Mathematical Preliminaries
Introductory Course on Multiphysics Modelling

TOMASZ G. ZIELINSKI

bluebox.ippt.pan.pl/~tzielins/

Institute of Fundamental Technological Research
of the Polish Academy of Sciences
Warsaw e Poland



mailto:tzielins@ippt.pan.pl
bluebox.ippt.pan.pl/~tzielins/

Bl Vectors, tensors, and index notation
m Generalization of the concept of vector
m Summation convention and index notation
m Kronecker delta and permutation symbol
m Tensors and their representations
m Multiplication of vectors and tensors
m Vertical-bar convention and Nabla operator



Bl Vectors, tensors, and index notation
m Generalization of the concept of vector
m Summation convention and index notation
m Kronecker delta and permutation symbol
m Tensors and their representations
m Multiplication of vectors and tensors
m Vertical-bar convention and Nabla operator

H Integral theorems
m General idea
m Stokes’ theorem
m Gauss-Ostrogradsky theorem



Bl Vectors, tensors, and index notation
m Generalization of the concept of vector
m Summation convention and index notation
m Kronecker delta and permutation symbol
m Tensors and their representations
m Multiplication of vectors and tensors
m Vertical-bar convention and Nabla operator

H Integral theorems
m General idea
m Stokes’ theorem
m Gauss-Ostrogradsky theorem

El Time-harmonic approach
m Types of dynamic problems
m Complex-valued notation
m A practical example



Vectors, tensors, and index notation

Outline

Bl Vectors, tensors, and index notation
m Generalization of the concept of vector
m Summation convention and index notation
m Kronecker delta and permutation symbol
m Tensors and their representations
m Multiplication of vectors and tensors
m Vertical-bar convention and Nabla operator
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Vectors, tensors, and index notation

Generalization of the concept of vector

m A vector is a quantity that possesses both a magnitude and a
direction and obeys certain laws (of vector algebra):
o the vector addition and the commutative and associative laws,
o the associative and distributive laws for the multiplication with
scalars.
m The vectors are suited to describe physical phenomena, since
they are independent of any system of reference.

The concept of a vector that is independent of any coordinate system
can be generalised to higher-order quantities, which are called tensors.
Consequently, vectors and scalars can be treated as lower-rank tensors.
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Vectors, tensors, and index notation

Generalization of the concept of vector

m The vectors are suited to describe physical phenomena, since
they are independent of any system of reference.

The concept of a vector that is independent of any coordinate system
can be generalised to higher-order quantities, which are called tensors.
Consequently, vectors and scalars can be treated as lower-rank tensors.

Scalars have a magnitude but no direction. They are tensors of
order 0. Example: the mass density.

Vectors are characterised by their magnitude and direction. They
are tensors of order 1. Example: the velocity vector.

Tensors of second order are quantities which multiplied by a vector
give as the result another vector. Example: the stress tensor.

Higher-order tensors are often encountered in constitutive relations
between second-order tensor quantities. Example: the fourth-order
elasticity tensor.
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Summation convention and index notation

Einstein’s summation convention

A summation is carried out over repeated indices in an expression
and the summation symbol is skipped.

3

a; b; Ezaibi =a; by +ay by + a3 b3

i=1

3
Aii =) Ai = Al + A + A

=

3
Ajj b = ZAij bj =Aj by +Apby +A; b3 (i=1,2,3) [3expressions]
j=1
3 3
T Sij = Z ZTijsij =TS +Ti2S12+T1i3813
=1 =l + T21 S21 + T2z S22 + T23 S23
+ T31 831 + T32 832 + 133 S33
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Summation convention and index notation

Einstein’s summation convention

A summation is carried out over repeated indices in an expression
and the summation symbol is skipped.

The principles of index notation:
m An index cannot appear more than twice in one term!
If necessary, the standard summation symbol (3" ) must be
used. A repeated index is called a bound or dummy index.

