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Basic notions and notations
Motivation: most physical phenomena, whether in the domain of
fluid dynamics or solid mechanics, electricity, magnetism, optics or
heat flow, can be in general (and actually are) described by partial
differential equations.

Definition (Partial Differential Equation)

A partial differential equation (PDE) is an equation which
1 has an unknown function depending on at least two variables,
2 contains some partial derivatives of the unknown function.
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Basic notions and notations
Motivation: most physical phenomena, whether in the domain of
fluid dynamics or solid mechanics, electricity, magnetism, optics or
heat flow, can be in general (and actually are) described by partial
differential equations.

Definition (Partial Differential Equation)

A partial differential equation (PDE) is an equation which
1 has an unknown function depending on at least two variables,
2 contains some partial derivatives of the unknown function.

A solution to PDE is, generally speaking, any function (in the
independent variables) that satisfies the PDE.
From this family of functions one may be uniquely selected by
imposing adequate initial and/or boundary conditions.
A PDE with initial and boundary conditions constitutes the
so-called initial-boundary-value problem (IBVP). Such
problems are mathematical models of most physical phenomena.
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Basic notions and notations
Motivation: most physical phenomena, whether in the domain of
fluid dynamics or solid mechanics, electricity, magnetism, optics or
heat flow, can be in general (and actually are) described by partial
differential equations.

Definition (Partial Differential Equation)

A partial differential equation (PDE) is an equation which
1 has an unknown function depending on at least two variables,
2 contains some partial derivatives of the unknown function.

The following notation will be used throughout this lecture:
t, x, y, z (or, e.g.: r, θ, φ) – the independent variables (here, t
represents time while the other variables are space coordinates),
u = u(t, x, . . .) – the dependent variable (the unknown function),
the partial derivatives will be denoted as follows

ut =
∂u
∂t

, utt =
∂2u
∂t2 , uxy =

∂2u
∂x∂y

, etc.



Introduction Classifications Canonical forms Separation of variables

Methods and techniques for solving PDEs

Separation of variables. A PDE in n independent variables is
reduced to n ODEs.

Integral transforms.
Change of coordinates.
Transformation of the dependent variable.
Numerical methods.
Perturbation methods.
Impulse-response technique.
Integral equations.
Variational methods.
Eigenfunction expansion.
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Methods and techniques for solving PDEs

Separation of variables.
Integral transforms. A PDE in n independent variables is reduced

to one in (n− 1) independent variables. Hence, a PDE in two
variables can be changed to an ODE.

Change of coordinates.
Transformation of the dependent variable.
Numerical methods.
Perturbation methods.
Impulse-response technique.
Integral equations.
Variational methods.
Eigenfunction expansion.
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Methods and techniques for solving PDEs

Separation of variables.
Integral transforms.
Change of coordinates. A PDE can be changed to an ODE or to an

easier PDE by changing the coordinates of the problem (rotating
the axes, etc.).

Transformation of the dependent variable.
Numerical methods.
Perturbation methods.
Impulse-response technique.
Integral equations.
Variational methods.
Eigenfunction expansion.
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Methods and techniques for solving PDEs

Separation of variables.
Integral transforms.
Change of coordinates.
Transformation of the dependent variable. The unknown of a

PDE is transformed into a new unknown that is easier to find.

Numerical methods.
Perturbation methods.
Impulse-response technique.
Integral equations.
Variational methods.
Eigenfunction expansion.
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Methods and techniques for solving PDEs

Separation of variables.
Integral transforms.
Change of coordinates.
Transformation of the dependent variable.
Numerical methods. A PDE is changed to a system of difference

equations that can be solved by means of iterative techniques
(Finite Difference Methods). These methods can be divided into
two main groups, namely: explicit and implicit methods. There
are also other methods that attempt to approximate solutions by
polynomial functions (eg., Finite Element Method).

Perturbation methods.
Impulse-response technique.
Integral equations.
Variational methods.
Eigenfunction expansion.
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Methods and techniques for solving PDEs

Separation of variables.
Integral transforms.
Change of coordinates.
Transformation of the dependent variable.
Numerical methods.
Perturbation methods. A nonlinear problem (a nonlinear PDE) is

changed into a sequence of linear problems that approximates
the nonlinear one.

Impulse-response technique.
Integral equations.
Variational methods.
Eigenfunction expansion.
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Methods and techniques for solving PDEs

Separation of variables.
Integral transforms.
Change of coordinates.
Transformation of the dependent variable.
Numerical methods.
Perturbation methods.
Impulse-response technique. Initial and boundary conditions of a

problem are decomposed into simple impulses and the response
is found for each impulse. The overall response is then obtained
by adding these simple responses.

Integral equations.
Variational methods.
Eigenfunction expansion.
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Methods and techniques for solving PDEs

Separation of variables.
Integral transforms.
Change of coordinates.
Transformation of the dependent variable.
Numerical methods.
Perturbation methods.
Impulse-response technique.
Integral equations. A PDE is changed to an integral equation (that

is, an equation where the unknown is inside the integral). The
integral equations is then solved by various techniques.

Variational methods.
Eigenfunction expansion.



Introduction Classifications Canonical forms Separation of variables

Methods and techniques for solving PDEs

Separation of variables.
Integral transforms.
Change of coordinates.
Transformation of the dependent variable.
Numerical methods.
Perturbation methods.
Impulse-response technique.
Integral equations.
Variational methods. The solution to a PDE is found by

reformulating the equation as a minimization problem. It turns
out that the minimum of a certain expression (very likely the
expression will stand for total energy) is also the solution to
the PDE.

