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Vectors, tensors, and index notation
Generalization of the concept of vector

A vector is a quantity that possesses both a magnitude and a
direction and obeys certain laws (of vector algebra):
• the vector addition and the commutative and associative laws,
• the associative and distributive laws for the multiplication with

scalars.
The vectors are suited to describe physical phenomena, since
they are independent of any system of reference.

The concept of a vector that is independent of any coordinate system
can be generalised to higher-order quantities, which are called tensors.
Consequently, vectors and scalars can be treated as lower-rank tensors.

Scalars have a magnitude but no direction. They are tensors of
order 0. Example: the mass density.

Vectors are characterised by their magnitude and direction. They
are tensors of order 1. Example: the velocity vector.

Tensors of second order are quantities which multiplied by a vector
give as the result another vector. Example: the stress tensor.

Higher-order tensors are often encountered in constitutive relations
between second-order tensor quantities. Example: the fourth-order
elasticity tensor.
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they are independent of any system of reference.

The concept of a vector that is independent of any coordinate system
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Consequently, vectors and scalars can be treated as lower-rank tensors.

Scalars have a magnitude but no direction. They are tensors of
order 0. Example: the mass density.

Vectors are characterised by their magnitude and direction. They
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Higher-order tensors are often encountered in constitutive relations
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Vectors, tensors, and index notation
Summation convention and index notation

Einstein’s summation convention
A summation is carried out over repeated indices in an expression
and the summation symbol is skipped.

Example

ai bi ≡
3∑

i=1

ai bi = a1 b1 + a2 b2 + a3 b3

Aii ≡
3∑

i=1

Aii = A11 + A22 + A33

Aij bj ≡
3∑

j=1

Aij bj = Ai1 b1 + Ai2 b2 + Ai3 b3 (i = 1, 2, 3) [3 expressions]

Tij Sij ≡
3∑

i=1

3∑
j=1

Tij Sij = T11 S11 + T12 S12 + T13 S13

+ T21 S21 + T22 S22 + T23 S23

+ T31 S31 + T32 S32 + T33 S33

The principles of index notation:
An index cannot appear more than twice in one term!
If necessary, the standard summation symbol

(∑)
must be

used. A repeated index is called a bound or dummy index.

If an index appears once, it is called a free index. The number of
free indices determines the order of a tensor.
The denomination of dummy index (in a term) is arbitrary, since it
vanishes after summation, namely: ai bi ≡ aj bj ≡ ak bk, etc.
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Vectors, tensors, and index notation
Summation convention and index notation

Einstein’s summation convention
A summation is carried out over repeated indices in an expression
and the summation symbol is skipped.

The principles of index notation:
An index cannot appear more than twice in one term!
If necessary, the standard summation symbol

(∑)
must be

used. A repeated index is called a bound or dummy index.

Example

Aii , Cijkl Skl , Aij bi cj ← Correct

Aij bj cj ← Wrong!∑
j

Aij bj cj ← Correct

A term with an index repeated more than two times is correct if:

the summation sign is used:
∑

i

ai bi ci = a1 b1 c1 + a2 b2 c2 + a3 b3 c3, or

the dummy index is underlined: ai bi ci = a1 b1 c1 or a2 b2 c2 or a3 b3 c3.

If an index appears once, it is called a free index. The number of
free indices determines the order of a tensor.
The denomination of dummy index (in a term) is arbitrary, since it
vanishes after summation, namely: ai bi ≡ aj bj ≡ ak bk, etc.
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Vectors, tensors, and index notation
Summation convention and index notation

Einstein’s summation convention
A summation is carried out over repeated indices in an expression
and the summation symbol is skipped.

The principles of index notation:
An index cannot appear more than twice in one term!
If necessary, the standard summation symbol

(∑)
must be

used. A repeated index is called a bound or dummy index.
If an index appears once, it is called a free index. The number of
free indices determines the order of a tensor.

