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The notion of wave

What is a wave?
A wave is the transport of a disturbance (or energy, or piece of
information) in space not associated with motion of the medium
occupying this space as a whole. (Except that electromagnetic
waves require no medium !!!)

The transport is at finite speed.
The shape or form of the disturbance is arbitrary.
The disturbance moves with respect to the medium.

Two general classes of wave motion are distinguished:
1 longitudinal waves – the disturbance moves parallel to the

direction of propagation. Examples: sound waves,
compressional elastic waves (P-waves in geophysics);

2 transverse waves – the disturbance moves perpendicular to the
direction of propagation. Examples: waves on a string or
membrane, shear waves (S-waves in geophysics), water waves,
electromagnetic waves.
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Basic wave phenomena

reflection – change of wave direction from hitting a reflective surface,

refraction – change of wave direction from entering a new medium,

diffraction – wave circular spreading from entering a small hole (of the
wavelength-comparable size), or wave bending around small obstacles,

interference – superposition of two waves that come into contact with each
other,

dispersion – wave splitting up by frequency,

rectilinear propagation – the movement of light wave in a straight line.

Standing wave

A standing wave, also known as a stationary wave, is a wave that
remains in a constant position. This phenomenon can occur:

when the medium is moving in the opposite direction to the wave,
(in a stationary medium:) as a result of interference between
two waves travelling in opposite directions.
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Mathematical description of a harmonic wave

t

T =
2π
ω

A
x

λ =
2π
k

A

Traveling waves

Simple wave or traveling wave, sometimes also called progressive
wave, is a disturbance that varies both with time t and distance x in
the following way:

u(x, t) = A(x, t) cos
(
k x− ω t + θ0

)
= A(x, t) sin

(
k x− ω t + θ0 ± π

2︸ ︷︷ ︸
θ̃0

)
where A is the amplitude, ω and k denote the angular frequency
and wavenumber, and θ0 (or θ̃0) is the initial phase.
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Mathematical description of a harmonic wave
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T =
2π
ω
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Traveling waves

u(x, t) = A(x, t) cos
(
k x− ω t + θ0

)
= A(x, t) sin

(
k x− ω t + θ0 ± π

2︸ ︷︷ ︸
θ̃0

)

Amplitude A
[
e.g. m,Pa,V/m

]
– a measure of the maximum

disturbance in the medium during one wave cycle (the maximum
distance from the highest point of the crest to the equilibrium).
Phase θ = k x− ω t + θ0 [rad], where θ0 is the initial phase (shift),
often ambiguously, called the phase.
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Mathematical description of a harmonic wave

t

T =
2π
ω

A

Period T [s] – the time for one complete cycle for an oscillation of
a wave.
Frequency f [Hz] – the number of periods per unit time.

Frequency and angular frequency

The frequency f [Hz] represents the number of periods per unit time

f =
1
T
.

The angular frequency ω [Hz] represents the frequency in terms of radians
per second. It is related to the frequency by

ω =
2π
T

= 2π f .
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Mathematical description of a harmonic wave

x

λ =
2π
k

A

Wavelength λ [m] – the distance between two sequential crests
(or troughs).

Wavenumber and angular wavenumber

The wavenumber is the spatial analogue of frequency, that is, it is the
measurement of the number of repeating units of a propagating wave (the
number of times a wave has the same phase) per unit of space.

Application of a Fourier transformation on data as a function of time yields a
frequency spectrum; application on data as a function of position yields a
wavenumber spectrum.

The angular wavenumber k
[

1
m

]
, often misleadingly abbreviated as

“wave-number”, is defined as
k =

2π
λ
.
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Mathematical description of a harmonic wave

There are two velocities that are associated with waves:
1 Phase velocity – the rate at which the wave propagates:

c =
ω

k
= λ f .

2 Group velocity – the velocity at which variations in the shape of
the wave’s amplitude (known as the modulation or envelope of
the wave) propagate through space:

cg =
dω

dk
.

This is (in most cases) the signal velocity of the waveform, that
is, the rate at which information or energy is transmitted by
the wave. However, if the wave is travelling through an absorptive
medium, this does not always hold.
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Surface waves on deep water

Consider two-dimensional water waves: u =
[
u(x, y, t), v(x, y, t), 0

]
.