Eigenfunction expansion.
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Methods and techniques for solving PDEs

Separation of variables.
Integral transforms.
Change of coordinates.
Transformation of the dependent variable.
Numerical methods.
Perturbation methods.
Impulse-response technique.
Integral equations.
Variational methods.
Eigenfunction expansion. The solution of a PDE is as an infinite

sum of eigenfunctions. These eigenfunctions are found by
solving the so-called eigenvalue problem corresponding to the
original problem.
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Well-posed and ill-posed problems

Definition (A well-posed problem)

An initial-boundary-value problem is well-posed if:
1 it has a unique solution,

2 the solution vary continuously with the given inhomogeneous
data, that is, small changes in the data should cause only small
changes in the solution.

In practice, the initial and boundary data are measured and so
small errors occur.
Very often the problem must be solved numerically which
involves truncation and round-off errors.
If the problem is well-posed then these unavoidable small errors
produce only slight errors in the computed solution, and, hence,
useful results are obtained.
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Basic classifications of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

Example

first order: ut = ux ,

second order: ut = uxx , uxy = 0 ,

third order: ut + u uxxx = sin(x)

fourth order: uxxxx = utt .

Number of variables. PDEs may be classified by the number of their
independent variables, that is, the number of variables
the unknown function depends on.

Linearity. PDE is linear if the dependent variable and all its
derivatives appear in a linear fashion.

Kinds of coefficients. PDE can be with constant or variable
coefficients (if at least one of the coefficients is a
function of (some of) independent variables).

Homogeneity. PDE is homogeneous if the free term (the right-hand
side term) is zero.

Kind of PDE. All linear second-order PDEs are either:
hyperbolic (e.g., utt − uxx = f (t, x, u, ut, ux)),
parabolic (e.g., uxx = f (t, x, u, ut, ux)),
elliptic (e.g., uxx + uyy = f (x, y, u, ux, uy)).
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Basic classifications of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

Number of variables. PDEs may be classified by the number of their
independent variables, that is, the number of variables
the unknown function depends on.

Example

PDE in two variables: ut = uxx ,
(
u = u(t, x)

)
,

PDE in three variables: ut = urr +
1
r

ur +
1
r2 uθθ ,

(
u = u(t, r, θ)

)
,

PDE in four variables: ut = uxx + uyy + uzz ,
(
u = u(t, x, y, z)

)
.

Linearity. PDE is linear if the dependent variable and all its
derivatives appear in a linear fashion.

Kinds of coefficients. PDE can be with constant or variable
coefficients (if at least one of the coefficients is a
function of (some of) independent variables).

Homogeneity. PDE is homogeneous if the free term (the right-hand
side term) is zero.

Kind of PDE. All linear second-order PDEs are either:
hyperbolic (e.g., utt − uxx = f (t, x, u, ut, ux)),
parabolic (e.g., uxx = f (t, x, u, ut, ux)),
elliptic (e.g., uxx + uyy = f (x, y, u, ux, uy)).
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Basic classifications of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

Number of variables. PDEs may be classified by the number of their
independent variables, that is, the number of variables
the unknown function depends on.

Linearity. PDE is linear if the dependent variable and all its
derivatives appear in a linear fashion.

Example

linear: utt + exp(−t) uxx = sin(t) ,

nonlinear: u uxx + ut = 0 ,

linear: x uxx + y uyy = 0 ,

nonlinear: ux + uy + u2 = 0 .

Kinds of coefficients. PDE can be with constant or variable
coefficients (if at least one of the coefficients is a
function of (some of) independent variables).

Homogeneity. PDE is homogeneous if the free term (the right-hand
side term) is zero.
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parabolic (e.g., uxx = f (t, x, u, ut, ux)),
elliptic (e.g., uxx + uyy = f (x, y, u, ux, uy)).
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Basic classifications of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

Number of variables. PDEs may be classified by the number of their
independent variables, that is, the number of variables
the unknown function depends on.

Linearity. PDE is linear if the dependent variable and all its
derivatives appear in a linear fashion.

Kinds of coefficients. PDE can be with constant or variable
coefficients (if at least one of the coefficients is a
function of (some of) independent variables).

Example

constant coefficients: utt + 5uxx − 3uxy = cos(x) ,

variable coefficients: ut + exp(−t) uxx = 0 .

Homogeneity. PDE is homogeneous if the free term (the right-hand
side term) is zero.

Kind of PDE. All linear second-order PDEs are either:
hyperbolic (e.g., utt − uxx = f (t, x, u, ut, ux)),
parabolic (e.g., uxx = f (t, x, u, ut, ux)),
elliptic (e.g., uxx + uyy = f (x, y, u, ux, uy)).
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Basic classifications of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

Number of variables. PDEs may be classified by the number of their
independent variables, that is, the number of variables
the unknown function depends on.

Linearity. PDE is linear if the dependent variable and all its
derivatives appear in a linear fashion.

Kinds of coefficients. PDE can be with constant or variable
coefficients (if at least one of the coefficients is a
function of (some of) independent variables).

Homogeneity. PDE is homogeneous if the free term (the right-hand
side term) is zero.

Example

homogeneous: utt − uxx = 0 ,

nonhomogeneous: utt − uxx = x2 sin(t) .

Kind of PDE. All linear second-order PDEs are either:
hyperbolic (e.g., utt − uxx = f (t, x, u, ut, ux)),
parabolic (e.g., uxx = f (t, x, u, ut, ux)),
elliptic (e.g., uxx + uyy = f (x, y, u, ux, uy)).
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Basic classifications of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

Number of variables. PDEs may be classified by the number of their
independent variables, that is, the number of variables
the unknown function depends on.

Linearity. PDE is linear if the dependent variable and all its
derivatives appear in a linear fashion.

Kinds of coefficients. PDE can be with constant or variable
coefficients (if at least one of the coefficients is a
function of (some of) independent variables).