Example

Aii , ai bi , Tij Sij ← scalars (no free indices)

Aij bj ← a vector (one free index: i)

Cijkl Skl ← a second-order tensor (two free indices: i, j)

The denomination of dummy index (in a term) is arbitrary, since it
vanishes after summation, namely: ai bi ≡ aj bj ≡ ak bk, etc.
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Vectors, tensors, and index notation
Summation convention and index notation

Einstein’s summation convention
A summation is carried out over repeated indices in an expression
and the summation symbol is skipped.

The principles of index notation:
An index cannot appear more than twice in one term!
If necessary, the standard summation symbol

(∑)
must be

used. A repeated index is called a bound or dummy index.
If an index appears once, it is called a free index. The number of
free indices determines the order of a tensor.
The denomination of dummy index (in a term) is arbitrary, since it
vanishes after summation, namely: ai bi ≡ aj bj ≡ ak bk, etc.

Example

ai bi = a1 b1 + a2 b2 + a3 b3 = aj bj

Aii ≡ Ajj , Tij Sij ≡ Tkl Skl , Tij + Cijkl Skl ≡ Tij + Cijmn Smn
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Vectors, tensors, and index notation
Kronecker delta and permutation symbol

Definition (Kronecker delta)

δij =

{
1 for i = j
0 for i 6= j

Definition (Permutation symbol)

εijk =


1 for even permutations: 123, 231, 312
−1 for odd permutations: 132, 321, 213
0 if an index is repeated

The permutation symbol (or tensor) is widely used in index notation to
express the vector or cross product of two vectors:

c = a× b =

∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ → ci = εijk aj bk →


c1 = a2 b3 − a3 b2

c2 = a3 b1 − a1 b3

c3 = a1 b2 − a2 b1
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Vectors, tensors, and index notation
Kronecker delta and permutation symbol

Definition (Kronecker delta)

δij =

{
1 for i = j
0 for i 6= j

The Kronecker delta can be used to substitute one index by another, for
example: ai δij = a1 δ1j + a2 δ2j + a3 δ3j = aj, i.e., here i→ j.
When Cartesian coordinates are used (with orthonormal base vectors
e1, e2, e3) the Kronecker delta δij is the (matrix) representation of the
unity tensor I = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 = δij ei ⊗ ej.
A • I = Aij δij = Aii which is the trace of the matrix (tensor) A.
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Vectors, tensors, and index notation
Tensors and their representations

Informal definition of tensor
A tensor is a generalized linear ‘quantity’ that can be expressed as
a multi-dimensional array relative to a choice of basis of the
particular space on which it is defined. Therefore:

a tensor is independent of any chosen frame of reference,
its representation behaves in a specific way under
coordinate transformations.
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Vectors, tensors, and index notation
Tensors and their representations

Informal definition of tensor
A tensor is a generalized linear ‘quantity’ that can be expressed as
a multi-dimensional array relative to a choice of basis of the
particular space on which it is defined. Therefore:

a tensor is independent of any chosen frame of reference,
its representation behaves in a specific way under
coordinate transformations.

Cartesian system of reference

Let E3 be the three-dimensional Euclidean space with a Cartesian
coordinate system with three orthonormal base vectors e1, e2, e3,
so that

ei · ej = δij (i, j = 1, 2, 3).
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Vectors, tensors, and index notation
Tensors and their representations

Cartesian system of reference

Let E3 be the three-dimensional Euclidean space with a Cartesian
coordinate system with three orthonormal base vectors e1, e2, e3,
so that

ei · ej = δij (i, j = 1, 2, 3).

