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Three mechanisms of heat transfer

Heat transfer: a movement of energy due to a temperature difference.

Thermal energy is transferred according to the following three mechanisms:

Conduction – heat transfer by diffusion in a stationary medium due to a
temperature gradient. The medium can be a solid or a liquid.

Convection – heat transfer between either a hot surface and a cold
moving fluid or a hot moving fluid and a cold surface. Convection occurs
in fluids (liquids and gases).

Radiation – heat transfer via electromagnetic waves between two
surfaces with different temperatures.

Motivation for dealing with heat transfer problems:

In many engineering systems and devices there is often a need for
optimal thermal performance.

Most material properties are temperature-dependent so the effects
of heat transfer enter many other disciplines and drive the requirement
for multiphysics modeling.
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Heat conduction and the energy conservation law

B

(%, c, k)

∂B

n

heat source
f > 0

heat sink
f < 0

∂T
∂x · n < 0

(cold)

∂T
∂x · n > 0

(warm)

Problem: to find the temperature
in a solid, T = T(x, t) =?

[
K
]
.

Temperature is related to heat
which is a form of energy.
The principle of conservation
of energy should be used to
determine the temperature.
Thermal energy can be: stored,
generated (or absorbed), and
supplied (transferred).

The law of conservation of thermal energy

The rate of change of internal thermal energy with respect to time
in B is equal to the net flow of energy across the surface of B plus the
rate at which the heat is generated within B.
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Balance of thermal energy

The internal thermal energy, E
[
J
]
:

d

dt

∫
B

% e dV

=

∫
B

%
∂e
∂t

dV

% = %(x) – the mass density
[ kg

m3

]
e = e(x, t) – the specific

internal energy
[ J

kg

]

The flow of heat, Q
[
W
]

(the amount of heat per unit time
flowing-in across the boundary ∂B):

−
∫
∂B

q · n dS q = q(x, t) – the heat flux vector
[ W

m2

]
n – the outward normal vector

The total rate of heat production, F
[
W
]

(the amount of heat per
unit time produced in B by the volumetric heat sources):∫

B

f dV f = f (x, t) – the rate of heat production
per unit volume

[ W
m3

]
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Balance of thermal energy

The thermal energy conservation law,
•
E = Q + F, leads to the following

balance equation.

The global form of thermal energy balance

∫
B

%
∂e
∂t

dV = −
∫
∂B

q · n dS +

∫
B

f dV

(after using the divergence theorem)

Assuming the continuity of the above integral and using the fact that this
equality holds not only for the whole domain B, but also for its every single
subdomain the following PDE is obtained.

The local form of thermal energy balance

%
∂e
∂t

+∇ · q = f in B .

The unknown fields are: e = e(x, t) =?, q = q(x, t) =?.
The fields are related to the unknown temperature T = T(x, t) =?.
The relations e = e(T) and q = q(T) are to be established and applied.
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Specific thermal energy: a constitutive relation

Observation:
For many materials, over fairly wide (but not too large)
temperature ranges, the specific thermal energy depends
linearly on the temperature.

Specific thermal energy vs. temperature

∂e
∂t

= c
∂T
∂t

where c = c(x, t) is the thermal capacity
[ J

kg·K

]
.

The thermal capacity is also called the specific heat capacity (at a
constant pressure), or simply, the specific heat).
It describes the ability of a material to store the heat and refers to the
quantity that represents the amount of heat required to change the
temperature of one unit of mass by one degree.

(Isobaric mass) thermal capacity
Material c

[
J

kg·K

]
Aluminium 897
Steel 466
Glass 84

Water (solid: ice at −10◦C) 2 110
Water (liquid at 25◦C) 4 181
Water (gas: steam at 100◦C) 2 080

Air (at room conditions) 1 012
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Fourier’s law of heat conduction

Observations:
the heat flows from regions of high temperature to regions of
low temperature,
the rate of heat flow is bigger if the temperature differences
(between neighboring regions) are larger.