Homogeneity. PDE is homogeneous if the free term (the right-hand
side term) is zero.

Kind of PDE. All linear second-order PDEs are either:
hyperbolic (e.g., utt − uxx = f (t, x, u, ut, ux)),
parabolic (e.g., uxx = f (t, x, u, ut, ux)),
elliptic (e.g., uxx + uyy = f (x, y, u, ux, uy)).
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Kinds of nonlinearity

Definition (Semi-linearity, quasi-linearity, and full nonlinearity)

A partial differential equation is:
semi-linear – if the highest derivatives appear in a linear fashion

and their coefficients do not depend on the unknown function or
its derivatives;

quasi-linear – if the highest derivatives appear in a linear fashion;
fully nonlinear – if the highest derivatives appear in a nonlinear

fashion.
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Kinds of nonlinearity

Definition (Semi-linearity, quasi-linearity, and full nonlinearity)

A partial differential equation is:
semi-linear – if the highest derivatives appear in a linear fashion

and their coefficients do not depend on the unknown function or
its derivatives;

quasi-linear – if the highest derivatives appear in a linear fashion;
fully nonlinear – if the highest derivatives appear in a nonlinear

fashion.

Let: u = u(x) and x = (x, y).

Example (semi-linear PDE)

C1(x) uxx + C2(x) uxy + C3(x) uyy + C0(x, u, ux, uy) = 0
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Kinds of nonlinearity

Definition (Semi-linearity, quasi-linearity, and full nonlinearity)

A partial differential equation is:
semi-linear – if the highest derivatives appear in a linear fashion

and their coefficients do not depend on the unknown function or
its derivatives;

quasi-linear – if the highest derivatives appear in a linear fashion;
fully nonlinear – if the highest derivatives appear in a nonlinear

fashion.

Let: u = u(x) and x = (x, y).

Example (quasi-linear PDE)

C1(x, u, ux, uy) uxx + C2(x, u, ux, uy) uxy + C0(x, u, ux, uy) = 0
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Kinds of nonlinearity

Definition (Semi-linearity, quasi-linearity, and full nonlinearity)

A partial differential equation is:
semi-linear – if the highest derivatives appear in a linear fashion

and their coefficients do not depend on the unknown function or
its derivatives;

quasi-linear – if the highest derivatives appear in a linear fashion;
fully nonlinear – if the highest derivatives appear in a nonlinear

fashion.

Let: u = u(x) and x = (x, y).

Example (fully non-linear PDE)

uxx uxy = 0
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Types of second-order linear PDEs
A second-order linear PDE in two variables can be in general
written in the following form

A uxx + B uxy + C uyy + D ux + E uy + F u = G

where A, B, C, D, E, and F are coefficients, and G is a right-hand side
(i.e., non-homogeneous) term. All these quantities are constants, or
at most, functions of (x, y).

The second-order linear PDE is either

hyperbolic: if B2 − 4AC > 0
parabolic: if B2 − 4AC = 0

elliptic: if B2 − 4AC < 0
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Types of second-order linear PDEs
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The second-order linear PDE is either
hyperbolic: if B2 − 4AC > 0

parabolic: if B2 − 4AC = 0
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Types of second-order linear PDEs

A uxx + B uxy + C uyy + D ux + E uy + F u = G

The second-order linear PDE is either
hyperbolic: if B2 − 4AC > 0

Example

utt − uxx = 0 → B2 − 4AC = 02 − 4 · (−1) · 1 = 4 > 0 ,

utx = 0 → B2 − 4AC = 12 − 4 · 0 · 0 = 1 > 0 .

parabolic: if B2 − 4AC = 0
elliptic: if B2 − 4AC < 0
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Types of second-order linear PDEs

A uxx + B uxy + C uyy + D ux + E uy + F u = G

The second-order linear PDE is either
hyperbolic: if B2 − 4AC > 0 (eg., utt − uxx = 0, utx = 0),

parabolic: if B2 − 4AC = 0

elliptic: if B2 − 4AC < 0
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Types of second-order linear PDEs

A uxx + B uxy + C uyy + D ux + E uy + F u = G

The second-order linear PDE is either
hyperbolic: if B2 − 4AC > 0 (eg., utt − uxx = 0, utx = 0),

parabolic: if B2 − 4AC = 0

Example

ut − uxx = 0 → B2 − 4AC = 02 − 4 · (−1) · 0 = 0 .

elliptic: if B2 − 4AC < 0
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Types of second-order linear PDEs

A uxx + B uxy + C uyy + D ux + E uy + F u = G

The second-order linear PDE is either
hyperbolic: if B2 − 4AC > 0 (eg., utt − uxx = 0, utx = 0),

parabolic: if B2 − 4AC = 0 (eg., ut − uxx = 0),
elliptic: if B2 − 4AC < 0



Introduction Classifications Canonical forms Separation of variables

Types of second-order linear PDEs

A uxx + B uxy + C uyy + D ux + E uy + F u = G

The second-order linear PDE is either
hyperbolic: if B2 − 4AC > 0 (eg., utt − uxx = 0, utx = 0),

parabolic: if B2 − 4AC = 0 (eg., ut − uxx = 0),
elliptic: if B2 − 4AC < 0

Example

uxx + uyy = 0 → B2 − 4AC = 02 − 4 · 1 · 1 = −4 < 0 .
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Types of second-order linear PDEs

A uxx + B uxy + C uyy + D ux + E uy + F u = G

The second-order linear PDE is either
hyperbolic: if B2 − 4AC > 0 (eg., utt − uxx = 0, utx = 0),

parabolic: if B2 − 4AC = 0 (eg., ut − uxx = 0),
elliptic: if B2 − 4AC < 0 (eg., uxx + uyy = 0).