Aii, CyjuSu, Ajbic; + Correct
Ajibjc; + Wrong!
> "Ajbjc; + Correct

J
A term with an index repeated more than two times is correct if:

® the summation sign is used: > a;bic; = a1 by ci + aybycy +az by cs, or

5
B the dummy index is underlined: a; b; ¢; = ay by ¢y Of ay by ¢; OF az b3 c3.
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Vectors, tensors, and index notation

Summation convention and index notation

Einstein’s summation convention

A summation is carried out over repeated indices in an expression
and the summation symbol is skipped.

The principles of index notation:
m An index cannot appear more than twice in one term!
If necessary, the standard summation symbol (3" ) must be
used. A repeated index is called a bound or dummy index.
m If an index appears once, it is called a free index. The number of
free indices determines the order of a tensor.

Aii, aibi, T;S; < scalars (no free indices)
Ajbj < avector (one free index: i)
CiuSu <+ asecond-order tensor (two free indices: i, j)
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Summation convention and index notation

Einstein’s summation convention

A summation is carried out over repeated indices in an expression
and the summation symbol is skipped.

The principles of index notation:

m An index cannot appear more than twice in one term!
If necessary, the standard summation symbol (3" ) must be
used. A repeated index is called a bound or dummy index.

m If an index appears once, it is called a free index. The number of
free indices determines the order of a tensor.

m The denomination of dummy index (in a term) is arbitrary, since it
vanishes after summation, namely: a; b; = a; b; = ax by, eftc.

aibi=a1 by +axbr + a3 bz = a; b;
Ai =4y, TiSi=TuSu, Tj+ CijuSu=Tj+ CijmnSmn
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Kronecker delta and permutation symbol

Definition (Kronecker delta)

1 fori=j
by = o
0 fori#j
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Kronecker delta and permutation symbol

Definition (Kronecker delta)

1 fori=j
0;j = .
0 fori#j

m The Kronecker delta can be used to substitute one index by another, for
example: a; §; = a1 61 + a2 6y + a3 63 = a;, i.e., here i — j.

m When Cartesian coordinates are used (with orthonormal base vectors
e1, e2, e3) the Kronecker delta ¢; is the (matrix) representation of the
unity tensorlI =e; Qe +e2 Qe +e3 Qes = djei X ej.

m A o] = A;6; = A; which is the trace of the matrix (tensor) A.
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Kronecker delta and permutation symbol

Definition (Kronecker delta)

1 fori=j
0;j = .
0 fori#j

m The Kronecker delta can be used to substitute one index by another, for
example: a; §; = a1 61 + a2 6y + a3 63 = a;, i.e., here i — j.

m When Cartesian coordinates are used (with orthonormal base vectors
e1, e2, e3) the Kronecker delta ¢; is the (matrix) representation of the
unitytensor/ =e¢; Qe +ex2 Qe +e3 R ez = e @ e;.

m A o] = A;6; = A; which is the trace of the matrix (tensor) A.

Definition (Permutation symbol)

1  for even permutations: 123, 231, 312
ejx = ¢ —1 for odd permutations: 132, 321, 213
0 if anindex is repeated
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Kronecker delta and permutation symbol

Definition (Kronecker delta)

1 fori=j
by = o
0 fori#j

Definition (Permutation symbol)

1  for even permutations: 123, 231, 312
ejx = § —1 for odd permutations: 132, 321, 213
0 if anindex is repeated

The permutation symbol (or tensor) is widely used in index notation to
express the vector or cross product of two vectors:

C1 :a2b3—a3b2

e e €3
c=axb= ai a as — ci:e,jkajbk — C2:a3b1*a1b3
by by b

a=arby—ab
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Tensors and their representations

Informal definition of tensor

A tensor is a generalized linear ‘quantity’ that can be expressed as
a multi-dimensional array relative to a choice of basis of the
particular space on which it is defined. Therefore:
m a tensor is independent of any chosen frame of reference,
m its representation behaves in a specific way under
coordinate transformations.
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Tensors and their representations

Informal definition of tensor

A tensor is a generalized linear ‘quantity’ that can be expressed as
a multi-dimensional array relative to a choice of basis of the
particular space on which it is defined. Therefore:

m a tensor is independent of any chosen frame of reference,

m its representation behaves in a specific way under
coordinate transformations.

