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1 Vectors, tensors, and index notation

1.1 Generalization of the concept of vector

� A vector is a quantity that possesses both a magnitude and a direction and
obeys certain laws (of vector algebra):

• the vector addition and the commutative and associative laws,

• the associative and distributive laws for the multiplication with scalars.

� The vectors are suited to describe physical phenomena, since they are inde-
pendent of any system of reference.
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The concept of a vector that is independent of any coordinate system can be
generalised to higher-order quantities, which are called tensors. Consequently,
vectors and scalars can be treated as lower-rank tensors.

Scalars have a magnitude but no direction. They are tensors of order 0. Example: the
mass density.

Vectors are characterised by their magnitude and direction. They are tensors of or-
der 1. Example: the velocity vector.

Tensors of second order are quantities which multiplied by a vector give as the result
another vector. Example: the stress tensor.

Higher-order tensors are often encountered in constitutive relations between second-
order tensor quantities. Example: the fourth-order elasticity tensor.

1.2 Summation convention and index notation

Einstein’s summation convention

A summation is carried out over repeated indices in an expression and the sum-
mation symbol is skipped.

Example 1.

ai bi ≡
3∑
i=1

ai bi = a1 b1 + a2 b2 + a3 b3

Aii ≡
3∑
i=1

Aii = A11 + A22 + A33

Aij bj ≡
3∑
j=1

Aij bj = Ai1 b1 + Ai2 b2 + Ai3 b3 (i = 1, 2, 3) [3 expressions]

Tij Sij ≡
3∑
i=1

3∑
j=1

Tij Sij = T11 S11 + T12 S12 + T13 S13

+ T21 S21 + T22 S22 + T23 S23

+ T31 S31 + T32 S32 + T33 S33

The principles of index notation:

� An index cannot appear more than twice in one term! If necessary, the stan-
dard summation symbol

(∑)
must be used. A repeated index is called a bound

or dummy index.
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Example 2.
Aii , Cijkl Skl , Aij bi cj ← Correct

Aij bj cj ← Wrong!∑
j

Aij bj cj ← Correct

A term with an index repeated more than two times is correct if:

� the summation sign is used, e.g.:
∑
i

ai bi ci = a1 b1 c1 + a2 b2 c2 + a3 b3 c3, or

� the dummy index is underlined, e.g.: ai bi ci = a1 b1 c1 or a2 b2 c2 or a3 b3 c3.

� If an index appears once, it is called a free index. The number of free indices
determines the order of a tensor.
Example 3.

Aii , ai bi , Tij Sij ← scalars (no free indices)
Aij bj ← a vector (one free index: i)

Cijkl Skl ← a second-order tensor (two free indices: i, j)

� The denomination of dummy index (in a term) is arbitrary, since it vanishes after
summation, namely: ai bi ≡ aj bj ≡ ak bk, etc.
Example 4.

ai bi = a1 b1 + a2 b2 + a3 b3 = aj bj

Aii ≡ Ajj , Tij Sij ≡ Tkl Skl , Tij + Cijkl Skl ≡ Tij + Cijmn Smn

1.3 Kronecker delta and permutation symbol

Definition 1 (Kronecker delta).

δij =

{
1 for i = j

0 for i 6= j

� The Kronecker delta can be used to substitute one index by another, for example:
ai δij = a1 δ1j + a2 δ2j + a3 δ3j = aj, i.e., here i→ j.

� When Cartesian coordinates are used (with orthonormal base vectors e1, e2, e3)
the Kronecker delta δij is the (matrix) representation of the unity tensor I =
e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 = δij ei ⊗ ej.

� A • I = Aij δij = Aii which is the trace of the matrix (tensor) A.
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Definition 2 (Permutation symbol).

εijk =


1 for even permutations: 123, 231, 312
−1 for odd permutations: 132, 321, 213
0 if an index is repeated

The permutation symbol (or tensor) is widely used in index notation to express the
vector or cross product of two vectors:

c = a× b =

∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣ → ci = εijk aj bk →


c1 = a2 b3 − a3 b2
c2 = a3 b1 − a1 b3
c3 = a1 b2 − a2 b1

1.4 Tensors and their representations

Informal definition of tensor

A tensor is a generalized linear ‘quantity’ that can be expressed as a multi-
dimensional array relative to a choice of basis of the particular space on which
it is defined. Therefore:

� a tensor is independent of any chosen frame of reference,

� its representation behaves in a specific way under coordinate trans-
formations.