The mathematical solutions to these three types of equations are
quite different.
The three major classifications of linear PDEs essentially classify
physical problems into three basic types:

1 vibrating systems and wave propagation (hyperbolic case),
2 heat flow and diffusion processes (parabolic case),
3 steady-state phenomena (elliptic case).
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Types of second-order linear PDEs

A uxx + B uxy + C uyy + D ux + E uy + F u = G

The second-order linear PDE is either
hyperbolic: if B2 − 4AC > 0 (eg., utt − uxx = 0, utx = 0),

parabolic: if B2 − 4AC = 0 (eg., ut − uxx = 0),
elliptic: if B2 − 4AC < 0 (eg., uxx + uyy = 0).

In general, (B2 − 4A C) is a function of the independent variables
(x, y). Hence, an equation can change from one basic type to another.

Example

y uxx + uyy = 0 → B2 − 4AC = −4y


> 0 for y < 0 (hyperbolic),
= 0 for y = 0 (parabolic),
< 0 for y > 0 (elliptic).
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Types of second-order linear PDEs

A uxx + B uxy + C uyy + D ux + E uy + F u = G

The second-order linear PDE is either
hyperbolic: if B2 − 4AC > 0 (eg., utt − uxx = 0, utx = 0),

parabolic: if B2 − 4AC = 0 (eg., ut − uxx = 0),
elliptic: if B2 − 4AC < 0 (eg., uxx + uyy = 0).

Second-order linear equations in three or more variables can also be
classified except that matrix analysis must be used.

Example

ut = uxx + uyy ← parabolic equation,

utt = uxx + uyy + uzz ← hyperbolic equation.
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Classic linear PDEs

Hyperbolic PDEs:
Vibrating string (1D wave equation): utt − c2 uxx = 0
Wave equation with damping (if h 6= 0): utt − c2∇2 u + h ut = 0
Transmission line equation: utt − c2∇2 u + h ut + k u = 0

Parabolic PDEs:
Diffusion-convection equation: ut − α2 uxx + h ux = 0
Diffusion with lateral heat-concentration loss:
ut − α2 uxx + k u = 0

Elliptic PDEs:
Laplace’s equation: ∇2 u = 0
Poisson’s equation: ∇2 u = k
Helmholtz’s equation: ∇2 u + λ2 u = 0
Shrödinger’s equation: ∇2 u + k (E − V) u = 0

Higher-order PDEs:
Airy’s equation (third order): ut + uxxx = 0
Bernouli’s beam equation (fourth order): α2 utt + uxxxx = 0
Kirchhoff’s plate equation (fourth order): α2 utt +∇4 u = 0

(Here: ∇2 is the Laplace operator, ∇4 = ∇2∇2 is the biharmonic operator.)
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Canonical forms of second order PDEs

Any second-order linear PDE (in two variables)

A uxx + B uxy + C uyy + D ux + E uy + F u = G

(where A, B, C, D, E, F, and G are constants or functions of (x, y))
can be transformed into the so-called canonical form.
This can be achieved by introducing new coordinates:

ξ = ξ(x, y) and η = η(x, y)

(in place of x, y) which simplify the equation to its canonical form.

The type of PDE determines the canonical form:

I for hyperbolic PDE (that is, when B2 − 4A C > 0) there are, in
fact, two possibilities:

uξξ − uηη = f (ξ, η, u, uξ, uη)
(
B̃2 − 4Ã C̃ = 02 − 4 · 1 · (−1) = 4 > 0

)
,

or uξη = f (ξ, η, u, uξ, uη)
(
B̃2 − 4Ã C̃ = 12 − 4 · 0 · 0 = 1 > 0

)
;

I for parabolic PDE (that is, when B2 − 4A C = 0):

uξξ = f (ξ, η, u, uξ, uη)
(
B̃2 − 4Ã C̃ = 02 − 4 · 1 · 0 = 0

)
;

I for elliptic PDE (that is, when B2 − 4A C < 0):

uξξ + uηη = f (ξ, η, u, uξ, uη)
(
B̃2 − 4Ã C̃ = 02 − 4 · 1 · 1 = −4 < 0

)
.
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Reduction to a canonical form

Step 1. Introduce new coordinates ξ = ξ(x, y) and η = η(x, y).

Step 2. Impose the requirements onto coefficients Ã, B̃, C̃, and solve
for ξ and η.

Step 3. Use the new coordinates for the coefficients and homogeneous
term of the new canonical form (i.e., replace x = x(ξ, η) and
y = y(ξ, η) ).
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Reduction to a canonical form

Step 1. Introduce new coordinates ξ = ξ(x, y) and η = η(x, y).
Compute the partial derivatives:

ux = uξ ξx + uη ηx , uy = uξ ξy + uη ηy ,

uxx = uξξ ξ
2
x + 2uξη ξx ηx + uηη η

2
x + uξ ξxx + uη ηxx ,

uyy = uξξ ξ
2
y + 2uξη ξy ηy + uηη η

2
y + uξ ξyy + uη ηyy ,

uxy = uξξ ξx ξy + uξη

(
ξx ηy + ξy ηx

)
+ uηη ηx ηy + uξ ξxy + uη ηxy .

Substitute these values into the original equation to obtain a new
form:

Ã uξξ + B̃ uξη + C̃ uηη + D̃ uξ + Ẽ uη + F u = G

where the new coefficients are as follows

Ã = A ξ2
x + B ξx ξy + C ξ2

y , B̃ = 2A ξx ηx + B
(
ξx ηy + ξy ηx

)
+ 2C ξy ηy ,

C̃ = A η2
x + B ηx ηy + C η2

y , D̃ = A ξxx + B ξxy + C ξyy + D ξx + E ξy ,

Ẽ = A ηxx + B ηxy + C ηyy + D ηx + E ηy .

