Basics of Multiscale Modelling: Tutorial on Porous Media Flow Introductory Course on Multiphysics Modelling

TOMASZ G. ZIELIŃSKI

bluebox.ippt.pan.pl/~tzielins/

Institute of Fundamental Technological Research of the Polish Academy of Sciences Warsaw • Poland

Motivation:

- Many complex phenomena involve processes occurring at different scales (of space and/or time), or ...
- multiple spatial and/or temporal scales can be distinguished to differ between the process phases or to better/easier describe the process features.
- Usually, it is easier to deal with different scales individually.

Motivation:

- Many complex phenomena involve processes occurring at different scales (of space and/or time), or ...
- multiple spatial and/or temporal scales can be distinguished to differ between the process phases or to better/easier describe the process features.
- Usually, it is easier to deal with different scales individually.

Multi-scale modelling

Mathematical solution techniques of dealing with problems that have important features at multiple scales of space and/or time.

Comment: For many problems, the processes (i.e., sub-problems) at various scales can be, in practice, solved (quasi) separately, which makes such multi-scale approach very efficient.

Multi-scale modelling

Mathematical solution techniques of dealing with problems that have important features at multiple scales of space and/or time.

Requirements:

Separation of scales – allows to apply different approaches to treat problems at various scales. One can distinguish:
 different spatial scales – when there are local and global phenomena, or there co-exist processes which are: essentially microscopic (i.e., occur at the micro-scale), mesoscopic (i.e., occur at the meso-scale), and macroscopic (i.e., occur at the macro-scale), etc.;
 different temporal scales – when the involved processes are: relatively slow (static or guasi-static), dynamic, or relatively fast. etc.

Multi-scale modelling

Mathematical solution techniques of dealing with problems that have important features at multiple scales of space and/or time.

Requirements:

Separation of scales – allows to apply different approaches to treat problems at various scales. One can distinguish:
 different spatial scales – when there are local and global phenomena, or there co-exist processes which are: essentially microscopic (i.e., occur at the micro-scale), mesoscopic (i.e., occur at the meso-scale), and macroscopic (i.e., occur at the macro-scale), etc.;
 different temporal scales – when the involved processes are: relatively slow (static or quasi-static), dynamic, or relatively fast, etc.
 Representativeness of the geometry or time-interval for the phenomenon considered on the scale related to this geometry or time-interval.

Multi-scale modelling

Mathematical solution techniques of dealing with problems that have important features at multiple scales of space and/or time.

Requirements:

Separation of scales – allows to apply different approaches to treat problems at various scales. One can distinguish:

different spatial scales – when there are local and global phenomena, or there co-exist processes which are: essentially microscopic (i.e., occur at the micro-scale), mesoscopic (i.e., occur at the meso-scale), and macroscopic (i.e., occur at the macro-scale), etc.;

different temporal scales – when the involved processes are: relatively slow (static or quasi-static), dynamic, or relatively fast, etc.

- Representativeness of the geometry or time-interval for the phenomenon considered on the scale related to this geometry or time-interval.
- Well defined way of passing of the relevant information (effective properties, behaviour, etc.) between the scales.

EXAMPLE: Flow in porous media

MACRO-SCALE

viscous flow through a porous material

EXAMPLE: Flow in porous media

Selection (construction) of a (periodic) Representative Elementary Volume (REV) of a porous medium.

EXAMPLE: Flow in porous media

(fluid domain)

Selection (construction) of a (periodic) Representative Elementary Volume (REV) of a porous medium.

EXAMPLE: Flow in porous media

(Stokes flow)

- Selection (construction) of a (periodic) Representative Elementary Volume (REV) of a porous medium.
- Stokes flow, i.e., linear & steady, viscous, incompressible flow through the periodic RVE, driven by a uniform pressure gradient.

EXAMPLE: Flow in porous media

(Stokes flow)

- Selection (construction) of a (periodic) Representative Elementary Volume (REV) of a porous medium.
- Stokes flow, i.e., linear & steady, viscous, incompressible flow through the periodic RVE, driven by a uniform pressure gradient.
- Averaging of the computed velocity field to determine the permeability of the porous medium.
- 2 MACRO-SCALE:
 - Macroscopic flow through the porous material characterised by its open porosity and permeability using the Darcy's law.