Cartesian system of reference

Let & be the three-dimensional Euclidean space with a Cartesian
coordinate system with three orthonormal base vectors ¢, e, es,
so that

e -e = 6,] (i,j: 1,2,3).
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Tensors and their representations

Cartesian system of reference

Let &3 be the three-dimensional Euclidean space with a Cartesian
coordinate system with three orthonormal base vectors ¢, ¢, es,
so that

e,--ej = 51] (l,j: 1,2,3).

m A second-order tensor T < & ® & is defined by

T:=Tjexe=TegQe +Tnei ey +Tize Qe
tThe;®e +Tne®er+Tres e
+Tes®e +Tnese+TxnesRe;

where ® denotes the tensorial (or dyadic) product, and Tj; is the

(matrix) representation of T in the given frame of reference
defined by the base vectors ey, e, e;.
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Tensors and their representations

m A second-order tensor T < &3 ® & is defined by

T:=Tje®e=TegQe +Tnei®er+Tize Qe
+ThiexRe +Tne; e+ Trner Qe
+Te3Re +Tnez®@e +Tizez Qe

where ® denotes the tensorial (or dyadic) product, and Tj; is the
(matrix) representation of T in the given frame of reference
defined by the base vectors ey, e, e;.

m The second-order tensor T € &3 ® &3 can be viewed as a linear
transformation from &3 onto &3, meaning that it transforms
every vector v € €3 into another vector from &* as follows

5jk
A~ N
T v= (T,-jei ®ej) . (vkek) = Tij Vi (ej . ek) e;

:levkéjkei:levjei:w,-e,-:we83 where Wi:TijVj
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Tensors and their representations

m A tensor of order » is defined by
T:: Tl]k eiRe Ve ...,
N——
nindices nterms

where T, is its (n-dimensional array) representation in the
given frame of reference.

letCc & & e e andS c & ® &3. The fourth-order tensor C
describes a linear transformation in &3 ® &3:
CeS=C:S=(CjueiQeQe,®e): (Sumem De,)
= Cijt Smn (€x - €m) (€1 - €1) €; D €
= Cijti Simn Oan Om €; ® €; = Cijig S €; Q e;
=T jei@e=Tc& ®E where T;=CiuSu
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Multiplication of vectors and tensors

Let: s be a scalar (a zero-order tensor), v, w be vectors (first-order tensors),
R, S, T be second-order tensors, D be a third-order tensor, and C be a
fourth-order tensor. The order of tensors is shown explicitly in the
expressions below.

S=VewW=VvW=Vv-w — VW ==
0 1 1 11 1 1
v=Tw=T-w — Tjw=v
1 21 2 1
R=TS=T'§ > TSR
s=TeS=T:S — T;Sj=s
0 2 2 2 2
T=CeS=C:S — CuSu=Ty
2 4 2 4 2
T=yp=yD = wby=Ty

Remark: Notice a vital difference between the two dot-operators ‘o’ and *-’.
To avoid ambiguity, usually, the operators “’ and ‘-’ are not used, and the
dot-operator has the meaning of the (full) dot-product, so that:

Cijk[Skl —CelS, T,JS,J —TeS, and Tiijk —T8S.
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Vertical-bar convention and Nabla operator

Vertical-bar convention

The vertical-bar (or comma) convention is used to facilitate the
denomination of partial derivatives with respect to the Cartesian
position vectors x ~ x;, for example,

Oou 614,'
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Vertical-bar convention and Nabla operator

Vertical-bar convention

Ox ox; W

Definition (Nabla-operator)

V = (.)|,-ei = (.)|1 e + (.)|282 aF (.)|3€3

The gradient, divergence, curl (rotation), and Laplacian operations can be
written using the Nabla-operator:

v=grads=Vs — vi=5s
s=divi=V.-v — s=vy
w=curly =V Xv —  w =i
lapl(.) = A() = V() — (D
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Nabla-operator and vector calculus identities