A second-order tensor T ∈ E3 ⊗ E3 is defined by

T := Tij ei ⊗ ej = T11 e1 ⊗ e1 + T12 e1 ⊗ e2 + T13 e1 ⊗ e3

+ T21 e2 ⊗ e1 + T22 e2 ⊗ e2 + T23 e2 ⊗ e3

+ T31 e3 ⊗ e1 + T32 e3 ⊗ e2 + T33 e3 ⊗ e3

where ⊗ denotes the tensorial (or dyadic) product, and Tij is the
(matrix) representation of T in the given frame of reference
defined by the base vectors e1, e2, e3.
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Vectors, tensors, and index notation
Tensors and their representations

A second-order tensor T ∈ E3 ⊗ E3 is defined by

T := Tij ei ⊗ ej = T11 e1 ⊗ e1 + T12 e1 ⊗ e2 + T13 e1 ⊗ e3

+ T21 e2 ⊗ e1 + T22 e2 ⊗ e2 + T23 e2 ⊗ e3

+ T31 e3 ⊗ e1 + T32 e3 ⊗ e2 + T33 e3 ⊗ e3

where ⊗ denotes the tensorial (or dyadic) product, and Tij is the
(matrix) representation of T in the given frame of reference
defined by the base vectors e1, e2, e3.
The second-order tensor T ∈ E3 ⊗ E3 can be viewed as a linear
transformation from E3 onto E3, meaning that it transforms
every vector v ∈ E3 into another vector from E3 as follows

T · v = (Tij ei ⊗ ej) · (vk ek) = Tij vk (

δjk︷ ︸︸ ︷
ej · ek) ei

= Tij vk δjk ei = Tij vj ei = wi ei = w ∈ E3 where wi = Tij vj



Vectors, tensors, and index notation Integral theorems Time-harmonic approach

Vectors, tensors, and index notation
Tensors and their representations

A tensor of order n is defined by

n
T := Tijk . . .︸ ︷︷ ︸

n indices

ei ⊗ ej ⊗ ek ⊗ . . .︸ ︷︷ ︸
n terms

,

where Tijk... is its (n-dimensional array) representation in the
given frame of reference.

Example

Let C ∈ E3 ⊗ E3 ⊗ E3 ⊗ E3 and S ∈ E3 ⊗ E3. The fourth-order tensor C
describes a linear transformation in E3 ⊗ E3:

C • S = C : S = (Cijkl ei ⊗ ej ⊗ ek ⊗ el) : (Smn em ⊗ en)

= Cijkl Smn (ek · em) (el · en) ei ⊗ ej

= Cijkl Smn δkm δln ei ⊗ ej = Cijkl Skl ei ⊗ ej

= Tij ei ⊗ ej = T ∈ E3 ⊗ E3 where Tij = Cijkl Skl
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Vectors, tensors, and index notation
Multiplication of vectors and tensors

Example

Let: s be a scalar (a zero-order tensor), v,w be vectors (first-order tensors),
R, S,T be second-order tensors, D be a third-order tensor, and C be a
fourth-order tensor. The order of tensors is shown explicitly in the
expressions below.

0
s =

1
v •

1
w =

1
v

1
w =

1
v ·

1
w → vi wi = s

1
v =

2
T

1
w =

2
T ·

1
w → Tij wj = vi

2
R =

2
T

2
S =

2
T ·

2
S → Tij Sjk = Rik

0
s =

2
T •

2
S =

2
T :

2
S → Tij Sij = s

2
T =

4
C •

2
S =

4
C :

2
S → Cijkl Skl = Tij

2
T =

1
v

3
D =

1
v ·

3
D → vk Dkij = Tij

Remark: Notice a vital difference between the two dot-operators ‘•’ and ‘·’.
To avoid ambiguity, usually, the operators ‘:’ and ‘·’ are not used, and the
dot-operator has the meaning of the (full) dot-product, so that:
Cijkl Skl → C • S, Tij Sij → T • S, and Tij Sjk → T S.
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Vectors, tensors, and index notation
Vertical-bar convention and Nabla operator

Vertical-bar convention
The vertical-bar (or comma) convention is used to facilitate the
denomination of partial derivatives with respect to the Cartesian
position vectors x ∼ xi, for example,