TUTORIAL: Steady viscous flow through channels clogged with a porous material

Porous material

TUTORIAL: Steady viscous flow through channels clogged with a porous material

$$\mathbf{q} = -\frac{\mathbf{k}}{\mu}\nabla p$$

$$\mathbf{q} : \text{flux } [\text{m/s}] \quad \mathbf{q} = \phi \langle \mathbf{v} \rangle_{\text{f}}$$

$$\mathbf{v} : \text{velocity in the pores } [\text{m/s}]$$

$$\langle . \rangle_{\text{f}} : \text{averaging over the pore fluid}$$

$$\phi : \text{open porosity}$$

$$\nabla p : \text{pressure gradient } [\text{Pa/m}]$$

$$\mu : \text{dynamic viscosity } [\text{Pa·s}]$$

$$\mathbf{k} : \text{permeability tensor } [\text{m}^2]$$

$$\mathbf{k} \sim \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}$$

$$\mathbf{k} = \mathbf{k}^{\top} \text{ i.e. } k_{12} = k_{21}$$

Darcy's law

TUTORIAL: Steady viscous flow through channels clogged with a porous material

$$\mathbf{q} = -\frac{\mathbf{k}}{\mu} \nabla p$$

$$\mathbf{q} : \text{flux} [\text{m/s}] \quad \mathbf{q} = \phi \langle \mathbf{v} \rangle_{\text{f}}$$

$$\mathbf{v} : \text{velocity in the pores [m/s]}$$

$$\langle . \rangle_{\text{f}} : \text{averaging over the pore fluid}$$

$$\phi : \text{open porosity}$$

$$\nabla p : \text{pressure gradient [Pa/m]}$$

$$\mu : \text{dynamic viscosity [Pa·s]}$$

$$\mathbf{k} : \text{permeability tensor [m^2]}$$

$$\mathbf{k} \sim \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}$$

$$\mathbf{k} = \mathbf{k}^{\top} \text{ i.e. } k_{12} = k_{21}$$

Darcy's law

For the pressure gradient:

• in the (negative) x₁ direction

$$k_{11} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_1} \phi \langle \mathbf{v} \cdot \mathbf{x}_1 \rangle_{\mathsf{f}} k_{21} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_1} \phi \langle \mathbf{v} \cdot \mathbf{x}_2 \rangle_{\mathsf{f}}$$

TUTORIAL: Steady viscous flow through channels clogged with a porous material

 $\mathbf{q} = -\frac{\mathbf{k}}{\mu} \nabla p$ $\mathbf{q} : \text{flux } [\text{m/s}] \quad \mathbf{q} = \phi \langle \mathbf{v} \rangle_{\text{f}}$ $\mathbf{v} : \text{velocity in the pores } [\text{m/s}]$ $\langle . \rangle_{\text{f}} : \text{averaging over the pore fluid}$ $\phi : \text{open porosity}$ $\nabla p : \text{pressure gradient } [\text{Pa/m}]$ $\mu : \text{dynamic viscosity } [\text{Pa·s}]$ $\mathbf{k} : \text{permeability tensor } [\text{m}^2]$ $\mathbf{k} \sim \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}$ $\mathbf{k} = \mathbf{k}^\top \text{ i.e. } k_{12} = k_{21}$

Darcy's law

For the pressure gradient:

 \bullet in the (negative) x_1 direction

$$k_{11} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_1} \phi \langle \mathbf{v} \cdot \mathbf{x}_1 \rangle_{\mathrm{f}}$$

$$k_{21} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_1} \phi \langle \mathbf{v} \cdot \mathbf{x}_2 \rangle_{\mathrm{f}}$$

 \bullet in the (negative) \boldsymbol{x}_2 direction

$$k_{12} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_2} \phi \langle \mathbf{v} \cdot \mathbf{x}_1 \rangle_{\mathsf{f}}$$

$$k_{22} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_2} \phi \langle \mathbf{v} \cdot \mathbf{x}_2 \rangle_{\mathsf{f}}$$

TUTORIAL: Steady viscous flow through channels clogged with a porous material

Darcy's law $\mathbf{q} = -\frac{\mathbf{k}}{\mu} \nabla p$

q : flux [m/s] $\mathbf{q} = \phi \langle \mathbf{v} \rangle_{f}$ **v** : velocity in the pores [m/s]