V=()pe|=()per+(Jpex+()pes

v=grads=Vs — v;=y)
T=gradv=Vey — T;=vw,
s=divk=V.v = s=w,
v=divI =V -T — v=Ty
w=curly=V xy — Wi = €jjk Vi|j
lapl(l) = A() =V2() = (D

Some vector calculus identities:
B[V Xx(Vs)=0]| (curl grad=0)

BV - (Vxv)=0]| (divcurl=0)

m (V- (Vs)=V%| (div grad = lapl)

] [V x (Vxv)=V(V.-v)— Vzv] (curl curl = grad div — lapl)
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Vectors, tensors, and index notation

Vector calculus identities

BV xXx(Vs)=0| (curl grad=0)

for i=1: S|23 —S‘32 =0

V x (Vs) = e (si)

‘/.:61:/‘1(5|ij fori:2: S|31—S‘13:O

for i = 3: Sj12 — 821 =0
 aeo |
B[V (Vxv)=0]| (divcurl =0)

m (V- (Vs)=V%| (div grad = lapl)

] [V x (Vxv)=V(V-v)— Vzvj (curl curl = grad div — lapl)
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Vector calculus identities

BV xXx(Vs)=0| (curl grad=0)

BV - (Vxv)=0]| (divcurl=0)

V- (V X V) = (Eijk vk‘j)“ = €ijk Vklji

= (V3|21 - V3\12) + (V1|32 - V1\23) + (V2|13 - V2\31) =0
 aeo |

m (V- (Vs)=V%| (div grad = lapl)

] [V x (Vxv)=V(V.-v)— Vzvj (curl curl = grad div — lapl)
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Vectors, tensors, and index notation

Vector calculus identities

BV xXx(Vs)=0| (curl grad=0)

BV - (Vxv)=0]| (divcurl=0)

(V- (Vs)=V%| (div grad = lapl)

V- (Vs) = (s|)|i = §jii = S11 + S0 + 533 = Vs

] [V x (Vxv)=V(V-v) - Vzv] (curl curl = grad div —lapl)
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Vectors, tensors, and index notation

Vector calculus identities

BV xXx(Vs)=0| (curl grad=0)
B[V (Vxv)=0]| (divcurl=0)

(V- (Vs)=V%| (div grad = lapl)

] [V x (Vxv)=V(V.-v)— Vzvj (curl curl = grad div — lapl)

V x (V Xv) — Emni(eijk Vklj) n = Emni€ijk Vi|jn

form = 10 €€ vijjn = €123 (6312 Va|12 + €321 Vuzz) + €132 (6213 V3|13 1 €231 V1\33)
= (vopp +v33) n- (vij22 +vij33)
= (i +vp+ V3\3)|1 — (i +vip2 4 vigss)
= () —via = (V-v), = Von
| |
form = 2: €2ni€jjk Vk\jn = (vi‘i)|2 = V2\ii =S (V ° V)|2 = Vzvz

for m = 3: €3ni€ijk Vk|jn = (vi‘i)|3 — V3jii = (V ° V)I3 = V2V3 m
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Integral theorems

General idea

Integral theorems of vector calculus, namely:
m the classical (Kelvin-)Stokes’ theorem (the curl theorem),
m Green’s theorem,
m Gauss theorem (the Gauss-Ostrogradsky divergence theorem),

are special cases of the general Stokes’ theorem, which
generalizes the fundamental theorem of calculus.
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Integral theorems

General idea

Integral theorems of vector calculus, namely:
m the classical (Kelvin-)Stokes’ theorem (the curl theorem),
m Green’s theorem,
m Gauss theorem (the Gauss-Ostrogradsky divergence theorem),

are special cases of the general Stokes’ theorem, which
generalizes the fundamental theorem of calculus.

Fundamental theorem of calculus relates scalar integral to boundary
points:

b
/ £/(x) dx = £(b) — f(a)

Stokes’s (curl) theorem relates surface integrals to line integrals.
Applications: for example, conservative forces.