Postulate: there is a linear relationship between the rate of
heat flow and the rate of temperature change.

Fourier’s law of heat conduction

q = −k∇T

where k = k(x) is the thermal conductivity
[ W

m·K

]
.

The thermal conductivity is a material
constant that describes the ability of a
material to conduct the heat.
If the thermal conductivity is anisotropic,
k becomes a (second order) thermal
conductivity tensor.

Thermal conductivity
Material k

[
W

m·K

]
Aluminium 220
Steel (carbon) 50
Steel (stainless) 18
Glass 1.0
Water (liquid) 0.6

Air (gas) 0.025
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Derivation of the heat equation

%
∂e
∂t

+∇ · q = f

Energy conservation law

∂e
∂t

= c
∂T
∂t

Energy vs. temp.

q = −k∇T

Fourier’s law

Heat conduction equation

% c
∂T
∂t
−∇ · (k∇T) = f

where the only unknown is the temperature: T(x, t) =?

Thermally-homogeneous material: For k(x) = const. the heat PDE
can be presented as follows

∂T
∂t

= α24T + f̃ where α2 =
k
% c

and f̃ =
f
% c

.

Here: α2 = α2(x) is the thermal diffusivity
[m2

s

]
,

f̃ = f̃ (x, t) is the rate of change of temperature
[K

s

]
due to internal heat sources.
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Boundary conditions
The mathematical point of view

From the point of view of mathematics there are three kinds of
boundary conditions:

1 the first kind or Dirichlet b.c. – to set a temperature, T̂
[
K
]
, on a

boundary:
T = T̂ on ∂BT ,

2 the second kind or Neumann b.c. – to set an inward heat flux,
q̂
[
W
]
, normal to the boundary:

−q(T) · n = q̂ on ∂Bq,

3 the third kind or Robin (or generalized Neumann) b.c. – to
specify the heat flux in terms of an explicit heat flux, q̂, and a
convective heat transfer coefficient, h

[ W
m2·K

]
, relative to a

reference temperature, T̂:

−q(T) · n = q̂ + h (T̂ − T) on ∂Bh.

Here, ∂BT , ∂Bq, and ∂Bh are mutually disjoint, complementary parts of the
boundary ∂B.
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Boundary conditions
The physical interpretations

Prescribed temperature : T = T̂
Along a boundary the specified temperature, T̂, is maintained (the
surrounding medium is thermostatic).
Use the Dirichlet b.c. Specify: T̂.

Insulation or symmetry : −q(T) · n = 0
Use the (homogeneous) Neumann b.c. with q̂ = 0.

Conductive heat flux : −q(T) · n = q̂
Use the Neumann b.c. Specify: q̂.

Convective heat flux : −q(T) · n = h (T̂ − T)
Use the Robin b.c. with q̂ = 0. Specify: h and T̂.

Heat flux from convection and conduction : −q(T) · n = q̂ + h (T̂ − T)
Use the Robin b.c. Specify: h, T̂, and q̂.
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Insulation or symmetry : −q(T) · n = 0
To specify where a domain is well insulated, or to reduce model size by
taking advantage of symmetry. The condition means that the temperature
gradient across the boundary must equal zero. For this to be true, the
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the other side (heat cannot transfer across the boundary if there is no
temperature difference).
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Boundary conditions
The physical interpretations

Prescribed temperature : T = T̂
Use the Dirichlet b.c. Specify: T̂.

Insulation or symmetry : −q(T) · n = 0
Use the (homogeneous) Neumann b.c. with q̂ = 0.

Conductive heat flux : −q(T) · n = q̂
To specify a heat flux, q̂, that enters a domain. This condition is well
suited to represent, for example, any electric heater (neglecting its
geometry).
Use the Neumann b.c. Specify: q̂.

