
: opposite components

(symmetry about the
main diagonal is not

shown)

Materials: Lithium niobate (LiNbO3), Lithium tantalate (LiTaO3)

FIGURE 8: The components of constitutive matrices for the orthorhombic system
and symmetry class 2mm
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4 Bulk acoustic waves in anisotropic media

4.1 Mathematical description

The plane wave propagation along the direction n in a piezoelectric medium is
described by the fields of mechanical displacement and electric potential which change
with respect to the location x and time t, accordingly to the forms presented below,
namely, for the mechanical displacement components:

u1 ≡ u(x, t) = Au E(x, t), (23)
u2 ≡ v(x, t) = Av E(x, t), (24)
u3 ≡ w(x, t) = Aw E(x, t), (25)

and for the electric potential:

φ(x, t) = Aφ E(x, t), (26)

where Au, Av, Aw, Aφ are constants independent of x and t, and for the given wave-
form F:

E(x, t) = F(n · x− V t), (27)

where V is the phase velocity. These formulas can be rewritten in the matrix form as
follows:

u = Au F, φ = Aφ F, where Au =

AuAv
Aw

 (28)

is the wave polarization vector (direction of the particle displacement).

Using the Kelvin-Voigt notation,i.e., the formulas and definitions introduced in Sec-
tion 2.3, the mechanical strain and electric field vectors are expressed as

S = NᵀAu F
′, E = −nAφ F′. (29)

Notice that the polarization of electric field is longitudinal; the matrix N and vector n
are defined as in (22), although here they are related to the direction of propagation n
(and not to a vector normal to a boundary). The constitutive relations for the stress and
electric displacement vectors are

T = (cNᵀAu + eᵀnAφ)F′, D = (eNᵀAu − �nAφ)F′. (30)

When all these formulas are used for the field equations (19),the following set of equa-
tions describing the plane wave propagation in piezoelectric media is obtained.

Equations for plane wave propagation in piezoelectric media(
NcNᵀ − ρV 21

)
Au + NeᵀnAφ = 0,

nᵀeNᵀAu − nᵀ�nAφ = 0,
(31)
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where 1 is the (3×3)-identity matrix. Or, in the matrix form:[
NcNᵀ − ρV 21 Neᵀn

nᵀeNᵀ −nᵀ�n

][
Au

Aφ

]
=

[
0
0

]
. (32)

The last equation in the set gives the following formula:

Aφ =
nᵀeNᵀ

nᵀ�n
Au (33)

which is used to derive the generalized Christoffel matrix equation.

Christoffel matrix equation[
G− ρV 21

]
Au = 0, where G = NcNᵀ +

NeᵀnnᵀeNᵀ

nᵀ�n
(34)

is the matrix representation of the second-order Christoffel tensor (generalized
for the case of piezoelectric medium).

Observations:

� The polarization is eigenvector of the Christoffel tensor (matrix) G with
eigenvalue ρV 2.

� The phase velocities and polarizations of plane waves propagating in the
direction n in a crystal are given by the eigenvalues and eigenvectors of the
corresponding Christoffel tensor.

The acoustic wave propagation in (anisotropic) solids is more complicated that in fluids,
because of the following facts.

� Three plane waves with mutually orthogonal polarizations can propagate in
the same direction, with different velocities.

� The elastic displacement vector is not generally parallel or perpendicular to
the propagation direction. The waves are purely longitudinal or transverse only
in particular directions.

� The wave with polarization closest to the propagation direction is called quasi-
longitudinal, its velocity is usually higher than that of the two other waves, called
quasi-transverse. Only in particular directions are the waves purely longitudinal
or transverse.

A propagation direction is called an acoustic axis, when the transverse wave polar-
ization has an arbitrary direction in the plane normal to the axis. The transverse waves
are then degenerate and have the same velocity.

The acoustic ray is the direction of energy transport, that is the direction of the energy
velocity vector. The projection of this vector onto the propagation direction is equal to
the phase velocity of the plane wave. When the acoustic ray is perpendicular to the
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wave-fronts, and therefore parallel to the propagation direction, the mode (the wave) is
described as pure, and the velocity of energy flow is equal to the phase velocity. A lon-
gitudinal wave is always pure; however, there may be transverse (degenerate) waves
which are not pure. When the mode is pure, the directions of propagation and polariza-
tion are interchangeable (that is, switching them results in another pure mode).