Green’s theorem is a two-dimensional special case of the Stokes’ theorem.

Gauss (divergence) theorem relates volume integrals to surface integrals.
Applications: analysis of flux, pressure.
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Integral theorems

Stokes’ theorem

Theorem (Stokes’ curl theorem)

Let C be a simple closed curve spanned by a surface 8 with unit
normal n. Then, for a continuously differentiable vector field f :

n /(fo)_@:/f-dr

S ds

m Formal requirements: the surface 8 must be open, orientable and
piecewise smooth with a correspondingly orientated, simple, piecewise
and smooth boundary curve C.
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Integral theorems

Stokes’ theorem

Theorem (Stokes’ curl theorem)

Let C be a simple closed curve spanned by a surface 8 with unit
normal n. Then, for a continuously differentiable vector field f :

n /(fo)_@:/f-dr

S ds

m Formal requirements: the surface 8 must be open, orientable and
piecewise smooth with a correspondingly orientated, simple, piecewise
and smooth boundary curve C.

m Green’s theorem in the plane may be viewed as a special case of
Stokes’ theorem (with f = [u(x,y), v(x,y), 0]):

Jdv  Ou

gar_ Y — d
/(8)6 ay)dxdy /udx+vy
3 e
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Integral theorems

Stokes’ theorem

Theorem (Stokes’ curl theorem)

Let C be a simple closed curve spanned by a surface 8 with unit
normal n. Then, for a continuously differentiable vector field f :

n /(fo)_@:/f-dr

S ds

m Stokes’ theorem implies that the flux of V x f through a surface 8
depends only on the boundary € of § and is therefore independent of
the surface’s shape. z
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Integral theorems

Gauss-Ostrogradsky theorem

Theorem (Gauss divergence theorem)

Let the region 'V be bounded by a simple surface 8 with unit outward
normal n. Then, for a continuously differentiable vector field f :

/V-de:/ﬁn\(}S; in particular /Vde:/fndS.
8 ds v S

W%

n m The divergence theorem is a result

ds that relates the flow (that is, flux) of a
vector field through a surface to the
behavior of the vector field inside the
surface.

m Intuitively, it states that the sum of all
S sources minus the sum of all sinks

gives the net flow out of a region.
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Time-harmonic approach

Types of dynamic problems

Dynamic problems. In dynamic problems, the field variables
depend upon position x and time ¢, for example, u = u(x, 1).
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Types of dynamic problems

Dynamic problems. In dynamic problems, the field variables
depend upon position x and time ¢, for example, u = u(x, 1).

Separation of variables. In many cases, the governing PDEs can be
solved by expressing u as a product of functions that each depend
only on one of the independent variables: u(x, ) = i(x) i(z).
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Types of dynamic problems

Dynamic problems. In dynamic problems, the field variables
depend upon position x and time ¢, for example, u = u(x, 1).

Separation of variables. In many cases, the governing PDEs can be
solved by expressing u as a product of functions that each depend
only on one of the independent variables: u(x, ) = i(x) i(z).

Steady state. A system is in steady state if its recently observed
behaviour will continue into the future. An opposite situation is
called the transient state which is often a start-up in many
steady state systems. An important case of steady state is the
time-harmonic behaviour.
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Time-harmonic approach

Types of dynamic problems

Dynamic problems. In dynamic problems, the field variables
depend upon position x and time ¢, for example, u = u(x, 1).

Separation of variables. In many cases, the governing PDEs can be
solved by expressing u as a product of functions that each depend
only on one of the independent variables: u(x, ) = i(x) i(z).

Steady state. A system is in steady state if its recently observed
behaviour will continue into the future. An opposite situation is
called the transient state which is often a start-up in many
steady state systems. An important case of steady state is the
time-harmonic behaviour.