Step 2. Impose the requirements onto coefficients Ã, B̃, C̃, and solve
for ξ and η.

Step 3. Use the new coordinates for the coefficients and homogeneous
term of the new canonical form (i.e., replace x = x(ξ, η) and
y = y(ξ, η) ).
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Reduction to a canonical form

Step 1. Introduce new coordinates ξ = ξ(x, y) and η = η(x, y).

Ã uξξ + B̃ uξη + C̃ uηη + D̃ uξ + Ẽ uη + F u = G

Step 2. Impose the requirements onto coefficients Ã, B̃, C̃, and solve
for ξ and η.
The requirements depend on the type of the PDE, namely:

set Ã = C̃ = 0 for the hyperbolic PDE (when B2 − 4A C > 0);

set either Ã = 0 or C̃ = 0 for the parabolic PDE; in this case
another necessary requirement B̃ = 0 will follow automatically
(since B2 − 4A C = 0);
for the elliptic PDE (when B2 − 4A C < 0), firstly, proceed as in the
hyperbolic case: set Ã = C̃ = 0 to find the complex conjugate
coordinates ξ, η (which would lead to a form of complex hyperbolic
equation uξη = f (ξ, η, u, uξ, uη) ); then, transform ξ and η as follows:

α← ξ + η

2
, β ← ξ − η

2i
.

(Here, α is the real part of ξ and η, while β is the imaginary part.)

The new real coordinates, α and β, allow to write the final
canonical elliptic form: uαα + uββ = f (α, β, u, uα, uβ).

Step 3. Use the new coordinates for the coefficients and homogeneous
term of the new canonical form (i.e., replace x = x(ξ, η) and
y = y(ξ, η) ).
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Step 2. Impose the requirements onto coefficients Ã, B̃, C̃, and solve
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Transforming the hyperbolic equation

For hyperbolic equation the canonical form

uξη = f (ξ, η, u, uξ, uη)

is achieved by setting
�� ��Ã = C̃ = 0 ,

that is,

Ã = A ξ2
x + B ξx ξy + C ξ2

y = 0 , C̃ = A η2
x + B ηx ηy + C η2

y = 0 ,

which can be rewritten as

A
(
ξx

ξy

)2

+ B
ξx

ξy
+ C = 0 , A

(
ηx

ηy

)2

+ B
ηx

ηy
+ C = 0 .

Solving these equations for ξx
ξy

and ηx
ηy

one finds the so-called
characteristic equations:

ξx

ξy
=
−B +

√
B2 − 4A C
2A

,
ηx

ηy
=
−B−

√
B2 − 4A C
2A

.
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Transforming the hyperbolic equation

The new coordinates equated to constant values define the
parametric lines of the new system of coordinates. That means that
the total derivatives are zero, i.e.,

ξ(x, y) = const. → dξ = ξx dx + ξy dy = 0 → dy
dx

= −ξx

ξy
,

η(x, y) = const. → dη = ηx dx + ηy dy = 0 → dy
dx

= −ηx

ηy
,

Therefore, the characteristic equations are

dy
dx

= −ξx

ξy
=

B−
√

B2 − 4A C
2A

,
dy
dx

= −ηx

ηy
=

B +
√

B2 − 4A C
2A

,

and can be easily integrated to find the implicit solutions,
ξ(x, y) = const. and η(x, y) = const., that is, the new coordinates
ensuring the simple canonical form of the PDE.
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Example
Rewriting a hyperbolic equation in canonical form

y2 uxx − x2 uyy = 0 x ∈ (0,+∞) , y ∈ (0,+∞) .

(In the first quadrant this is a hyperbolic equation, since
B2 − 4A C = 4y2 x2 > 0 for x 6= 0 and y 6= 0.)

Writing the two characteristic equations

dy
dx

=
B−
√

B2 − 4A C
2A

= − x
y
,

dy
dx

=
B +
√

B2 − 4A C
2A

=
x
y
.

Solving these equations – by separating the variables

y dy = −x dx , y dy = x dx ,

ξ(x, y) = y2 + x2 = const. , η(x, y) = y2 − x2 = const.

Using the new coordinates for the (non-zero) coefficients

B̃ = −16x2 y2 = 4(η2−ξ2) , D̃ = −2(y2+x2) = −2ξ , Ẽ = 2(y2−x2) = 2η ,

to present the PDE in the canonical form:

uξη =
D̃ uξ + Ẽ uη

B̃
=
ξ uξ − η uη

2(ξ2 − η2)
.
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Example
New coordinates for the canonical form of the hyperbolic PDE

x

y

0 1 2 3 4 5

ξ = 1

2

3

4

5

ξ(x, y) = const. ← circles

η = 014916
−1
−4

−9

−16

η(x, y) = const. ← hyperbolas

PDE in (ξ, η): uξη =
ξ uξ − η uη

2(ξ2 − η2)

PDE in (x, y): y2 uxx − x2 uyy = 0

ξ(x, y) = y2+x2 = const. ∈ (0,+∞) , η(x, y) = y2−x2 = const. ∈ (−∞,+∞) .
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Separation of variables
Necessary assumptions

This technique applies to problems which satisfy two requirements.
1 The PDE is linear and homogeneous (not necessary constant

coefficients).
2 The boundary conditions are linear and homogeneous.
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Separation of variables
Necessary assumptions

This technique applies to problems which satisfy two requirements.
1 The PDE is linear and homogeneous.

A second-order PDE in two variables (x and t) is linear and
homogeneous, if it can be written in the following form

A uxx + B uxt + C utt + D ux + E ut + F u = 0

where the coefficients A, B, C, D, E, and F do not depend on the
dependent variable u = u(x, t) or any of its derivatives though can be
functions of independent variables (x, t).

