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Motivation:

m Many complex phenomena involve processes occurring at
different scales (of space and/or time), or ...

m ... multiple spatial and/or temporal scales can be
distinguished to differ between the process phases or to
better/easier describe the process features.

m Usually, it is easier to deal with different scales individually.
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Multi-scale modelling

Mathematical solution techniques of dealing with problems that have
important features at multiple scales of space and/or time.

Comment: For many problems, the processes (i.e., sub-problems) at
various scales can be, in practice, solved (quasi) separately, which
makes such multi-scale approach very efficient.
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Multi-scale modelling

Mathematical solution techniques of dealing with problems that have
important features at multiple scales of space and/or time.

Requirements:

m Separation of scales — allows to apply different approaches to

treat problems at various scales. One can distinguish:

different spatial scales — when there are local and global phenomena,
or there co-exist processes which are: essentially microscopic (i.e.,
occur at the micro-scale), mesoscopic (i.e., occur at the meso-scale),
and macroscopic (i.e., occur at the macro-scale), etc.;

different temporal scales — when the involved processes are:
relatively slow (static or quasi-static), dynamic, or relatively fast, etc.
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phenomenon considered on the scale related to this geometry or
time-interval.
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Multi-scale modelling

Mathematical solution techniques of dealing with problems that have
important features at multiple scales of space and/or time.

Requirements:
m Separation of scales — allows to apply different approaches to
treat problems at various scales. One can distinguish:
different spatial scales — when there are local and global phenomena,
or there co-exist processes which are: essentially microscopic (i.e.,
occur at the micro-scale), mesoscopic (i.e., occur at the meso-scale),
and macroscopic (i.e., occur at the macro-scale), etc.;
different temporal scales — when the involved processes are:
relatively slow (static or quasi-static), dynamic, or relatively fast, etc.
m Representativeness of the geometry or time-interval for the
phenomenon considered on the scale related to this geometry or
time-interval.
m Well defined way of passing of the relevant information
(effective properties, behaviour, etc.) between the scales.
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MACRO-SCALE
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E MICRO-SCALE: (skeleton)
m Selection (construction) of a (periodic) Representative
Elementary Volume (REV) of a porous medium.
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EXAMPLE: Flow in porous media

MICRO-SCALE
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E MICRO-SCALE: (fluid domain)
m Selection (construction) of a (periodic) Representative
Elementary Volume (REV) of a porous medium.



EXAMPLE: Flow in porous media

Basics of multiscale modelling

EXAMPLE: Flow in porous media

MICRO-SCALE

Periodic ___
REV [—

E MICRO-SCALE: (Stokes flow)
m Selection (construction) of a (periodic) Representative
Elementary Volume (REV) of a porous medium.
m Stokes flow, i.e., linear & steady, viscous, incompressible flow
through the periodic RVE, driven by a uniform pressure gradient.
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EXAMPLE: Flow in porous media

MICRO-SCALE

iadi Nt
Periodic //,4‘ e

fluid

______

E MICRO-SCALE: (Stokes flow)
m Selection (construction) of a (periodic) Representative
Elementary Volume (REV) of a porous medium.
m Stokes flow, i.e., linear & steady, viscous, incompressible flow
through the periodic RVE, driven by a uniform pressure gradient.
m Averaging of the computed velocity field to determine the
permeability of the porous medium.

H MACRO-SCALE:
m Macroscopic flow through the porous material characterised by
its open porosity and permeability using the Darcy’s law.
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TUTORIAL: Steady viscous flow through channels clogged with a porous material
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(Darcy’s law)
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TUTORIAL: Steady viscous flow through channels clogged with a porous material

Porous material Periodic cell Darcy’s law

periodicity q= 7%Vp
q:flux[m/s] q = ¢(v)s
v : velocity in the pores [m/s]
(.)¢ : averaging over the pore fluid
¢ : open porosity
Vp: pressure gradient [Pa/m]
> dynamic viscosity [Pa-s]
k : permeability tensor [m?]

ki ki
ko~ |:k2] kzz}

k = kT i.e. ki = ko

Auoipounad

periodicity
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Porous material Periodic cell Darcy’s law
iodici _ _k
p_e:IC_)d_ICIty q=-— FVP
‘ Hflux [m/s]  q = p(v)s

: velocity in the pores [m/s]
: averaging over the pore fluid
: open porosity
Vp: pressure gradient [Pa/m]
: dynamic viscosity [Pa-s]
k : permeability tensor [m?]

ki ki
ko~ |:k2] kzz}

k = kT i.e. ki = ko1

—~
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Auoipounad
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For the pressure gradient:
e in the (negative) x; direction
ki = — s (v X

___u .
Vp = —2x ka1 = =gy (V- %t
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Porous material Periodic cell
periodicity  p,

periodicity po + Ap

Auoipounad

Darcy’s law
q=—;Vp

flux [m/s] g = ¢(v)s

: velocity in the pores [m/s]

: averaging over the pore fluid

: open porosity

Vp: pressure gradient [Pa/m]

: dynamic viscosity [Pa-s]

k : permeability tensor [m?]

ki ki
ko~ |:k2] kzz}

k= kT i.e. ki = ko1

—~
© X <« 2

=

For the pressure gradient:
e in the (negative) x; direction

ki = — s (v X
loy = — s (v X2

e in the (negative) x, direction
kiy = — b d(v - xi)

k22 = —ﬁ(t)(V . Xz){
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Porous material Periodic cell Darcy’s law

q=—;Vp

q:flux[m/s]  q = ¢(v)
v : velocity in the pores [m/s]
(.)¢ : averaging over the pore fluid
¢ : open porosity
Vp: pressure gradient [Pa/m]
w: dynamic viscosity [Pa-s]
k : permeability tensor [m?]

ki ki
ko~ |:k2] kzz}

k= kT i.e. ki = ko

For the pressure gradient:
e in the (negative) x; direction

ki = — s (v X
loy = — s (v X2

e in the (negative) x, direction
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k22 = —ﬁqf)(v . Xz)f
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Porous material Periodic cell Darcy’s law
q=—,Vp
q:flux[m/s]  q = ¢(v)
v : velocity in the pores [m/s]
(.)¢ : averaging over the pore fluid
¢ : open porosity
Vp: pressure gradient [Pa/m]
w: dynamic viscosity [Pa-s]
k : permeability tensor [m?]

ki ki
ko~ |:k2] kzz}

k= kT i.e. ki = ko

Axes (or material) rotation
«: rotation angle
R — |: Cos « Sin a:|

. For the pressure gradient:
— sin & COos &«

e in the (negative) x; direction
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Porous material Periodic cell Darcy’s law
q=—,Vp
q:flux[m/s]  q = ¢(v)
v : velocity in the pores [m/s]
(.)¢ : averaging over the pore fluid
¢ : open porosity
Vp: pressure gradient [Pa/m]
w: dynamic viscosity [Pa-s]
k : permeability tensor [m?]

ki ki
ko~ |:k2] kzz}

k= kT i.e. ki = ko

Axes (or material) rotation
«: rotation angle

R — |: COoS & sma:|

. For the pressure gradient:
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e in the (negative) x; direction
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