∂u
∂x

→ ∂ui

∂xj
=: ui|j

�� ��∇× (∇s) = 0 (curl grad = 0)�� ��∇ · (∇× v) = 0 (div curl = 0)�� ��∇ · (∇s) = ∇2s (div grad = lapl)�� ��∇× (∇× v) = ∇(∇ · v)−∇2v (curl curl = grad div− lapl)
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Vectors, tensors, and index notation
Vertical-bar convention and Nabla operator

Vertical-bar convention

∂u
∂x

→ ∂ui

∂xj
=: ui|j

Definition (Nabla-operator)�� ��∇ ≡ (.)|i ei = (.)|1 e1 + (.)|2 e2 + (.)|3 e3

The gradient, divergence, curl (rotation), and Laplacian operations can be
written using the Nabla-operator:

v = grad s ≡ ∇s → vi = s|i
s = div v ≡ ∇ · v → s = vi|i

w = curl v ≡ ∇× v → wi = εijk vk|j

lapl(.) ≡ ∆(.) ≡ ∇2(.) → (.)|ii

�� ��∇× (∇s) = 0 (curl grad = 0)�� ��∇ · (∇× v) = 0 (div curl = 0)�� ��∇ · (∇s) = ∇2s (div grad = lapl)�� ��∇× (∇× v) = ∇(∇ · v)−∇2v (curl curl = grad div− lapl)



Vectors, tensors, and index notation Integral theorems Time-harmonic approach

Vectors, tensors, and index notation
Nabla-operator and vector calculus identities�� ��∇ ≡ (.)|i ei = (.)|1 e1 + (.)|2 e2 + (.)|3 e3

v = grad s ≡ ∇s → vi = s|i
T = grad v ≡ ∇⊗ v → Tij = vi|j

s = div v ≡ ∇ · v → s = vi|i

v = div T ≡ ∇ · T → vi = Tji|j

w = curl v ≡ ∇× v → wi = εijk vk|j

lapl(.) ≡ ∆(.) ≡ ∇2(.) → (.)|ii

Some vector calculus identities:�� ��∇× (∇s) = 0 (curl grad = 0)�� ��∇ · (∇× v) = 0 (div curl = 0)�� ��∇ · (∇s) = ∇2s (div grad = lapl)�� ��∇× (∇× v) = ∇(∇ · v)−∇2v (curl curl = grad div− lapl)
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Vectors, tensors, and index notation
Vector calculus identities�� ��∇× (∇s) = 0 (curl grad = 0)

Proof.

∇× (∇s) = εijk
(
s|k
)
|j = εijk s|kj =


for i = 1: s|23 − s|32 = 0

for i = 2: s|31 − s|13 = 0

for i = 3: s|12 − s|21 = 0

QED�� ��∇ · (∇× v) = 0 (div curl = 0)�� ��∇ · (∇s) = ∇2s (div grad = lapl)�� ��∇× (∇× v) = ∇(∇ · v)−∇2v (curl curl = grad div− lapl)
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Vectors, tensors, and index notation
Vector calculus identities�� ��∇× (∇s) = 0 (curl grad = 0)�� ��∇ · (∇× v) = 0 (div curl = 0)

Proof.

∇ · (∇× v) =
(
εijk vk|j

)
|i = εijk vk|ji

=
(
v3|21 − v3|12

)
+
(
v1|32 − v1|23

)
+
(
v2|13 − v2|31

)
= 0

QED�� ��∇ · (∇s) = ∇2s (div grad = lapl)�� ��∇× (∇× v) = ∇(∇ · v)−∇2v (curl curl = grad div− lapl)
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Vectors, tensors, and index notation
Vector calculus identities�� ��∇× (∇s) = 0 (curl grad = 0)�� ��∇ · (∇× v) = 0 (div curl = 0)�� ��∇ · (∇s) = ∇2s (div grad = lapl)

Proof.