4.2 Characteristic surfaces

The velocity surface is defined by the end of the vector nV (n), drawn from the origin
in varied directions n (the length of this vector equals the phase velocity V for
waves with wavefronts perpendicular to it).

The slowness surface is defined by the end of vector n/V (n), drawn from the ori-
gin in varied directions n. The energy velocity is, at all points, normal to the
slowness surface.

The wave surface is defined by the end of the energy velocity vector V e(n), drawn
from the origin, as the propagation direction n varies. It is an equi-phase surface
and describes the points reached, at unit time, by the vibrations (energy) emitted
at time zero by a point source at the origin.
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FIGURE 9: Slowness surfaces [s/km] in the YZ-plane for the lithium niobate crystal
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FIGURE 10: Velocity surfaces for lithium niobate [km/s] in the YZ-plane for the lithium
niobate crystal

Examples of characteristic surfaces are given in Figures 9, 10, and 11 for the lithium
niobate crystal which is characterised by a strong anisotropy of a trigonal class. Fig-
ure 9 shows the slowness surfaces in the YZ-plane and the corresponding velocity
surfaces are presented in Figure 10. Figure 11 shows the slowness surfaces in the
XY-plane; they are fairly different from their counterparts shown in Figure 9, although
the pairs of corresponding curves presented in both Figures are the intersections of the
same surface – this illustrates how far these ‘anisotropic’ slowness surfaces are from
the spherical shape typical for isotropy.

5 Surface Acoustic Waves (SAW)

5.1 Types of Surface Acoustic Waves

� Rayleigh waves – waves travelling near the surface of elastic solids

� Lamb waves – waves travelling in elastic plates (guided by the surfaces of these
plates)
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FIGURE 11: Slowness surfaces for lithium niobate [s/km] in the XY-plane for the
lithium niobate crystal

� Love waves – horizontally polarized shear waves guided by a thin elastic layer
set on another elastic solid (of higher acoustic wave velocity)

� Stoneley waves – waves travelling along solid-fluid or solid-solid interfaces

I Pseudo-surface waves

A pseudo-surface wave appears in certain crystals when, because of anisotropy, the
Rayleigh wave velocity is greater than that of one of the bulk transverse waves.

5.2 Partial waves

For harmonic wave propagation in the sagittal XZ-plane the waveform is defined as
follows:

E(x, t) = exp
[
ik(x+ βz − V t)

]
, where V =

ω

k
, (35)

ω is the angular frequency, k is the wavenumber, and β is a constant value which
defines the direction of propagation in the XZ-plane, namely, the angle between this
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direction and the X-axis is arctan(β). Therefore:

F(.) = exp
[
ik(.)

]
, F′(.) = ikF(.). (36)

Now, when the matrix N and vector n are related to the direction of propagation n, they
can be specified as follows

N→ B =

1 0 0 0 β 0
0 0 0 β 0 1
0 0 β 0 1 0

 , n→ b =

1
0
β

 . (37)

Therefore, the strain, electric field, stress, and electric displacement vectors are

S = BᵀAuikE, E = −bAφikE, (38)

T = (cBᵀAu + eᵀbAφ)ikE, D = (eBᵀAu − �bAφ)ikE, (39)

and the final set of equations is as follows.

Plane harmonic wave propagation in piezoelectric media(
BcBᵀ − ρV 21

)
Au + BeᵀbAφ = 0,

bᵀeBᵀAu − bᵀ�bAφ = 0.
(40)

� This plane-wave eigensystem depends now also on β.

� Eigenproblem is solved for β with V treated as parameter. The secular equation
is an 8th-order polynomial (or a 6th-order polynomial for purely elastic media).

� The 8 eigenvalues and eigenvectors form 8 partial waves. In case of the Rayleigh
wave, 4 of them are discarded on the basis of boundary conditions at −∞ (see
Section 5.3).

� The solution is a linear combination of partial waves which are coupled by the
boundary conditions on the surface(s), see Sections 5.3 and 5.4. That gives
another eigensystem.

