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Notation remarks

The index notation is used with summation over the index i.
Consequently, the summation rule is also applied for the
approximation expressions, that is, over the indices r, s = 1, . . .N
(where N is the number of degrees of freedom).
The symbol (. . .)|i means a (generalized) invariant partial
differentiation over the i-th coordinate:

(. . .)|i =
∂(. . .)

∂xi
.

The invariance involves the so-called Christoffel symbols (in the
case of curvilinear systems of reference).
Symbols dV and dS are completely omitted in all the integrals
presented below since it is obvious that one integrates over the
specified domain or boundary. Therefore, one should understand
that: ∫

B

(. . .) =

∫
B

(. . .) dV(x) ,
∫
∂B

(. . .) =

∫
∂B

(. . .) dS(x) .
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PDE for Heat Transfer Problem

B

(%, c, k)

∂B

n

heat source
f > 0

heat sink
f < 0

∂T
∂x · n < 0

(cold)

∂T
∂x · n > 0

(warm) Material data:
% = %(x) – the density

[ kg
m3

]
c = c(x) – the thermal capacity

[ J
kg·K

]
k = k(x) – the thermal conductivity

[ W
m·K

]
Known fields:

f = f (x, t) – the heat production rate
[ W

m3

]
ui = ui(x, t) – the convective velocity

[m
s

]
The unknown field:

T = T(x, t) =? – the temperature
[
K
]

Heat transfer equation

% c
•
T + qi|i − f = 0 where the heat flux vector

[W
K

]
:

qi = qi(T) =

{
−k T|i – for conduction (only),
−k T|i + % c ui T – for conduction and convection,

and
•
T = ∂T

∂t is the time rate of change of temperature
[K

s

]
.
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Initial and boundary conditions

The initial condition (at t = t0)

T(x, t0) = T0(x) in B

Prescribed field:

T0 = T0(x) – the initial temperature
[
K
]

The boundary conditions (on ∂B)

the Dirichlet type:
T(x, t) = T̂(x, t) on ∂BT

the Neumann type:
−qi
(
T(x, t)

)
ni = q̂(x, t) on ∂Bq

Prescribed fields:

T̂ = T̂(x, t) – the temperature
[
K
]

q̂ = q̂(x, t) – the inward heat flux
[ W

m2

]

B

(%, c, k)

∂B

n
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f > 0
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f < 0
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Initial-Boundary-Value Problem

IBVP of the heat transfer
Find T = T(x, t) for x ∈ B and t ∈ [t0, t1] satisfying the equation of
heat transfer by conduction (a), or by conduction and convection (b):

% c
•
T + qi|i − f = 0 where qi = qi(T) =

{
−k T|i ← (a)
−k T|i + % c ui T ← (b)

with the initial condition (at t = t0):

T(x, t0) = T0(x) in B ,

and subject to the boundary conditions:

T(x, t) = T̂(x, t) on ∂BT , −qi
(
T(x, t)

)
ni = q̂(x, t) on ∂Bq ,

where ∂BT ∪ ∂Bq = ∂B and ∂BT ∩ ∂Bq = ∅.
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Test functions

T(x, t), δT(x)

x
∂BT

Dirichlet b.c.

T = T̂, δT = 0

∂Bq

Neumann b.c.

T̂

solution and trial functions, T

test functions, δT

Test function δT(x) is an arbitrary (but sufficiently regular)
function defined in B, which meets the admissibility condition:

δT = 0 on ∂BT .

Notice that test functions are always time-independent.
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Weighted formulation and weak variational form

Weighted integral formulation�
�

�



∫
B

(
% c

•
T + qi|i − f

)
δT = 0 (for every δT)

The term qi|i introduces the second derivative of T: qi|i = −k T|ii + . . . .
However, the heat PDE needs to be satisfied in the integral sense.
Therefore, the requirements for T can be weaken as follows.

Weak variational form�
�

�



∫
B

% c
•
T δT−

∫
B

qi δT|i −
∫

∂Bq

q̂ δT −
∫
B

f δT = 0 (for every δT)

Now, only the first order spatial-differentiability of T is required.