Suppose that the flow is irrotational: ∂ v
∂x −

∂u
∂y = 0 .

Therefore, there exists a velocity potential φ(x, y, t) so that

u =
∂φ

∂x
, v =

∂φ

∂y
.

The fluid is incompressible, so by the virtue of the incompressibility
condition, ∇ · u = 0, the velocity potential φ will satisfy Laplace’s
equation

∂2φ

∂x2 +
∂2φ

∂y2 = 0 .

Free surface

The fluid motion arises from a deformation of the water surface. The equation
of this free surface is denoted by

�� ��y = η(x, t) .
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Surface waves on deep water
Kinematic condition at the free surface

Kinematic condition at the free surface:
Fluid particles on the surface must remain on the surface.

The kinematic condition entails that F(x, y, t) = y− η(x, t) remains
constant (in fact, zero) for any particular particle on the free surface
which means that

DF
Dt

=
∂F
∂t

+
(
u · ∇

)
F = 0 on y = η(x, t),

and this is equivalent to

∂η

∂t
+ u

∂η

∂x
= v on y = η(x, t).
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Surface waves on deep water
Pressure condition at the free surface

Pressure condition at the free surface:
The fluid is inviscid (by assumption), so the condition at the free surface
is simply that the pressure there is equal to the atmospheric pressure p0:

p = p0 on y = η(x, t).

Bernoulli’s equation for unsteady irrotational flow

If the flow is irrotational (so u = ∇φ and ∇× u = 0), then, by integrating (over the
space domain) the Euler’s momentum equation:

∂∇φ
∂t

= −∇
(

p
%
+

1
2

u2 + χ

)
,

the Bernoulli’s equation is obtained

∂φ

∂t
+

p
%
+

1
2

u2 + g y = G(t) .

Here, G(t) is an arbitrary function of time alone (a constant of integration).

Now, by choosing G(t) in a convenient manner, G(t) = p0
%

, the pressure condition
may be written as: ∂φ

∂t
+

1
2

(
u2 + v2)+ g η = 0 on y = η(x, t).
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Surface waves on deep water
Small amplitude waves: the linearized surface conditions

Small-amplitude waves

The free surface displacement η(x, t) and the fluid velocities u, v are small.

Linearization of the kinematic condition

v =
∂η

∂t
+ u

∂η

∂x︸ ︷︷ ︸
small

→ v(x, η, t) =
∂η

∂t

Taylor−−−→
series

v(x, 0, t) + η
∂v
∂y

(x, 0, t) + · · ·︸ ︷︷ ︸
small

=
∂η

∂t

→ v(x, 0, t) =
∂η

∂t

v=
∂φ
∂y−−−−→

�



�
	∂φ

∂y
=
∂η

∂t
on y = 0.

Linearization of the pressure condition

∂φ

∂t
+

1
2
(
u2 + v2)︸ ︷︷ ︸
small

+g η = 0 →
�



�
	∂φ

∂t
+ g η = 0 on y = 0.
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Surface waves on deep water
Dispersion relation and travelling wave solution

A sinusoidal travelling wave solution

The free surface is of the form

η = A cos(k x− ω t) ,

where A is the amplitude of the surface displacement, ω is the
circular frequency, and k is the circular wavenumber.

The corresponding velocity potential is

φ = C exp(k y) sin(k x− ω t) .

Now, the (linearized) free surface conditions yield what follows:
1 the kinematic condition ( ∂φ

∂y = ∂η
∂t on y = 0):

C k = Aω →
�� ��φ = Aω

k exp(k y) sin(k x− ω t) ,

2 the pressure condition ( ∂φ
∂t + g η = 0 on y = 0):

−C ω + g A = 0 →
�� ��ω2 = g k . (dispersion relation!)
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Surface waves on deep water
Particle paths

The fluid velocity components:

u = Aω exp(k y) cos(k x− ω t) , v = Aω exp(k y) sin(k x− ω t) .

Particle paths

Any particle departs only a small amount (X,Y) from its mean
position (x, y). Therefore, its position as a function of time may be
found by integrating u = dX

dt and v = dY
dt ; whence:

X(t) = −A exp(k y) sin(k x− ω t) , Y(t) = A exp(k y) cos(k x− ω t) .

Particle paths are circular.
The radius of the path circles, A exp(k y), decrease exponentially with
depth. So do the fluid velocities.