� Its secular equation must be zero for the velocity V to be the correct surface
wave velocity – this condition is checked and eventually satisfied by an adjusting
procedure which changes V in a loop.

5.3 Rayleigh waves

A Rayleigh wave propagates along the surface of a medium, see Figure 12. The rele-
vant boundary conditions are specified below.
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n
x

z

y

FIGURE 12: A Rayleigh wave

Mechanical boundary conditions:

for z → −∞ : u = 0 (41)
for z = 0 : T · n = 0 (42)

Electrical boundary conditions:

for z → −∞ : φ = 0 (43)
for z = 0 : D · n = 0 (44)

Features:

� the partial waves are coupled at the surface;

� for a particular material and orientation (the cut and direction of propagation)
there is actually only one velocity, i.e., there is only one Rayleigh wave;

� longitudinal and transverse motions decrease exponentially in amplitude as dis-
tance from the surface increases (there is a phase difference between these
component motions);

� the Rayleigh wave is non-dispersive.

5.4 Lamb waves

Lamb waves are driven by a plate of finite thickness – see, for example, Figure 13.
There are many kinds (modes) and velocities of such propagation obtained by applying
on both surfaces the boundary conditions given below.

n

n

x

z

y

h

h

FIGURE 13: A Lamb wave
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Mechanical boundary conditions:

for z = +h : T · n = 0 (45)
for z = −h : T · n = 0 (46)

Electrical boundary conditions:

for z = +h : D · n = 0 (47)
for z = −h : D · n = 0 (48)

Comment : Electrical boundary conditions here are for the case of the surface(s) cov-
ered with a hypothetical medium with zero electrical permittivity ; however, for materials
with relatively high permittivity (such as lithium niobate), if the adjacent medium is vac-
uum (or air) the results are very similar.

Features:

� partial waves are coupled and also reflected back and fourth by the boundaries
of the plate;

� coupled waves results from the travelling waves along the plate and standing
waves in the direction across the plate thickness;

� there are many modes (symmetric and antisymmetric) with different velocities;

� dispersion (the wave velocities depend on the frequency and the plate thick-
ness).

5.5 Decoupling of Rayleigh waves in piezoelectric media

There are two such cases:

1. When the sagittal plane is normal to a direct binary axis of crystal, there exists
the possibility for:

� a non-piezoelectric Rayleigh wave R2 polarized in this plane (u2 = 0),

� a piezoelectric transverse horizontal wave TH (BLEUSTEIN & GULYAEV, 1968)
which can propagate independently.

2. When the sagittal plane is parallel to a mirror plane of crystal, there exists the
possibility for:

� a piezoelectric Rayleigh wave R2 polarized in the sagittal plane (u2 = 0),

� a non-piezoelectric transverse horizontal wave TH which can propagate in-
dependently and is not a surface wave.

� The symmetries of these two cases can be satisfied only for orthorhombic,
tetragonal, hexagonal, and cubic crystals. With respect to the crystallographic
axes there are 16 possible combinations, that is, orientations of the propaga-
tion direction x1 and the sagittal plane normal x2.
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� Decoupling is also possible in trigonal crystals: for the so-called Y-cut (i.e., the
free surface is parallel to the XZ-plane) when the propagation is along the Z-axis
(the sagittal plane is YZ).

� Figure 14 shows non-zero components of the constitutive matrices for the trigonal
system, class 3m, with respect to any system of reference rotated around the X-
axis; although no inter-dependencies between these components are shown, one
should remember that there are only 12 independent components.

Trigonal system – class 3m – rotated around X-axis
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FIGURE 14: The components of constitutive matrices for the trigonal system and
symmetry class 3mm – for any system of reference rotated around the X-axis

6 SAW examples

6.1 Piezoelectric Rayleigh wave in lithium niobate

� Figure 15 presents the Rayleigh wave R2 in lithium niobate (LiNbO3), Y-cut, prop-
agation along the Z-axis; the wave velocity is V = 3485 m/s.