Cartesian system of reference

Let E3 be the three-dimensional Euclidean space with a Cartesian coordinate
system with three orthonormal base vectors e1, e2, e3, so that

ei · ej = δij (i, j = 1, 2, 3).

� A second-order tensor T ∈ E3 ⊗ E3 is defined by

T := Tij ei ⊗ ej = T11 e1 ⊗ e1 + T12 e1 ⊗ e2 + T13 e1 ⊗ e3

+ T21 e2 ⊗ e1 + T22 e2 ⊗ e2 + T23 e2 ⊗ e3

+ T31 e3 ⊗ e1 + T32 e3 ⊗ e2 + T33 e3 ⊗ e3

where ⊗ denotes the tensorial (or dyadic) product, and Tij is the (matrix) repre-
sentation of T in the given frame of reference defined by the base vectors e1,
e2, e3.



ICMM lecture Mathematical Preliminaries 5

� The second-order tensor T ∈ E3 ⊗ E3 can be viewed as a linear transformation
from E3 onto E3, meaning that it transforms every vector v ∈ E3 into another vector
from E3 as follows

T · v = (Tij ei ⊗ ej) · (vk ek) = Tij vk (

δjk︷ ︸︸ ︷
ej · ek) ei

= Tij vk δjk ei = Tij vj ei = wi ei = w ∈ E3 where wi = Tij vj

� A tensor of order n is defined by

n
T := Tijk . . .︸ ︷︷ ︸

n indices

ei ⊗ ej ⊗ ek ⊗ . . .︸ ︷︷ ︸
n terms

,

where Tijk... is its (n-dimensional array) representation in the given frame of
reference.
Example 5. Let C ∈ E3 ⊗ E3 ⊗ E3 ⊗ E3 and S ∈ E3 ⊗ E3. The fourth-order tensor
C describes a linear transformation in E3 ⊗ E3:

C • S = C : S = (Cijkl ei ⊗ ej ⊗ ek ⊗ el) : (Smn em ⊗ en)

= Cijkl Smn (ek · em) (el · en) ei ⊗ ej

= Cijkl Smn δkm δln ei ⊗ ej = Cijkl Skl ei ⊗ ej

= Tij ei ⊗ ej = T ∈ E3 ⊗ E3 where Tij = Cijkl Skl

1.5 Multiplication of vectors and tensors

Example 6. Let: s be a scalar (a zero-order tensor), v,w be vectors (first-order ten-
sors), R,S,T be second-order tensors, D be a third-order tensor, and C be a fourth-
order tensor. The order of tensors is shown explicitly in the expressions below.

0
s =

1
v •

1
w =

1
v

1
w =

1
v ·

1
w → viwi = s

1
v =

2
T

1
w =

2
T ·

1
w → Tij wj = vi

2
R =

2
T

2
S =

2
T ·

2
S → Tij Sjk = Rik

0
s =

2
T •

2
S =

2
T :

2
S → Tij Sij = s

2
T =

4
C •

2
S =

4
C :

2
S → Cijkl Skl = Tij

2
T =

1
v

3
D =

1
v ·

3
D → vkDkij = Tij

Remark: Notice a vital difference between the two dot-operators ‘•’ and ‘·’. To avoid am-
biguity, usually, the operators ‘:’ and ‘·’ are not used, and the dot-operator has the mean-
ing of the (full) dot-product, so that: Cijkl Skl → C • S, Tij Sij → T • S, and Tij Sjk →
T S.
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1.6 Vertical-bar convention and Nabla operator

Vertical-bar convention

The vertical-bar (or comma) convention is used to facilitate the denomination
of partial derivatives with respect to the Cartesian position vectors x ∼ xi, for
example,

∂u

∂x
→ ∂ui

∂xj
=: ui|j

Definition 3 (Nabla-operator).�� ��∇ ≡ (.)|i ei = (.)|1 e1 + (.)|2 e2 + (.)|3 e3

The gradient, divergence, curl (rotation), and Laplacian operations can be written
using the Nabla-operator:

v = grad s ≡ ∇s → vi = s|i

T = gradv ≡ ∇⊗ v → Tij = vi|j

s = div v ≡ ∇ · v → s = vi|i

v = divT ≡ ∇ · T → vi = Tji|j

w = curlv ≡ ∇× v → wi = εijk vk|j

lapl(.) ≡ ∆(.) ≡ ∇2(.) → (.)|ii

Some vector calculus identities:

�
�� ��∇× (∇s) = 0 (curl grad = 0)

Proof:

∇× (∇s) = εijk
(
s|k
)
|j = εijk s|kj =


for i = 1: s|23 − s|32 = 0

for i = 2: s|31 − s|13 = 0

for i = 3: s|12 − s|21 = 0

QED

�
�� ��∇ · (∇× v) = 0 (div curl = 0)

Proof:

∇ · (∇× v) =
(
εijk vk|j

)
|i = εijk vk|ji

=
(
v3|21 − v3|12

)
+
(
v1|32 − v1|23

)
+
(
v2|13 − v2|31

)
= 0

QED
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�
�� ��∇ · (∇s) = ∇2s (div grad = lapl)

Proof:
∇ · (∇s) =

(
s|
)
|i = s|ii = s11 + s22 + s33 ≡ ∇2s

QED

�
�� ��∇× (∇× v) = ∇(∇ · v)−∇2v (curl curl = grad div− lapl)

Proof:

∇× (∇× v) → εmni
(
εijk vk|j

)
|n = εmniεijk vk|jn

for m = 1: ε1niεijk vk|jn = ε123
(
ε312 v2|12 + ε321 v1|22

)
+ ε132

(
ε213 v3|13 + ε231 v1|33

)
=
(
v2|2 + v3|3

)
|1 −

(
v1|22 + v1|33

)
=
(
v1|1 + v2|2 + v3|3

)
|1 −

(
v1|11 + v1|22 + v1|33

)
=
(
vi|i
)
|1 − v1|ii =

(
∇ · v

)
|1 −∇

2v1

for m = 2: ε2niεijk vk|jn =
(
vi|i
)
|2 − v2|ii =

(
∇ · v

)
|2 −∇

2v2

for m = 3: ε3niεijk vk|jn =
(
vi|i
)
|3 − v3|ii =

(
∇ · v

)
|3 −∇

2v3

QED

2 Integral theorems

2.1 General idea

Integral theorems of vector calculus, namely:

� the classical (Kelvin-)Stokes’ theorem (the curl theorem),

� Green’s theorem,

� Gauss theorem (the Gauss-Ostrogradsky divergence theorem),

are special cases of the general Stokes’ theorem, which generalizes the fundamen-
tal theorem of calculus.

Fundamental theorem of calculus relates scalar integral to boundary points:

b∫
a

f ′(x) dx = f(b)− f(a)

Stokes’s (curl) theorem relates surface integrals to line integrals. Applications: for
example, conservative forces.
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Green’s theorem is a two-dimensional special case of the Stokes’ theorem.

Gauss (divergence) theorem relates volume integrals to surface integrals. Applica-
tions: analysis of flux, pressure.

2.2 Stokes’ theorem

Theorem 1 (Stokes’ curl theorem). Let C be a simple closed curve spanned by a
surface S with unit normal n. Then, for a continuously differentiable vector field f :∫

S

(
∇× f

)
· n dS︸ ︷︷ ︸

dS

=

∫
C

f · dr
n

S

C

� Formal requirements: the surface S must be open, orientable and piecewise
smooth with a correspondingly orientated, simple, piecewise and smooth bound-
ary curve C.

� Stokes’ theorem implies that the flux of∇×f through a surface S depends only
on the boundary C of S and is therefore independent of the surface’s shape
(see Figure 1).

FIGURE 1

� Green’s theorem in the plane may be viewed as a special case of Stokes’ the-
orem (with f =

[
u(x, y), v(x, y), 0

]
):

∫
S

(
∂v

∂x
− ∂u

∂y

)
dx dy =

∫
C

u dx+ v dy
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2.3 Gauss-Ostrogradsky theorem

Theorem 2 (Gauss divergence theorem). Let the region V be bounded by a simple
surface S with unit outward normal n (see Figure 2). Then, for a continuously
differentiable vector field f :∫

V

∇ · f dV =

∫
S

f · n dS︸ ︷︷ ︸
dS

; in particular
∫
V

∇f dV =

∫
S

f n dS .

S

V

dS

n
f

FIGURE 2

� The divergence theorem is a result that relates the flow (that is, flux) of a vector
field through a surface to the behavior of the vector field inside the surface.

� Intuitively, it states that the sum of all sources minus the sum of all sinks gives the
net flow out of a region.