Virtually all the energy of a surface water wave is contained within half
a wavelength below the surface.
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Surface waves on deep water
Effects of finite depth

Effects of finite depth

If the fluid is bonded below by a rigid plane y = −h, so that

v =
∂φ

∂y
= 0 at y = −h,

the dispersion relation and the phase speed are as follows:

ω2 = g k tanh(k h) , c2 =
g
k
tanh(k h) .

λ

c

uniform depth h

infinite depth

√
g h

shallow water

10h3h
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If the fluid is bonded below by a rigid plane y = −h, so that

v =
∂φ

∂y
= 0 at y = −h,

the dispersion relation and the phase speed are as follows:

ω2 = g k tanh(k h) , c2 =
g
k
tanh(k h) .

There are two limit cases:
1 h� λ (infinite depth): k h = 2π h

λ is large and tanh(k h) ≈ 1, so�� ��c2 = g
k . In practice, this is a good approximation if h > 1

3λ.
2 h� λ/2π (shallow water): k h� 1 and tanh(k h) ≈ k h, so�� ��c2 = g h , which means that c is independent of k in this limit.

Thus, the gravity waves in shallow water are non-dispersive.

λ

c

uniform depth h

infinite depth

√
g h

shallow water

10h3h



Introduction Water waves Sound waves

Surface waves on deep water
Effects of finite depth

Effects of finite depth
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Dispersion and the group velocity

Dispersion of waves

Dispersion of waves is the phenomenon that the phase velocity of a
wave depends on its frequency.

Dispersion relation�� ��ω = ω(k) = c(k) k , c = c(k) =
ω(k)

k
.

If ω(k) is a linear function of k then c is constant and the medium is
non-dispersive.

I deep water waves: ω =
√

g k, c =
√ g

k .

I finite depth waves: ω =
√

g k tanh(k h), c =
√ g

k tanh(k h).
I shallow water waves: ω =

√
g h k, c =

√
g h → non-dispersive!

Group and phase velocity�



�
	cg =

dω

dk
, c =

ω

k
.

In dispersive systems both velocities are different and frequency-dependent
(i.e., wavenumber-dependent): cg = cg(k) and c = c(k).
In non-dispersive systems they are equal and constant: cg = c.
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There are generally two sources of dispersion:
1 the material dispersion comes from a frequency-dependent

response of a material to waves
2 the waveguide dispersion occurs when the speed of a wave in

a waveguide depends on its frequency for geometric reasons,
independent of any frequency-dependence of the materials from
which it is constructed.
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I shallow water waves: ω =

√
g h k, c =

√
g h → non-dispersive!

Group and phase velocity�



�
	cg =

dω

dk
, c =

ω

k
.

In dispersive systems both velocities are different and frequency-dependent
(i.e., wavenumber-dependent): cg = cg(k) and c = c(k).
In non-dispersive systems they are equal and constant: cg = c.
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Dispersion and the group velocity

Important properties of the group velocity:
1 At this velocity the isolated wave packet travels as a whole.

Discussion for a wave packet : for k in the neighbourhood of k0

ω(k) ≈ ω(k) + (k − k0) cg , where cg =
dω

dk

∣∣∣
k=k0

,

and ω(k) = 0 outside the neighbourhood; the Fourier integral equals

η(x, t) = Re
[ ∞∫
−∞

a(k) exp
(
i (k x− ω t)

)
dk
]
← (for a general disturbance)

≈ Re
[ a pure harmonic wave︷ ︸︸ ︷
exp

(
i
(
k0 x− ω(k0) t

)) ∞∫
−∞

a function of (x− cg t)︷ ︸︸ ︷
a(k) exp

(
i (k − k0) (x− cg t)

)
dk
]
.

2 The energy is transported at the group velocity.
3 One must travel at the group velocity to see the waves of the same

wavelength.
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Dispersion and the group velocity

Important properties of the group velocity:
1 At this velocity the isolated wave packet travels as a whole.
2 The energy is transported at the group velocity (by waves of a given

wavelength).

3 One must travel at the group velocity to see the waves of the same
wavelength.
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Dispersion and the group velocity

Important properties of the group velocity:
1 At this velocity the isolated wave packet travels as a whole.
2 The energy is transported at the group velocity.
3 One must travel at the group velocity to see the waves of the same

wavelength.