FIGURE 15: Rayleigh wave R2 in lithium niobate (Y-cut, propagation along the Z-axis)
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FIGURE 16: The electric potential of the associated electric field for the Rayleigh
wave shown in Figure 15

� The electric potential of the associated electric field (phase angle: 0◦) is shown
in Figure 16.

� There is no dispersion – the wave velocity is the same whatever would be the
wave frequency f ; the wavelength is therefore: λ = V/f .

6.2 Lamb waves in a lithium niobate plate

Now, the wave propagation is considered in a lithium niobate plate of sufficiently small
thickness (with respect to the wavelengths), which should allow to distinctly observe
Lamb modes. The thickness of plate is 0.5 mm.
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FIGURE 17: Findings of the velocities (marked by the peaks) of Lamb waves in a
0.5 mm-thick lithium niobate plate (Y-cut, propagation along the Z-axis): four modes
are found (under 6 km/s) for each of the considered frequencies
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Figure 17 shows findings of the velocities of Lamb waves propagating along the Z-
axis in a Y-cut lithium niobate plate with thickness 0.5 mm. The found velocities are
marked by the peaks. The results for two wave frequencies are shown, namely, for
f = 11.6 MHz and f = 15.0 MHz. In the considered scope below 6 km/s, four mode
velocities were found for both cases (another modes may be found with higher veloci-
ties).

Observations:

� For both considered frequencies (see Figure 17), and in fact, for any frequency,
the lowest wave velocity is slightly lower than the velocity of Rayleigh wave (V =
3485 m/s) propagating on the surface of the same Litium niobate material with the
same cut and propagation direction.

� This lowest velocity is for the first Lamb mode which is antisymmetric, see Fig-
ure 18.

� The second velocity is found for a symmetric mode (see Figure 19) and it is – for
any frequency – slightly higher than the velocity of the corresponding Rayleigh
wave.

� The difference between the velocities of these first two modes is larger for lower
frequencies (see Figure 17). When the frequency increases this difference de-
creases since the velocities for both modes are becoming closer to the Rayleigh
velocity, i.e., the slower mode velocity increases and the faster mode velocity
decreases.

� With the frequency increase, the corresponding wavelengths are getting shorter
and may become much smaller that the plate thickness, so that in fact, eventu-

sagittal plane

FIGURE 18: The first (antisymmetric) mode of Lamb wave in a 0.5 mm-thick lithium
niobate plate (Y-cut, propagation along the Z-axis)
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sagittal plane

free surface

FIGURE 19: The second (the first symmetric) mode of Lamb wave in a 0.5 mm-thick
lithium niobate plate (Y-cut, propagation along the Z-axis); the motion of free surface
(‘top view’) shows that the wave is polarized in the sagittal plane

sagittal plane

FIGURE 20: Another antisymmetric mode of Lamb wave in a 0.5 mm-thick lithium
niobate plate (Y-cut, propagation along the Z-axis)
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ally one may observe a practically independent, uncoupled propagation of two
Rayleigh waves along both sides of the comparatively thick plate.

Figure 18 shows the first Lamb mode of propagation (i.e., with the slowest possible
velocity) in the considered lithium niobate plate (Y-cut, propagation along the Z-axis);
this mode is antisymmetric. Another antisymmetric mode for the same plate is shown
in Figure 20; it is a higher-velocity mode.

The symmetric mode of Lamb wave propagation is presented in Figure 19; here, the
plate motion in the sagittal plane (i.e., across the plate) as well as the motion of plate
surface (i.e., ‘top view’) are shown to illustrate that for this cut and propagation direction
(i.e., Y-cut, propagation along the Z-axis) the wave polarization is in the sagittal plane.
This is true for any Lamb mode, in particular, for the modes presented in Figures 18
and 20.

sagittal plane

free surface

FIGURE 21: The second (the first symmetric) mode of Lamb wave in a 0.5 mm-thick
lithium niobate plate cut at angle Y+128◦ (propagation along the Z-axis); the motion
of free surface (‘top view’) clearly shows that the wave is the wave polarization is out
of the sagittal plane
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The wave polarization is out of the sagittal plane for the lithium niobate cut at angle
Y+128◦. This is illustrated in Figure 21 where the first symmetric mode is presented (in
fact, this is the second mode – the slowest mode is antisymmetric).
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