2 The boundary conditions are linear and homogeneous.
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Separation of variables
Necessary assumptions

This technique applies to problems which satisfy two requirements.
1 The PDE is linear and homogeneous.

A second-order PDE in two variables (x and t) is linear and
homogeneous, if it can be written in the following form

A uxx + B uxt + C utt + D ux + E ut + F u = 0

where the coefficients A, B, C, D, E, and F do not depend on the
dependent variable u = u(x, t) or any of its derivatives though can be
functions of independent variables (x, t).

2 The boundary conditions are linear and homogeneous.
In the case of the second-order PDE, a general form of such boundary
conditions is

G1 ux(x1, t) + H1 u(x1, t) = 0 ,

G2 ux(x2, t) + H2 u(x2, t) = 0 ,

where G1, G2, H1, H2 are constants.
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Separation of variables
Scheme of the method

Main procedure:
1 break down the initial conditions into simple components,

2 find the response to each component,
3 add up these individual responses to obtain the final result.

The separation of variables technique looks first for the so-called
fundamental solutions. They are simple-type solutions of the form

ui(x, t) = Xi(x) Ti(t) ,

where Xi(x) is a sort of “shape” of the solution i whereas Ti(t) scales this
“shape” for different values of time t.
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Main procedure:
1 break down the initial conditions into simple components,
2 find the response to each component,
3 add up these individual responses to obtain the final result.

The separation of variables technique looks first for the so-called
fundamental solutions. They are simple-type solutions of the form

ui(x, t) = Xi(x) Ti(t) ,

where Xi(x) is a sort of “shape” of the solution i whereas Ti(t) scales this
“shape” for different values of time t.
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Separation of variables
Scheme of the method

Main procedure:
1 break down the initial conditions into simple components,
2 find the response to each component,
3 add up these individual responses to obtain the final result.

The separation of variables technique looks first for the so-called
fundamental solutions. They are simple-type solutions of the form

ui(x, t) = Xi(x) Ti(t) ,

where Xi(x) is a sort of “shape” of the solution i whereas Ti(t) scales this
“shape” for different values of time t.

The fundamental solution will:

always retain its basic “shape”,
at the same time, satisfy the BCs which puts a requirement only on the
“shape” function Xi(x) since the BCs are linear and homogeneous.

The general idea is that it is possible to find an infinite number of these
fundamental solutions (everyone corresponding to an adequate simple
component of initial conditions).
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Separation of variables
Scheme of the method

Main procedure:
1 break down the initial conditions into simple components,
2 find the response to each component,
3 add up these individual responses to obtain the final result.

The separation of variables technique looks first for the so-called
fundamental solutions. They are simple-type solutions of the form

ui(x, t) = Xi(x) Ti(t) ,

where Xi(x) is a sort of “shape” of the solution i whereas Ti(t) scales this
“shape” for different values of time t.

The solution of the problem is found by adding the simple fundamental
solutions in such a way that the resulting sum

u(x, t) =
n∑

i=1

ai ui(x, t) =
n∑

i=1

ai Xi(x) Ti(t)

satisfies the initial conditions which is attained by a proper selection of the
coefficients ai.
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Example
Solving a parabolic IBVP by the separation of variables method

IBVP for heat flow (or diffusion process)

Find u = u(x, t) =? satisfying for x ∈ [0, 1] and t ∈ [0,∞):

PDE: ut = α2 uxx , BCs:

{
u(0, t) = 0 ,
ux(1, t) + h u(1, t) = 0 ,

IC: u(x, 0) = f (x) ,

where α, h, and f (x) are some known constants or functions.

Step 1. Separating the PDE into two ODEs.
Step 2. Finding the separation constant and fundamental solutions.
Step 3. Expansion of the IC as a sum of eigenfunctions.

I The final solution is such linear combination (with coefficients ai) of
infinite number of fundamental solutions,

u(x, t) =
∞∑
i=1

ai ui(x, t) =
∞∑
i=1

ai sin(λi x) exp(−λ2
i α

2 t) ,

that satisfies the initial condition:

f (x) ≡ u(x, 0) =
∞∑
i=1

ai sin(λi x) .
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Example
Solving a parabolic IBVP by the separation of variables method

IBVP for heat flow (or diffusion process)

Find u = u(x, t) =? satisfying for x ∈ [0, 1] and t ∈ [0,∞):

PDE: ut = α2 uxx , BCs:

{
u(0, t) = 0 ,
ux(1, t) + h u(1, t) = 0 ,

IC: u(x, 0) = f (x) ,

where α, h, and f (x) are some known constants or functions.

Step 1. Separating the PDE into two ODEs.
I Substituting the separated form (of the fundamental solution),

u(x, t) = ui(x, t) = Xi(x) Ti(t) ,

into the PDE gives (after division by α2 Xi(x) Ti(t) )

T ′
i (t)

α2 Ti(t)
=

X′′
i (x)

Xi(x)
.

I Both sides of this equation must be constant (since they depend only
on x or t which are independent). Setting them both equal to µi results in
two ODEs:

T ′
i (t)− µi α

2 Ti(t) = 0 , X′′
i (x)− µi Xi(x) = 0 .

Step 2. Finding the separation constant and fundamental solutions.
Step 3. Expansion of the IC as a sum of eigenfunctions.