A slowly varying wavetrain can be written as

η(x, t) = Re
[
A(x, t) exp

(
i θ(x, t)

)]
,

where the phase function θ(x, t) describes the oscillatory aspect of the
wave, while A(x, t) describes the gradual modulation of its amplitude.
The local wavenumber and frequency are defined by

k =
∂θ

∂x
, ω = − ∂θ

∂t
.

For purely sinusoidal wave θ = k x− ω t, where k and ω are constants.
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Dispersion and the group velocity

Important properties of the group velocity:
1 At this velocity the isolated wave packet travels as a whole.
2 The energy is transported at the group velocity.
3 One must travel at the group velocity to see the waves of the same

wavelength.

The local wavenumber and frequency are defined by

k =
∂θ

∂x
, ω = − ∂θ

∂t
.

For purely sinusoidal wave θ = k x− ω t, where k and ω are constants.
In general, k and ω are functions of x and t. It follows immediately that

∂k
∂t

+
∂ω

∂x
= 0 −→ ∂k

∂t
+

dω

dk
∂k
∂x

=
∂k
∂t

+ cg(k)
∂k
∂x

= 0

which means that k(x, t) is constant for an observer moving with the
velocity cg(k).
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Capillary waves

Surface tension
A surface tension force T

[
N
m

]
is a force per unit length, directed

tangentially to the surface, acting on a line drawn parallel to the
wavecrests.

The vertical component of surface

tension force equals T
∂η

∂s
, where s

denotes the distance along the surface.

For small wave amplitudes δs ≈ δx,

and then T
∂η

∂s
≈ T

∂η

∂x
. x

y
T

T
∂η

∂s

δη
δs

δx

η(x)

A small portion of surface of length δx will experience surface tension at
both ends, so the net upward force on it will be

T
∂η

∂x

∣∣∣∣
x+δx

− T
∂η

∂x

∣∣∣∣
x

= T
∂2η

∂x2 δx

Therefore, an upward force per unit area of surface is T
∂2η

∂x2 .
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Capillary waves

Local equilibrium at the free surface

The net upward force per unit area of surface, T ∂2η
∂x2 , must be

balanced by the difference between the atmospheric pressure p0
and the pressure p in the fluid just below the surface:

p0 − p = T
∂2η

∂x2 on y = η(x, t).

This pressure condition at the free surface takes into consideration
the effects of surface tension. The kinematic condition remains the
same: fluid particles cannot leave the surface.

Linearized free surface conditions (with surface tension effects)

For small amplitude waves:

∂φ

∂y
=
∂η

∂t
,

∂φ

∂t
+ g η =

T
%

∂2η

∂x2 on y = 0.

A sinusoidal travelling wave solution η = A cos(k x− ω t) leads now to
a new dispersion relation�

�
�

ω2 = g k +

T k3

%
.

As a consequence, the phase and group velocities include now the
surface tension effect:

c =
ω

k
=

√
g
k
+

T k
%
, cg =

dω

dk
=

g + 3T k2/%

2
√

g k + T k3/%
.
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Capillary waves

Surface tension importance parameter

The relative importance of surface tension and gravitational forces in
a fluid is measured by the following parameter

β =
T k2

% g
.

(The so-called Bond number = % g L2

T ; it equals 4π2

β if L = λ.)

Now, the dispersion relation, as well as the phase and group
velocities can be written as

ω2 = g k (1 + β) , c =

√
g
k
(1 + β) , cg =

g (1 + 3β)
2
√

g k (1 + β)
.

Depending on the parameter β, two extreme cases are distinguished:
1 β � 1: the effects of surface tension are negligible – the waves

are gravity waves for which

ω2 = g k , c =

√
g
k
=

√
gλ
2π

, cg =
c
2
.

2 β � 1: the waves are essentially capillary waves for which

ω2 = g k β =
T k3

%
, c =

√
g
k
β =

√
T k
%

=

√
2π T
% λ

, cg =
g 3β

2
√

g k β
=

3
2

c .
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Introduction Water waves Sound waves

Capillary waves vs. gravity waves

CAPILLARY WAVES: GRAVITY WAVES:

short waves travel faster,

the group velocity exceeds the
phase velocity, cg > c,

the crests move backward
through a wave packet as it
moves along as a whole.

long waves travel faster,

the group velocity is less than
the phase velocity, cg < c,

the wavecrests move faster
than a wave packet.

wave patterns

The capillary effects predominate
when raindrops fall on a pond,
and as short waves travel faster the
wavelength decreases with radius
at any particular time.