In this formulation the Neumann boundary condition is already met (it has
been used in a natural way). Therefore, the only additional requirements are
the Dirichlet boundary condition and the initial condition.
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Integrating by parts (using the divergence theorem)∫
B

qi|i δT =

∫
B

(qi δT)|i −
∫
B

qi δT|i =
∫
∂B

qi δT ni −
∫
B

qi δT|i

Using the Neumann b.c and the property of test function∫
∂B

qi ni δT =

∫
∂Bq

qi ni︸︷︷︸
−q̂

δT +

∫
∂BT

qi ni δT︸︷︷︸
0

= −
∫

∂Bq

q̂ δT
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Approximation functions and space

The spatial approximation of solution in the domain B is
accomplished by a linear combination of (global) shape functions,
φs = φs(x),

T(x, t) = θs(t)φs(x) (s = 1, . . .N; summation over s)

where θs(t)
[
K
]

are (time-dependent) coefficients – the degrees of
freedom (N is the total number of degrees of freedom). Consistent
result is obtained now for the time rate of temperature

•
T(x, t) =

•
θs(t)φs(x) where

•
θs(t) =

dθs(t)
dt

[K
s

]
.

Distinctive feature of the Galerkin method:
The same shape functions are used to approximate the solution
as well as the test function, namely

δT(x) = δθr φr(x) (r = 1, . . .N; summation over r) .
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Transient heat transfer (system of ODEs)
To reduce the “regularity” requirements for solution the approximations

T = θs φs

(•
T =

•
θs φs

)
, δT = δθr φr

are used for the weak variational form of the heat transfer problem∫
B

% c
•
T δT −

∫
B

qi δT|i −
∫

∂Bq

q̂ δT −
∫
B

f δT = 0 .

1

∫
B

% c
•
T δT =

•
θs δθr

∫
B

% cφs φr =
•
θs δθr Mrs

2

∫
B

qi δT|i =
∫
B

(
−k T|i + % c ui T

)
δT|i = θs δθr

∫
B

(
−k φs|i + % c ui φs

)
φr|i

= θs δθr Krs

3

∫
∂Bq

q̂ δT = δθr

∫
∂Bq

q̂φr = δθr Qr

4

∫
B

f δT = δθr

∫
B

f φr = δθr Fr
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Transient heat transfer (system of ODEs)

Matrix formulation of the heat transfer problem[
Mrs

•
θs − Krs θs − (Qr + Fr)

]
δθr = 0 for every δθr.

This produces the following system of first-order ordinary
differential equations (for θs = θs(t) =?):�� ��Mrs

•
θs − Krs θs = (Qr + Fr) (r, s = 1, . . .N).

Mrs =

∫
B

% cφs φr – the thermal capacity matrix
[ J

K

]
,

Krs =

∫
B

(
−k φs|i + % c ui φs

)
φr|i – the heat transfer matrix

[W
K

]
,

Qr =

∫
∂Bq

q̂φr – the inward heat flow vector
[
W
]
,

Fr =

∫
B

f φr – the heat production vector
[
W
]
.
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Stationary heat transfer (algebraic equations)
T = T(x) , f = f (x) , ui = ui(x) (for x ∈ B) .

BVP of stationary heat flow: Find T = T(x) satisfying (in B)

qi|i − f = 0 where:

qi = qi(T) =

{
−k T|i (no convection),
−k T|i + % c ui T (with convection),

with boundary conditions:

T = T̂ on ∂BT (Dirichlet), − qi(T) ni = q̂ on ∂Bq (Neumann).

The weak variational form lacks the rate integrand

−
∫
B

qi δT|i −
∫

∂Bq

q̂ δT −
∫
B

f δT = 0 .

The approximations T(x) = θs φs(x), δT(x) = δθr φr(x) lead to the
following system of linear algebraic equations (for θs =?):�� ��−Krs θs = (Qr + Fr) (r, s = 1, . . .N).
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