I The final solution is such linear combination (with coefficients ai) of
infinite number of fundamental solutions,

u(x, t) =
∞∑
i=1

ai ui(x, t) =
∞∑
i=1

ai sin(λi x) exp(−λ2
i α

2 t) ,

that satisfies the initial condition:

f (x) ≡ u(x, 0) =
∞∑
i=1

ai sin(λi x) .
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Example
Solving a parabolic IBVP by the separation of variables method

IBVP for heat flow (or diffusion process)

Find u = u(x, t) =? satisfying for x ∈ [0, 1] and t ∈ [0,∞):

PDE: ut = α2 uxx , BCs:

{
u(0, t) = 0 ,
ux(1, t) + h u(1, t) = 0 ,

IC: u(x, 0) = f (x) ,

where α, h, and f (x) are some known constants or functions.

Step 1. Separating the PDE into two ODEs.
Step 2. Finding the separation constant and fundamental solutions.

If µi = 0 then: (after using the BCs) a trivial solution u(x, t) ≡ 0 is
obtained.
For µi > 0: T(t) (and so u(x, t) = X(x) T(t) ) will grow exponentially
to infinity which can be rejected on physical grounds.
Therefore: µi = −λ2

i < 0.

Step 3. Expansion of the IC as a sum of eigenfunctions.
I The final solution is such linear combination (with coefficients ai) of
infinite number of fundamental solutions,

u(x, t) =
∞∑
i=1

ai ui(x, t) =
∞∑
i=1

ai sin(λi x) exp(−λ2
i α

2 t) ,

that satisfies the initial condition:

f (x) ≡ u(x, 0) =
∞∑
i=1

ai sin(λi x) .
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Example
Solving a parabolic IBVP by the separation of variables method

IBVP for heat flow (or diffusion process)

Find u = u(x, t) =? satisfying for x ∈ [0, 1] and t ∈ [0,∞):

PDE: ut = α2 uxx , BCs:

{
u(0, t) = 0 ,
ux(1, t) + h u(1, t) = 0 ,

IC: u(x, 0) = f (x) ,

where α, h, and f (x) are some known constants or functions.

Step 1. Separating the PDE into two ODEs.
Step 2. Finding the separation constant and fundamental solutions.

I Now, the two ODEs can be written as

T ′
i (t) + λ2

i α
2 Ti(t) = 0 , X′′

i (x) + λ2
i Xi(x) = 0 ,

and solutions to them are

Ti(t) = C̃0 exp
(
− λ2

i α
2 t
)
, Xi(x) = C̃1 sin(λi x) + C̃2 cos(λi x) ,

where C̃0, C̃1, and C̃2 are constants.
I That leads to the following fundamental solution (with constants C1, C2)

ui(x, t) = Xi(x) Ti(t) =
[
C1 sin(λi x) + C2 cos(λi x)

]
exp(−λ2

i α
2 t) .

Step 3. Expansion of the IC as a sum of eigenfunctions.
I The final solution is such linear combination (with coefficients ai) of
infinite number of fundamental solutions,

u(x, t) =
∞∑
i=1

ai ui(x, t) =
∞∑
i=1

ai sin(λi x) exp(−λ2
i α

2 t) ,

that satisfies the initial condition:

f (x) ≡ u(x, 0) =
∞∑
i=1

ai sin(λi x) .
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Example
Solving a parabolic IBVP by the separation of variables method

IBVP for heat flow (or diffusion process)

Find u = u(x, t) =? satisfying for x ∈ [0, 1] and t ∈ [0,∞):

PDE: ut = α2 uxx , BCs:

{
u(0, t) = 0 ,
ux(1, t) + h u(1, t) = 0 ,

IC: u(x, 0) = f (x) ,

where α, h, and f (x) are some known constants or functions.

Step 1. Separating the PDE into two ODEs.
Step 2. Finding the separation constant and fundamental solutions.

I Applying the boundary conditions

at x = 0: C2 exp(−λ2
i α

2 t) = 0 → C2 = 0 ,

at x = 1: C1 exp(−λ2
i α

2 t)
[
λi cos(λi) + h sin(λi)

]
= 0 → tanλi = −

λi

h
.

That gives a desired condition on λi SOLVE (they are eigenvalues for
which there exists a nonzero solution).
I The fundamental solutions are as follows PLOT

ui(x, t) = sin(λi x) exp(−λ2
i α

2 t) .

Step 3. Expansion of the IC as a sum of eigenfunctions.
I The final solution is such linear combination (with coefficients ai) of
infinite number of fundamental solutions,

u(x, t) =
∞∑
i=1

ai ui(x, t) =
∞∑
i=1

ai sin(λi x) exp(−λ2
i α

2 t) ,

that satisfies the initial condition:

f (x) ≡ u(x, 0) =
∞∑
i=1

ai sin(λi x) .
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Example
Solving a parabolic IBVP by the separation of variables method

IBVP for heat flow (or diffusion process)

Find u = u(x, t) =? satisfying for x ∈ [0, 1] and t ∈ [0,∞):

PDE: ut = α2 uxx , BCs:

{
u(0, t) = 0 ,
ux(1, t) + h u(1, t) = 0 ,

IC: u(x, 0) = f (x) ,

where α, h, and f (x) are some known constants or functions.

Step 1. Separating the PDE into two ODEs.
Step 2. Finding the separation constant and fundamental solutions.
Step 3. Expansion of the IC as a sum of eigenfunctions.

I The final solution is such linear combination (with coefficients ai) of
infinite number of fundamental solutions,

u(x, t) =
∞∑
i=1

ai ui(x, t) =
∞∑
i=1

ai sin(λi x) exp(−λ2
i α

2 t) ,

that satisfies the initial condition:

f (x) ≡ u(x, 0) =
∞∑
i=1

ai sin(λi x) .
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Example
Solving a parabolic IBVP by the separation of variables method

Step 1. Separating the PDE into two ODEs.
Step 2. Finding the separation constant and fundamental solutions.
Step 3. Expansion of the IC as a sum of eigenfunctions.