The effects of gravity predominate
when a large stone is dropped into a
pond, and as long waves travel faster
the wavelength increases with ra-
dius at any particular time.
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Capillary-gravity waves

λ

c

capillary
waves gravity

waves

capillary-gravity
waves

λβ=1

cmin

For water:

λβ=1 =

√
4π2 T

g %
= 17 mm

cmin = 4

√
4g T
%

= 231
mm

s

For β ≈ 1 both effects (the surface tension and gravity) are significant
and the waves are capillary-gravity waves.
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Capillary waves vs. gravity waves
Example: Uniform flow past a submerged obstacle

1 U < cmin – there are no steady waves generated by the obstacle;
2 U > cmin – there are two values of λ (λ1 > λ2) for which c = U:

λ1 – the larger value represents a gravity wave:
the corresponding group velocity is less than c,
the energy of this relatively long-wavelength disturbance
is carried downstream of the obstacle.

λ2 – the smaller value represents a capillary wave:
the corresponding group velocity is greater than c,
the energy of this relatively short-wavelength disturbance
is carried upstream of the obstacle, where it is rather
quickly dissipated by viscous effects, on account of the short
wavelength (in fact, each wave-crest is at rest, but relative
to still water it is travelling upstream with speed U).
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Shallow-water finite-amplitude waves

Assumptions:
The amplitudes of waves are finite, that is, not (infinitesimally)
small compared with the depth; therefore, the linearized theory
does not apply.
A typical value h0 of depth h(x, t) is much smaller than a typical
horizontal length scale L of the wave, that is:

�� ��h0 � L . This is
the basis of the so-called shallow-water approximation.

I The full (nonlinear) 2-D equations are:

Du
Dt

= −1
%

∂p
∂x

,
Dv
Dt

= −1
%

∂p
∂y
− g ,

∂u
∂x

+
∂v
∂y

= 0 .
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Shallow-water finite-amplitude waves

Du
Dt

= −1
%

∂p
∂x

,
Dv
Dt

= −1
%

∂p
∂y
− g ,

∂u
∂x

+
∂v
∂y

= 0 .

I In the shallow-water approximation (when h0 � L) the vertical
component of acceleration can be neglected in comparison with
the gravitational acceleration:

Dv
Dt
� g → 0 = −1

%

∂p
∂y
− g → ∂p

∂y
= % g .

Integrating and applying the condition p = p0 at y = h(x, t) gives

p(x, y, t) = p0 − % g
[
y− h(x, t)

]
.
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Shallow-water finite-amplitude waves

Du
Dt

= −1
%

∂p
∂x

,
Dv
Dt

= −1
%

∂p
∂y
− g ,

∂u
∂x

+
∂v
∂y

= 0 .

I In the shallow-water approximation (when h0 � L) the vertical
component of acceleration can be neglected and then

p(x, y, t) = p0 − % g
[
y− h(x, t)

]
.

This is used for the equation for the horizontal component of
acceleration:

Du
Dt

= −g
∂h
∂x

∂u
∂y =0
−−−−→

�



�
	∂u

∂t
+ u

∂u
∂x

= −g
∂h
∂x

where u = u(x, t) and h = h(x, t).
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Shallow-water finite-amplitude waves

Du
Dt

= −1
%

∂p
∂x

,
Dv
Dt

= −1
%

∂p
∂y
− g ,

∂u
∂x

+
∂v
∂y

= 0 .

I A second equation linking u and h may be obtained as follows:
∂v
∂y

= − ∂u
∂x

→ v(x, y, t) = − ∂u(x, t)
∂x

y+f (x, t)
v=0 at y = 0−−−−−−−→ v = − ∂u

∂x
y ,

and using the kinematic condition at the free surface – fluid
particles on the surface must remain on it, so the vertical component
of velocity v equals the rate of change of the depth h when moving
with the horizontal velocity u:

v =
∂h
∂t

+ u
∂h
∂x

at y = h(x, t) →
�



�
	∂h

∂t
+ u

∂h
∂x

+ h
∂u
∂x

= 0 .
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Shallow-water finite-amplitude waves

Shallow-water equations

Nonlinear equations for the horizontal component of velocity u = u(x, t) and
the depth h = h(x, t) of finite-amplitude waves on shallow water:

∂u
∂t

+ u
∂u
∂x

+ g
∂h
∂x

= 0 ,
∂h
∂t

+ u
∂h
∂x

+ h
∂u
∂x

= 0 .