∇ · (∇s) =
(
s|
)
|i = s|ii = s11 + s22 + s33 ≡ ∇2s

QED�� ��∇× (∇× v) = ∇(∇ · v)−∇2v (curl curl = grad div− lapl)
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Vectors, tensors, and index notation
Vector calculus identities�� ��∇× (∇s) = 0 (curl grad = 0)�� ��∇ · (∇× v) = 0 (div curl = 0)�� ��∇ · (∇s) = ∇2s (div grad = lapl)�� ��∇× (∇× v) = ∇(∇ · v)−∇2v (curl curl = grad div− lapl)

Proof.
∇× (∇× v) → εmni

(
εijk vk|j

)
|n = εmniεijk vk|jn

for m = 1: ε1niεijk vk|jn = ε123
(
ε312 v2|12 + ε321 v1|22

)
+ ε132

(
ε213 v3|13 + ε231 v1|33

)
=
(
v2|2 + v3|3

)
|1 −

(
v1|22 + v1|33

)
=
(
v1|1 + v2|2 + v3|3

)
|1 −

(
v1|11 + v1|22 + v1|33

)
=
(
vi|i
)
|1 − v1|ii =

(
∇ · v

)
|1 −∇

2v1

for m = 2: ε2niεijk vk|jn =
(
vi|i
)
|2 − v2|ii =

(
∇ · v

)
|2 −∇

2v2

for m = 3: ε3niεijk vk|jn =
(
vi|i
)
|3 − v3|ii =

(
∇ · v

)
|3 −∇

2v3 QED
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Integral theorems
General idea

Integral theorems of vector calculus, namely:
the classical (Kelvin-)Stokes’ theorem (the curl theorem),
Green’s theorem,
Gauss theorem (the Gauss-Ostrogradsky divergence theorem),

are special cases of the general Stokes’ theorem, which
generalizes the fundamental theorem of calculus.

Fundamental theorem of calculus relates scalar integral to boundary
points:

b∫
a

f ′(x) dx = f (b)− f (a)

Stokes’s (curl) theorem relates surface integrals to line integrals.
Applications: for example, conservative forces.

Green’s theorem is a two-dimensional special case of the Stokes’ theorem.
Gauss (divergence) theorem relates volume integrals to surface integrals.

Applications: analysis of flux, pressure.



Vectors, tensors, and index notation Integral theorems Time-harmonic approach

Integral theorems
General idea

Integral theorems of vector calculus, namely:
the classical (Kelvin-)Stokes’ theorem (the curl theorem),
Green’s theorem,
Gauss theorem (the Gauss-Ostrogradsky divergence theorem),

are special cases of the general Stokes’ theorem, which
generalizes the fundamental theorem of calculus.

Fundamental theorem of calculus relates scalar integral to boundary
points:

b∫
a

f ′(x) dx = f (b)− f (a)

Stokes’s (curl) theorem relates surface integrals to line integrals.
Applications: for example, conservative forces.

Green’s theorem is a two-dimensional special case of the Stokes’ theorem.
Gauss (divergence) theorem relates volume integrals to surface integrals.

Applications: analysis of flux, pressure.
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Integral theorems
Stokes’ theorem

Theorem (Stokes’ curl theorem)

Let C be a simple closed curve spanned by a surface S with unit
normal n. Then, for a continuously differentiable vector field f :∫

S

(
∇× f

)
· n dS︸︷︷︸

dS

=

∫
C

f · dr

n

S

C

Formal requirements: the surface S must be open, orientable and
piecewise smooth with a correspondingly orientated, simple, piecewise
and smooth boundary curve C.

Green’s theorem in the plane may be viewed as a special case of
Stokes’ theorem (with f =

[
u(x, y), v(x, y), 0

]
):∫

S

(
∂v
∂x
− ∂u
∂y

)
dx dy =

∫
C

u dx + v dy
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Integral theorems
Stokes’ theorem

Theorem (Stokes’ curl theorem)

Let C be a simple closed curve spanned by a surface S with unit
normal n. Then, for a continuously differentiable vector field f :∫

S

(
∇× f

)
· n dS︸︷︷︸

dS

=

∫
C

f · dr

n

S

C

Stokes’ theorem implies that the flux of ∇× f through a surface S

depends only on the boundary C of S and is therefore independent of
the surface’s shape.