Time-harmonic solution. If the time-dependent function i(z) is a
time-harmonic function (with the frequency f), the solution can be
written as

u(x, 1) = i(x) cos (wt+ ax))
where: w = 2xf is called the angular (or circular) frequency,
a(x) is the phase-angle shift, and ii(x) can be interpreted as a
spatial amplitude.
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Time-harmonic approach

Complex-valued notation

Time-harmonic solution:
u(x, 1) = i(x) cos (wt+ a(x))

Here: w —the angular frequency, «(x) —the phase-angle shift,
it(x) — the spatial amplitude.

A complex-valued notation for time-harmonic problems

A convenient way to handle time-harmonic problems is in the complex
notation with the real part as a physically meaningful solution:

(i)
u(x, 1) = it(x) cos (wt+ a(x)) =it Re { cos(wt+ a) +isin(wt+ a) }
=it Re{exp[(i(wt+a)]} =Re{iexp(ia) expiwr)}
. N——
=Re {it exp(iw?)} i

where the so-called complex amplitude (or phasor) is introduced:

i = i(x) = i(x) exp (ia(x)) = a(x)(cosa(x) +isina(x))
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Time-harmonic approach

A practical example

Consider a linear dynamic system characterized by the matrices of
stiffness K, damping C, and mass M:

Kq(1) + Cq(t) + M4(1) = Q1)

where Q(z) is the dynamic excitation (a time-varying force) and ¢(z) is
the system’s response (displacement).
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Time-harmonic approach

A practical example

Kq(1) + Cq(t) + M4(1) = Q1)

m Let the driving force Q(z) be harmonic with the angular frequency w and
the (real-valued) amplitude Q:

O(t) = O cos(wt) = Q Re{ cos(w?) +isin(wr)} = Re {Q exp(iwr)}
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Time-harmonic approach

A practical example

Kq(1) + Cq(t) + M4(1) = Q1)

m Let the driving force Q(z) be harmonic with the angular frequency w and
the (real-valued) amplitude Q:

O(t) = O cos(wt) = Q Re{ cos(w?) +isin(wr)} = Re {Q exp(iwr)}

m Since the system is linear the response ¢() will be also harmonic and
with the same angular frequency but shifted by the phase angle «a:

q(t) = g cos(wt+a) =g Re{cos(wt+ ) +isin(wr+ a)}
=g Re{explilwr+ a)]} =Re{ g exp(ia) exp(iwr)}
—_——
=Re{g exp(iwt)} a
Here, g and g are the real and complex amplitudes, respectively. The
real amplitude ¢ and the phase angle « are unknowns; thus, unknown is
the complex amplitude g = g( cos a + isin ).
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Time-harmonic approach

A practical example

Kq(r) + Cq(r) + Mg(r) = (1)
m Now, one can substitute into the system’s equation
Q) + Qexp(iwr),
(1) + Gexpliwr), §t)=giwexp(iws), §(t) = —gw’ exp(iwr)

to obtain the following algebraic equation for the unknown complex
amplitude g:

[K+iwC—w'M]g=0
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Time-harmonic approach

A practical example

Kq(r) + Cq(r) + Mg(r) = (1)
m Now, one can substitute into the system’s equation
Q) + Qexp(iwr),
(1) + Gexpliwr), §t)=giwexp(iws), §(t) = —gw’ exp(iwr)

to obtain the following algebraic equation for the unknown complex
amplitude g: A
[K+iwC—w'M]g=0
m For the Rayleigh damping model, where C = Bx K + Bu M (Bx and By
are real-valued constants), this equation can be presented as follows:

[K—w'M]g=0, where K=K(1+iwpk), M:M(H%‘J‘)
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Time-harmonic approach

A practical example

Kq(r) + Cq(r) + Mg(r) = (1)
m Now, one can substitute into the system’s equation
Q) + Qexp(iwr),
(1) + Gexpliwr), §t)=giwexp(iws), §(t) = —gw’ exp(iwr)

to obtain the following algebraic equation for the unknown complex
amplitude g: A
[K+iwC—w'M]g=0

m Having computed the complex amplitude g for the given frequency w,
one can finally find the time-harmonic response as the real part of the
complex solution:

q(t) =Re{g exp(iwt)} = g cos(wt+ ), where { 7
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