(The vertical component of velocity is v(x, y, t) = − ∂u
∂x y.)

On introducing the new variable
�� ��c(x, t) =

√
g h and then adding and

subtracting the two equations the form suited to treatment by the method of
characteristics is obtained[

∂

∂t
+ (u + c)

∂

∂x

]
(u + 2c) = 0 ,

[
∂

∂t
+ (u− c)

∂

∂x

]
(u− 2c) = 0 .

General property: u± 2c is constant along ‘positive’/‘negative’
characteristic curves defined by dx

dt = u± c.

Within the framework of the theory of finite-amplitude waves on
shallow water the following problems can be solved:

the dam-break flow,
the formation of a bore,
the hydraulic jump.
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Shallow-water equations

∂u
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+ u
∂u
∂x

+ g
∂h
∂x

= 0 ,
∂h
∂t

+ u
∂h
∂x

+ h
∂u
∂x

= 0 .

On introducing the new variable
�� ��c(x, t) =

√
g h the form suited to treatment

by the method of characteristics is obtained[
∂

∂t
+ (u + c)

∂

∂x

]
(u + 2c) = 0 ,

[
∂

∂t
+ (u− c)

∂

∂x

]
(u− 2c) = 0 .

Let x = x(s), t = t(s) be a characteristic curve defined parametrically (s is
the parameter) in the x-t plane and starting at some point (x0, t0). In fact, two
such (families of) characteristic curves are defined such that:

dt
ds

= 1 ,
dx
ds

= u± c .

This (with +) is used for the first and (with −) for the second equation:[
dt
ds

∂

∂t
+

dx
ds

∂

∂x

]
(u± 2c) = 0 the chain rule−−−−−−−→

�



�
	d

ds
(u± 2c) = 0 .

General property: u± 2c is constant along ‘positive’/‘negative’
characteristic curves defined by dx

dt = u± c.

Within the framework of the theory of finite-amplitude waves on
shallow water the following problems can be solved:

the dam-break flow,
the formation of a bore,
the hydraulic jump.
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characteristic curves defined by dx

dt = u± c.

Within the framework of the theory of finite-amplitude waves on
shallow water the following problems can be solved:

the dam-break flow,
the formation of a bore,
the hydraulic jump.
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Sound waves: introduction

Sound waves propagate due to the compressibility of a medium
(∇ · u 6= 0). Depending on frequency one can distinguish:

infrasound waves – below 20 Hz,
acoustic waves – from 20 Hz to 20 kHz,
ultrasound waves – above 20 kHz.

Acoustics deals with vibrations and waves in compressible
continua in the audible frequency range, that is, from 20 Hz
(16 Hz) to 20 000 Hz.

Types of waves in compressible continua:
an inviscid compressible fluid – (only) longitudinal waves,
an infinite isotropic solid – longitudinal and shear waves,
an anisotropic solid – wave propagation is more complex.



Introduction Water waves Sound waves

Acoustic wave equation
Assumptions:

Gravitational forces can be neglected so that the equilibrium
(undisturbed-state) pressure and density take on uniform values,
p0 and %0, throughout the fluid.
Dissipative effects, that is viscosity and heat conduction, are
neglected.
The medium (fluid) is homogeneous, isotropic, and perfectly
elastic.

Small-amplitudes assumption

Particle velocity is small, and there are only very small perturbations
(fluctuations) to the equilibrium pressure and density:

u – small , p = p0 + p̃ (p̃ – small) , % = %0 + %̃ (%̃ – small) .

The pressure fluctuations field p̃ is called the acoustic pressure.

Momentum equation (Euler’s equation):

%

(
∂u
∂t

+ u · ∇u
)

= −∇p linearization−−−−−−−→ %0
∂u
∂t

= −∇p .

Notice that ∇p = ∇(p0 + p̃) = ∇p̃.

Continuity equation:
∂%

∂t
+∇ · (%u) = 0 linearization−−−−−−−→ ∂%̃

∂t
+ %0∇ · u = 0 .