Green’s theorem in the plane may be viewed as a special case of
Stokes’ theorem (with f =

[
u(x, y), v(x, y), 0

]
):∫

S

(
∂v
∂x
− ∂u
∂y

)
dx dy =

∫
C

u dx + v dy
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Integral theorems
Gauss-Ostrogradsky theorem

Theorem (Gauss divergence theorem)

Let the region V be bounded by a simple surface S with unit outward
normal n. Then, for a continuously differentiable vector field f :∫

V

∇ · f dV =

∫
S

f · n dS︸︷︷︸
dS

; in particular
∫
V

∇f dV =

∫
S

f n dS .

S

V

dS
n f

The divergence theorem is a result
that relates the flow (that is, flux) of a
vector field through a surface to the
behavior of the vector field inside the
surface.
Intuitively, it states that the sum of all
sources minus the sum of all sinks
gives the net flow out of a region.
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Time-harmonic approach
Types of dynamic problems

Dynamic problems. In dynamic problems, the field variables
depend upon position x and time t, for example, u = u(x, t).

Time-harmonic solution:

u(x, t) = û(x) cos
(
ω t + α(x)

)
where: ω = 2π f is called the angular (or circular) frequency,
α(x) is the phase-angle shift, and û(x) can be interpreted as a
spatial amplitude.

A complex-valued notation for time-harmonic problems

A convenient way to handle time-harmonic problems is in the complex
notation with the real part as a physically meaningful solution:

u(x, t) = û(x) cos
(
ω t + α(x)

)
= û Re

{ exp[(i(ω t+α)]︷ ︸︸ ︷
cos(ω t + α) + i sin(ω t + α)

}
= û Re

{
exp[(i(ω t + α)]

}
= Re

{
û exp(iα)︸ ︷︷ ︸

ũ

exp(iω t)
}

= Re
{

ũ exp(iω t)
}

where the so-called complex amplitude (or phasor) is introduced:

ũ = ũ(x) = û(x) exp
(
iα(x)

)
= û(x)

(
cosα(x) + i sinα(x)

)
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Time-harmonic approach
Types of dynamic problems

Dynamic problems. In dynamic problems, the field variables
depend upon position x and time t, for example, u = u(x, t).

Separation of variables. In many cases, the governing PDEs can be
solved by expressing u as a product of functions that each depend
only on one of the independent variables: u(x, t) = û(x) ǔ(t).

Steady state. A system is in steady state if its recently observed
behaviour will continue into the future. An opposite situation is
called the transient state which is often a start-up in many
steady state systems. An important case of steady state is the
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Dynamic problems. In dynamic problems, the field variables
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solved by expressing u as a product of functions that each depend
only on one of the independent variables: u(x, t) = û(x) ǔ(t).

Steady state. A system is in steady state if its recently observed
behaviour will continue into the future. An opposite situation is
called the transient state which is often a start-up in many
steady state systems. An important case of steady state is the
time-harmonic behaviour.

Time-harmonic solution. If the time-dependent function ǔ(t) is a
time-harmonic function (with the frequency f ), the solution can be
written as

u(x, t) = û(x) cos
(
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)
where: ω = 2π f is called the angular (or circular) frequency,
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Time-harmonic approach
Complex-valued notation

Time-harmonic solution:

u(x, t) = û(x) cos
(
ω t + α(x)

)
Here: ω – the angular frequency, α(x) – the phase-angle shift,

û(x) – the spatial amplitude.