Convective heat flux : −q(T) · n = h (T̂ − T)
Use the Robin b.c. with q̂ = 0. Specify: h and T̂.

Heat flux from convection and conduction : −q(T) · n = q̂ + h (T̂ − T)
Use the Robin b.c. Specify: h, T̂, and q̂.
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Boundary conditions
The physical interpretations
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Use the Dirichlet b.c. Specify: T̂.

Insulation or symmetry : −q(T) · n = 0
Use the (homogeneous) Neumann b.c. with q̂ = 0.

Conductive heat flux : −q(T) · n = q̂
Use the Neumann b.c. Specify: q̂.

Convective heat flux : −q(T) · n = h (T̂ − T)
To model convective heat transfer with the surrounding environment,
where the heat transfer coefficient, h, depends on the geometry and the
ambient flow conditions; T̂ is the external bulk temperature.
Use the Robin b.c. with q̂ = 0. Specify: h and T̂.

Heat flux from convection and conduction : −q(T) · n = q̂ + h (T̂ − T)
Use the Robin b.c. Specify: h, T̂, and q̂.
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Boundary conditions
The physical interpretations

Prescribed temperature : T = T̂
Use the Dirichlet b.c. Specify: T̂.

Insulation or symmetry : −q(T) · n = 0
Use the (homogeneous) Neumann b.c. with q̂ = 0.

Conductive heat flux : −q(T) · n = q̂
Use the Neumann b.c. Specify: q̂.

Convective heat flux : −q(T) · n = h (T̂ − T)
Use the Robin b.c. with q̂ = 0. Specify: h and T̂.

Heat flux from convection and conduction : −q(T) · n = q̂ + h (T̂ − T)
Heat is transferred by convection and conduction. Both contributions are
significant and none of them can be neglected. Notice that the conduction
heat flux, q̂, is in the direction of the inward normal whereas the
convection term, h (T̂ − T), in the direction of the outward normal.
Use the Robin b.c. Specify: h, T̂, and q̂.
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Initial-Boundary-Value Problem

IBVP of the heat transfer
Find T = T(x, t) for x ∈ B and t ∈ [t0, t1] satisfying the heat equation:

% c
•
T +∇ · q− f = 0 where q = q(T) = −k∇T ,

with the initial condition (at t = t0):

T(x, t0) = T0(x) in B ,

and subject to the boundary conditions:

T(x, t) = T̂(x, t) on ∂BT ,

−q(T)n = q̂(x, t) on ∂Bq ,

−q(T) · n = q̂ + h (T̂ − T) on ∂Bh ,

where ∂BT ∪ ∂Bq ∪ ∂Bh = ∂B, and the parts of boundary ∂B are
mutually disjoint: ∂BT ∩ ∂Bq = ∅, ∂BT ∩ ∂Bh = ∅, ∂Bq ∩ ∂Bh = ∅.
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Heat transfer by convection (and conduction)

An important mechanism of heat transfer in fluids is convection.

Heat can be transferred with fluid in motion.
In such case, a convective term containing the convective
velocity vector, u

[m
s

]
, must be added to the Fourier’s law of heat

conduction:
q = −k∇T + % c u T .

(Conservative) heat transfer equation with convection

c
∂(%T)
∂t

+∇ · (−k∇T + % c u T) = f .

Notice that here the density is allowed to be time-dependent,
% = %(x, t), since it can change in time and space due to the fluid
motion causing local compressions and decompressions.
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Non-conservative convective heat transfer

For homogeneous, incompressible fluid:

∇ · u = 0 → %(x, t) = const .

This assumption produces the following result

∇ · (% c u T) = % c∇T · u + T∇ · (% c u)︸ ︷︷ ︸
0

= % c∇T · u .

Non-conservative heat transfer equation with convection

% c
∂T
∂t
−∇ · (k∇T) + % c∇T · u = f ,

or, for k(x) = const .:
∂T
∂t

= f̃ + α24T −∇T · u .
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