Using divergence operation for the linearized momentum equation
and time-differentiation for the linearized continuity equation yields:

∂2%̃

∂t2 −4p = 0 .

Constitutive relation:

p = p(%̃) → ∂p
∂t

=
∂p
∂%̃

∂%̃

∂t
→ ∂2%̃

∂t2 =
1
c2

0

∂2p
∂t2 where c2

0 =
∂p
∂%̃

.

Wave equation for the pressure field�



�
	1

c2
0

∂2p
∂t2 −4p = 0 where c0 =

√
∂p
∂%̃

is the acoustic wave velocity (or the speed of sound). Notice that the
acoustic pressure p̃ can be used here instead of p. Moreover, the wave
equation for the density-fluctuation field %̃ (or for the compression field %̃/%0),
for the velocity potential φ, and for the velocity field u can be derived
analogously.
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The speed of sound

Inviscid isotropic elastic liquid. The pressure in an inviscid liquid
depends on the volume dilatation tr ε:

p = −K tr ε ,

where K is the bulk modulus. Now,

∂p
∂t

= −K tr
∂ε

∂t
= −K∇ · u

∇·u=− 1
%0

∂%̃
∂t−−−−−−−−→

Lin. Cont. Eq.

∂p
∂t

=
K
%0

∂%̃

∂t

which means that the speed of sound c0 =
√
∂p/∂%̃ is given by the

well-known formula: �
�

�

c0 =

√
K
%0

.

Perfect gas. The determination of speed of sound in a perfect gas is
complicated and requires the use of thermodynamic considerations.
The final result is

c0 =

√
γ

p0

%0
=
√
γ R T0 ,

where γ denotes the ratio of specific heats (γ = 1.4 for air), R is the
universal gas constant, and T0 is the (isothermal) temperature.

I For air at 20◦C and normal atmospheric pressure: c0 = 343 m
s .
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Sub- and supersonic flow

A steady, unseparated, compressible flow past a thin airfoil may be written
in the from

u = U +
∂φ

∂x
, v =

∂φ

∂y
,

where the velocity potential φ for the small disturbance to the uniform flow
U satisfies

(1−M2)
∂2φ

∂x2 +
∂2φ

∂y2 = 0 , where

�



�
	M =

U
c0

is the Mach number defined as the ratio of the speed of free stream to the
speed of sound.

I If M2 � 1 that gives the Laplace equation which is the result that arises for
incompressible theory (i.e., using ∇ · u = 0).

I Otherwise, three cases can be distinguished:

1 M < 1 – the subsonic flow

2 M > 1 – the supersonic flow

3 M ≈ 1 – the sound barrier
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Sub- and supersonic flow

1 M < 1 – the subsonic flow:

there is some disturbance to the oncoming flow at all distances
from the wing (even though it is very small when the distance is
large);
the drag is zero (inviscid theory) and the lift = liftincompressible√

1−M2
.

AA′

c0t

Ut

2 M > 1 – the supersonic flow

3 M ≈ 1 – the sound barrier
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Sub- and supersonic flow

1 M < 1 – the subsonic flow

2 M > 1 – the supersonic flow:

there is no disturbance to the oncoming stream except between
the Mach lines extending from the ends of the airfoil and making
the angle α = arcsin

( 1
M

)
with the uniform stream;

the drag is not zero – it arises because of the sound wave energy
which the wing radiates to infinity between the Mach lines.

AA′

c0t

Utα

3 M ≈ 1 – the sound barrier
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Sub- and supersonic flow

1 M < 1 – the subsonic flow:

there is some disturbance to the oncoming flow at all distances
from the wing (even though it is very small when the distance is
large);
the drag is zero (inviscid theory) and the lift = liftincompressible√

1−M2
.

2 M > 1 – the supersonic flow:

there is no disturbance to the oncoming stream except between
the Mach lines extending from the ends of the airfoil and making
the angle α = arcsin

( 1
M

)
with the uniform stream;

the drag is not zero – it arises because of the sound wave energy
which the wing radiates to infinity between the Mach lines.

3 M ≈ 1 – the sound barrier:

sub- and supersonic theory is not valid;
nonetheless, it indicates that the wing is subject to a destructive
effect of exceptionally large aerodynamic forces.
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