A complex-valued notation for time-harmonic problems

A convenient way to handle time-harmonic problems is in the complex
notation with the real part as a physically meaningful solution:

u(x, t) = û(x) cos
(
ω t + α(x)

)
= û Re
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}

where the so-called complex amplitude (or phasor) is introduced:

ũ = ũ(x) = û(x) exp
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)
= û(x)

(
cosα(x) + i sinα(x)

)
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Time-harmonic approach
A practical example

Consider a linear dynamic system characterized by the matrices of
stiffness K, damping C, and mass M:

K q(t) + C q̇(t) + M q̈(t) = Q(t)

where Q(t) is the dynamic excitation (a time-varying force) and q(t) is
the system’s response (displacement).
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Time-harmonic approach
A practical example

K q(t) + C q̇(t) + M q̈(t) = Q(t)

Let the driving force Q(t) be harmonic with the angular frequency ω and
the (real-valued) amplitude Q̂:

Q(t) = Q̂ cos(ω t) = Q̂ Re
{

cos(ω t) + i sin(ω t)
}

= Re
{

Q̂ exp(iω t)
}
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Time-harmonic approach
A practical example

K q(t) + C q̇(t) + M q̈(t) = Q(t)

Let the driving force Q(t) be harmonic with the angular frequency ω and
the (real-valued) amplitude Q̂:

Q(t) = Q̂ cos(ω t) = Q̂ Re
{

cos(ω t) + i sin(ω t)
}

= Re
{

Q̂ exp(iω t)
}

Since the system is linear the response q(t) will be also harmonic and
with the same angular frequency but shifted by the phase angle α:

q(t) = q̂ cos(ω t + α) = q̂ Re
{

cos(ω t + α) + i sin(ω t + α)
}

= q̂ Re
{

exp[i(ω t + α)]
}

= Re
{

q̂ exp(iα)︸ ︷︷ ︸
q̃

exp(iω t)
}

= Re
{

q̃ exp(iω t)
}

Here, q̂ and q̃ are the real and complex amplitudes, respectively. The
real amplitude q̂ and the phase angle α are unknowns; thus, unknown is
the complex amplitude q̃ = q̂

(
cosα+ i sinα

)
.
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Time-harmonic approach
A practical example

K q(t) + C q̇(t) + M q̈(t) = Q(t)

Now, one can substitute into the system’s equation

Q(t) ← Q̂ exp(iω t) ,

q(t) ← q̃ exp(iω t) , q̇(t) = q̃ iω exp(iω t) , q̈(t) = −q̃ω2 exp(iω t)

to obtain the following algebraic equation for the unknown complex
amplitude q̃: [

K + iω C − ω2 M
]
q̃ = Q̂
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Time-harmonic approach
A practical example

K q(t) + C q̇(t) + M q̈(t) = Q(t)

Now, one can substitute into the system’s equation

Q(t) ← Q̂ exp(iω t) ,

q(t) ← q̃ exp(iω t) , q̇(t) = q̃ iω exp(iω t) , q̈(t) = −q̃ω2 exp(iω t)

to obtain the following algebraic equation for the unknown complex
amplitude q̃: [

K + iω C − ω2 M
]
q̃ = Q̂

For the Rayleigh damping model, where C = βK K + βM M (βK and βM

are real-valued constants), this equation can be presented as follows:

[
K̃ − ω2 M̃

]
q̃ = Q̂ , where K̃ = K

(
1 + iω βK

)
, M̃ = M

(
1 +

βM

iω

)
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Time-harmonic approach
A practical example

K q(t) + C q̇(t) + M q̈(t) = Q(t)

Now, one can substitute into the system’s equation

Q(t) ← Q̂ exp(iω t) ,

q(t) ← q̃ exp(iω t) , q̇(t) = q̃ iω exp(iω t) , q̈(t) = −q̃ω2 exp(iω t)

to obtain the following algebraic equation for the unknown complex
amplitude q̃: [

K + iω C − ω2 M
]
q̃ = Q̂

Having computed the complex amplitude q̃ for the given frequency ω,
one can finally find the time-harmonic response as the real part of the
complex solution:

q(t) = Re
{

q̃ exp(iω t)
}

= q̂ cos(ω t + α) , where

{
q̂ = |q̃|
α = arg(q̃)
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