I The final solution is such linear combination (with coefficients ai) of
infinite number of fundamental solutions,

u(x, t) =
∞∑
i=1

ai ui(x, t) =
∞∑
i=1

ai sin(λi x) exp(−λ2
i α

2 t) ,

that satisfies the initial condition:

f (x) ≡ u(x, 0) =
∞∑
i=1

ai sin(λi x) .

I The coefficients ai in the eigenfunction expansion are found by
multiplying both sides of the IC equation by sin(λj x) and integrating
using the orthogonality property, i.e.,

1∫
0

f (x) sin(λj x) dx =

∞∑
i=1

ai

1∫
0

sin(λi x) sin(λj x) dx
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Example
Solving a parabolic IBVP by the separation of variables method

Step 1. Separating the PDE into two ODEs.
Step 2. Finding the separation constant and fundamental solutions.
Step 3. Expansion of the IC as a sum of eigenfunctions.

I The final solution is such linear combination (with coefficients ai) of
infinite number of fundamental solutions,

u(x, t) =
∞∑
i=1

ai ui(x, t) =
∞∑
i=1

ai sin(λi x) exp(−λ2
i α

2 t) ,

that satisfies the initial condition:

f (x) ≡ u(x, 0) =
∞∑
i=1

ai sin(λi x) .

I The coefficients ai in the eigenfunction expansion are found by
multiplying both sides of the IC equation by sin(λj x) and integrating
using the orthogonality property, i.e.,

1∫
0

f (x) sin(λj x) dx = aj

1∫
0

sin2(λj x) dx
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Example
Solving a parabolic IBVP by the separation of variables method

Step 1. Separating the PDE into two ODEs.
Step 2. Finding the separation constant and fundamental solutions.
Step 3. Expansion of the IC as a sum of eigenfunctions.

I The final solution is such linear combination (with coefficients ai) of
infinite number of fundamental solutions,

u(x, t) =
∞∑
i=1

ai ui(x, t) =
∞∑
i=1

ai sin(λi x) exp(−λ2
i α

2 t) ,

that satisfies the initial condition:

f (x) ≡ u(x, 0) =
∞∑
i=1

ai sin(λi x) .

I The coefficients ai in the eigenfunction expansion are found by
multiplying both sides of the IC equation by sin(λj x) and integrating
using the orthogonality property, i.e.,

1∫
0

f (x) sin(λj x) dx = aj
λj − sin(λj) cos(λj)

2λj
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Example
Solving a parabolic IBVP by the separation of variables method

Step 1. Separating the PDE into two ODEs.
Step 2. Finding the separation constant and fundamental solutions.
Step 3. Expansion of the IC as a sum of eigenfunctions.

I The final solution is such linear combination (with coefficients ai) of
infinite number of fundamental solutions,

u(x, t) =
∞∑
i=1

ai ui(x, t) =
∞∑
i=1

ai sin(λi x) exp(−λ2
i α

2 t) ,

that satisfies the initial condition:

f (x) ≡ u(x, 0) =
∞∑
i=1

ai sin(λi x) .

I The coefficients ai in the eigenfunction expansion are found by
multiplying both sides of the IC equation by sin(λj x) and integrating
using the orthogonality property, i.e., PLOT

ai =
2λi

λi − sin(λi) cos(λi)

1∫
0

f (x) sin(λi x) dx .
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Example (results for h = 3)
Eigenvalues solution

λ

f (λ)

1
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3
2π

5
2π

7
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9
2π

π 2π 3π 4π
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3
f (λ) = tan(λ)

RETURN
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Example (results for h = 3)
Eigenvalues solution

λ

f (λ)

1
2π
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7
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9
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f (λ) = tan(λ)

f (λ) = −λ
h

RETURN
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Example (results for h = 3)
Eigenvalues solution

λ

f (λ)

1
2π

3
2π

5
2π

7
2π

9
2π

π 2π 3π 4π

−4

−3

−2

−1

0

1

2

3
f (λ) = tan(λ)

f (λ) = −λ
h

λ1

λ2

λ3

λ4

RETURN
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Example (results for h = 3)
Initial shapes (i.e., t = 0) of four fundamental solutions

x

Xi(x) = sin(λi x)

0 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

X1(x)

X2(x)

X3(x)

X4(x)

RETURN



Introduction Classifications Canonical forms Separation of variables

Example (results for h = 3, α = 1, and f (x) = x2)
The shapes of four fundamental solutions scaled by the coefficients ai

x

ai Xi(x) = ai sin(λi x)

0 0.25 0.5 0.75 1

-0.5

-0.25

0

0.25

0.5

a1 X1(x)
a2 X2(x)

a3 X3(x)
a4 X4(x)



Introduction Classifications Canonical forms Separation of variables

Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)
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Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.000

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)
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Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.001

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)
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Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.002

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)



Introduction Classifications Canonical forms Separation of variables

Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.005

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)
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Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.010

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)
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Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.020

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)
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Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.050

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)



Introduction Classifications Canonical forms Separation of variables

Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.100

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)
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Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.200

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)
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Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.500

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)
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Example (results for h = 3, α = 1, and f (x) = x2)
The final solution. (Notice that f (x) = x2 does not satisfy the BC at x = 1.)

x

u(x, t) ≈
16∑

i=1

ui(x, t) =
16∑

i=1

ai sin(λi x) exp(−λ2
i α

2 t)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 t = 0 (IC) : u(x, 0) = x2

t = 0.000

t = 0.001
t = 0.002

t = 0.005

t = 0.010

t = 0.020

t = 0.050

t = 0.100

t = 0.200
t = 0.500

Figure: The final solution. (Notice that f (x) = x2 does not satisfy the BC at
x = 1.)
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