 $\langle . \rangle_{f}$: averaging over the pore fluid

 ϕ : open porosity

- ∇p : pressure gradient [Pa/m]
 - μ : dynamic viscosity [Pa·s]
 - k : permeability tensor [m2]
 - $\mathbf{k} \sim \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}$ $\mathbf{k} = \mathbf{k}^{\top} \text{ i.e. } k_{12} = k_{21}$

For the pressure gradient:

• in the (negative) x1 direction

$$k_{11} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_1} \phi \langle \mathbf{v} \cdot \mathbf{x}_1 \rangle_{\mathsf{f}}$$

$$k_{21} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_1} \phi \langle \mathbf{v} \cdot \mathbf{x}_2 \rangle_{\mathsf{f}}$$

• in the (negative) \mathbf{x}_2 direction

$$k_{12} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_2} \phi \langle \mathbf{v} \cdot \mathbf{x}_1 \rangle_{\mathsf{f}}$$

$$k_{22} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_2} \phi \langle \mathbf{v} \cdot \mathbf{x}_2 \rangle_{\mathsf{f}}$$

TUTORIAL: Steady viscous flow through channels clogged with a porous material

Darcy's law $\mathbf{q} = -\frac{\mathbf{k}}{\mu} \nabla p$

 \mathbf{q} : flux [m/s] $\mathbf{q} = \phi \langle \mathbf{v} \rangle_{\mathsf{f}}$

v : velocity in the pores $\left[m/s\right]$

 $\langle . \rangle_{f}$: averaging over the pore fluid

 ϕ : open porosity

 ∇p : pressure gradient [Pa/m]

 μ : dynamic viscosity [Pa·s]

k : permeability tensor [m²]

 $\mathbf{k} \sim \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}$ $\mathbf{k} = \mathbf{k}^{\top} \text{ i.e. } k_{12} = k_{21}$

For the pressure gradient:

• in the (negative) x1 direction

$$k_{11} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_1} \phi \langle \mathbf{v} \cdot \mathbf{x}_1 \rangle_{\mathsf{f}}$$

$$k_{21} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_1} \phi \langle \mathbf{v} \cdot \mathbf{x}_2 \rangle_{\mathsf{f}}$$

• in the (negative) \mathbf{x}_2 direction

$$k_{12} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_2} \phi \langle \mathbf{v} \cdot \mathbf{x}_1 \rangle_{\mathsf{f}}$$

$$k_{22} = -\frac{\mu}{\nabla p \cdot \mathbf{x}_2} \phi \langle \mathbf{v} \cdot \mathbf{x}_2 \rangle_{\mathsf{f}}$$

TUTORIAL: Steady viscous flow through channels clogged with a porous material

Darcy's law $\mathbf{q} = -\frac{\mathbf{k}}{\mu} \nabla p$ \mathbf{q} : flux [m/s] $\mathbf{q} = \phi \langle \mathbf{v} \rangle_{f}$ \mathbf{v} : velocity in the pores [m/s] $\langle . \rangle_{f}$: averaging over the pore fluid ϕ : open porosity

- ∇p : pressure gradient [Pa/m]
 - $\mu : \text{dynamic viscosity} \left[\text{Pa}{\cdot}\text{s} \right]$
 - k : permeability tensor [m2]
 - $\mathbf{k} \sim \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}$ $\mathbf{k} = \mathbf{k}^{\top} \text{ i.e. } k_{12} = k_{21}$

For the pressure gradient:

- in the (negative) x11 direction
 - $\begin{aligned} k_{11} &= -\frac{\mu}{\nabla p \cdot \mathbf{x}_1} \phi \langle \mathbf{v} \cdot \mathbf{x}_1 \rangle_{\mathrm{f}} \\ k_{21} &= -\frac{\mu}{\nabla p \cdot \mathbf{x}_1} \phi \langle \mathbf{v} \cdot \mathbf{x}_2 \rangle_{\mathrm{f}} \end{aligned}$
- \bullet in the (negative) x_2 direction
 - $\begin{aligned} k_{12} &= -\frac{\mu}{\nabla p \cdot \mathbf{x}_2} \phi \langle \mathbf{v} \cdot \mathbf{x}_1 \rangle_{\mathrm{f}} \\ k_{22} &= -\frac{\mu}{\nabla p \cdot \mathbf{x}_2} \phi \langle \mathbf{v} \cdot \mathbf{x}_2 \rangle_{\mathrm{f}} \end{aligned}$