3 Time-harmonic approach

3.1 Types of dynamic problems

Dynamic problems. In dynamic problems, the field variables depend upon position x
and time t, for example, u = u(x, t).

Separation of variables. In many cases, the governing PDEs can be solved by ex-
pressing u as a product of functions that each depend only on one of the inde-
pendent variables: u(x, t) = û(x) ǔ(t).

Steady state. A system is in steady state if its recently observed behaviour will con-
tinue into the future. An opposite situation is called the transient state which
is often a start-up in many steady state systems. An important case of steady
state is the time-harmonic behaviour.
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Time-harmonic solution. If the time-dependent function ǔ(t) is a time-harmonic func-
tion (with the frequency f ), the solution can be written as

u(x, t) = û(x) cos
(
ω t+ α(x)

)
where: ω = 2π f is called the angular (or circular) frequency, α(x) is the
phase-angle shift, and û(x) can be interpreted as a spatial amplitude.Here:
ω – the angular frequency, α(x) – the phase-angle shift,
û(x) – the spatial amplitude.

3.2 Complex-valued notation

A complex-valued notation for time-harmonic problems

A convenient way to handle time-harmonic problems is in the complex notation
with the real part (or, alternatively, the imaginary part) as a physically meaningful
solution:

u(x, t) = û(x) cos
(
ω t+ α(x)

)
= û Re

{ exp[(i(ω t+α)]︷ ︸︸ ︷
cos(ω t+ α) + i sin(ω t+ α)

}
= û Re

{
exp[(i(ω t+ α)]

}
= Re

{
û exp(iα)︸ ︷︷ ︸

ũ

exp(iω t)
}

= Re
{
ũ exp(iω t)

}
where the so-called complex amplitude (or phasor) is introduced:

ũ = ũ(x) = û(x) exp
(
iα(x)

)
= û(x)

(
cosα(x) + i sinα(x)

)

3.3 A practical example

Consider a linear dynamic system characterized by the matrices of stiffness K,
damping C, and mass M :

K q(t) + C q̇(t) +M q̈(t) = Q(t)

where Q(t) is the dynamic excitation (a time-varying force) and q(t) is the system’s
response (displacement).

� Let the driving force Q(t) be harmonic with the angular frequency ω and the (real-
valued) amplitude Q̂:

Q(t) = Q̂ cos(ω t) = Q̂ Re
{

cos(ω t) + i sin(ω t)
}

= Re
{
Q̂ exp(iω t)

}
� Since the system is linear the response q(t) will be also harmonic and with the

same angular frequency but (in general) shifted by the phase angle α:

q(t) = q̂ cos(ω t+ α) = q̂ Re
{

cos(ω t+ α) + i sin(ω t+ α)
}

= q̂ Re
{

exp[i(ω t+ α)]
}

= Re
{
q̂ exp(iα)︸ ︷︷ ︸

q̃

exp(iω t)
}

= Re
{
q̃ exp(iω t)

}
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Here, q̂ and q̃ are the real and complex amplitudes, respectively. The real am-
plitude q̂ and the phase angle α are unknowns; thus, unknown is the complex
amplitude q̃ = q̂

(
cosα + i sinα

)
.

� Now, one can substitute into the system’s equation

Q(t) ← Q̂ exp(iω t) ,

q(t) ← q̃ exp(iω t) , so that q̇(t) = q̃ iω exp(iω t) , q̈(t) = −q̃ ω2 exp(iω t)

to obtain the following algebraic equation for the unknown complex amplitude q̃:[
K + iω C − ω2M

]
q̃ = Q̂

� For the Rayleigh damping model, where C = βK K + βM M (βK and βM are
real-valued constants), this equation can be presented as follows:

[
K̃ − ω2 M̃

]
q̃ = Q̂ , where K̃ = K

(
1 + iω βK

)
, M̃ = M

(
1 +

βM
iω

)
are complex matrices.

� Having computed the complex amplitude q̃ for the given frequency ω, one can
finally find the time-harmonic response as the real part of the complex solution:

q(t) = Re
{
q̃ exp(iω t)

}
= q̂ cos(ω t+ α) , where

{
q̂ = |q̃|
α = arg(q̃)

Here, |q̃| =
√

Re{q̃}2 + Im{q̃}2 is the absolute value or modulus of the complex
number q̃, and arg(q̃) = arctan

(
Im{q̃}
Re{q̃}

)
is called the argument or angle of q̃.
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