Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling

TOMASZ G. ZIELIŃSKI

bluebox.ippt.pan.pl/~tzielins/

Institute of Fundamental Technological Research of the Polish Academy of Sciences

Warsaw • Poland

Outline

1 Introduction

- 1 Introduction
- 2 Equations of motion
 - Cauchy stress tensor
 - Derivation from the Newton's second law
 - Symmetry of stress tensor

- 1 Introduction
- 2 Equations of motion
 - Cauchy stress tensor
 - Derivation from the Newton's second law
 - Symmetry of stress tensor
- 3 Kinematic relations
 - Strain measure and tensor (for small displacements)
 - Strain compatibility equations

- 1 Introduction
- 2 Equations of motion
 - Cauchy stress tensor
 - Derivation from the Newton's second law
 - Symmetry of stress tensor
- 3 Kinematic relations
 - Strain measure and tensor (for small displacements)
 - Strain compatibility equations
- 4 Constitutive equations: Hooke's Law
 - Original version
 - Generalized formulation
 - Voigt-Kelvin notation
 - Thermoelastic constitutive relations

- 1 Introduction
- 2 Equations of motion
 - Cauchy stress tensor
 - Derivation from the Newton's second law
 - Symmetry of stress tensor
- 3 Kinematic relations
 - Strain measure and tensor (for small displacements)
 - Strain compatibility equations
- 4 Constitutive equations: Hooke's Law
 - Original version
 - Generalized formulation
 - Voigt-Kelvin notation
 - Thermoelastic constitutive relations
- 5 Problem of linear elasticity
 - Initial-Boundary-Value Problem
 - Displacement formulation of elastodynamics

- 1 Introduction
- 2 Equations of motion
 - Cauchy stress tensor
 - Derivation from the Newton's second law
 - Symmetry of stress tensor
- 3 Kinematic relations
 - Strain measure and tensor (for small displacements)
 - Strain compatibility equations
- 4 Constitutive equations: Hooke's Law
 - Original version
 - Generalized formulation
 - Voigt-Kelvin notation
 - Thermoelastic constitutive relations
- 5 Problem of linear elasticity
 - Initial-Boundary-Value Problem
 - Displacement formulation of elastodynamics
- 6 Principle of virtual work

Outline

1 Introduction

2 Equations of motion

- Cauchy stress tensor
- Derivation from the Newton's second law
- Symmetry of stress tensor

3 Kinematic relations

- Strain measure and tensor (for small displacements)
- Strain compatibility equations

4 Constitutive equations: Hooke's Law

- Original version
 - Generalized formulation
 - Voigt-Kelvin notation
- Thermoelastic constitutive relations

5 Problem of linear elasticity

- Initial-Boundary-Value Problem
- Displacement formulation of elastodynamics
- 6 Principle of virtual work

Introduction

Two types of linearity in mechanics

- Kinematic linearity strain-displacement relations are linear. This approach is valid if the displacements are sufficiently small (then higher order terms may be neglected).
- Material linearity constitutive behaviour of material is described by a linear relation.

Introduction

Two types of linearity in mechanics

- Kinematic linearity strain-displacement relations are linear. This approach is valid if the displacements are sufficiently small (then higher order terms may be neglected).
- Material linearity constitutive behaviour of material is described by a linear relation.

In the linear theory of elasticity:

- both types of linearity exist,
- therefore, all the governing equations are linear with respect to the unknown fields,
- all these fields are therefore described with respect to the (initial) undeformed configuration (and one cannot distinguished between the Euler and Lagrange descriptions),
- (as in all linear theories) the superposition principle holds which can be extremely useful.

Outline

1 Introduction

2 Equations of motion

- Cauchy stress tensor
- Derivation from the Newton's second law
- Symmetry of stress tensor

3 Kinematic relations

- Strain measure and tensor (for small displacements)
- Strain compatibility equations

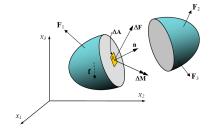
4 Constitutive equations: Hooke's Law

- Original version
- Generalized formulation
- Voigt-Kelvin notation
- Thermoelastic constitutive relations

5 Problem of linear elasticity

- Initial-Boundary-Value Problem
- Displacement formulation of elastodynamics
- 6 Principle of virtual work

Cauchy stress tensor

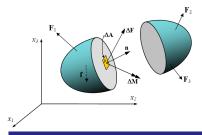


Traction (or stress vector), $t \left[\frac{\mathrm{N}}{\mathrm{m}^2} \right]$

$$t = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} = \frac{\mathrm{d}F}{\mathrm{d}A}$$

Here, ΔF is the vector of resultant force acting of the (infinitesimal) area ΔA .

Cauchy stress tensor



Traction (or stress vector), t $\left[\frac{N}{m^2}\right]$

$$t = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} = \frac{\mathrm{d}F}{\mathrm{d}A}$$

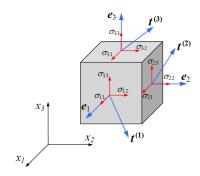
Here, ΔF is the vector of resultant force acting of the (infinitesimal) area ΔA .

Cauchy's formula and tensor

$$t = \boldsymbol{\sigma} \cdot \boldsymbol{n}$$
 or $t_i = \sigma_{ij} n_i$

Here, n is the unit normal vector and $\sigma\left[\frac{N}{m^2}\right]$ is the **Cauchy stress tensor**:

$$\boldsymbol{\sigma} \sim \begin{bmatrix} \boldsymbol{\sigma}_{ij} \end{bmatrix} = \begin{bmatrix} \boldsymbol{t}^{(1)} \\ \boldsymbol{t}^{(2)} \\ \boldsymbol{t}^{(3)} \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$



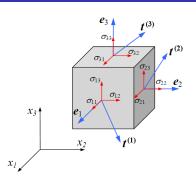
Cauchy stress tensor

Cauchy's formula and tensor

$$t = \boldsymbol{\sigma} \cdot \boldsymbol{n}$$
 or $t_i = \sigma_{ij} n_i$

Here, n is the unit normal vector and $\sigma\left[\frac{N}{m^2}\right]$ is the Cauchy stress tensor:

$$oldsymbol{\sigma} \sim \begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} oldsymbol{t}^{(1)} \\ oldsymbol{t}^{(2)} \\ oldsymbol{t}^{(3)} \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$



Surface tractions have three components: a direct stress normal to the surface and two shear stresses tangential to the surface.

- **Direct stresses** (normal tractions, e.g., σ_{11}) tend to change the volume of the material (hydrostatic pressure) and are resisted by the body's bulk modulus.
- Shear stress (tangential tractions, e.g., σ₁₂, σ₁₃) tend to deform the material without changing its volume, and are resisted by the body's shear modulus.

Derivation from the Newton's second law

Principle of conservation of linear momentum

The time rate of **change of (linear) momentum** of particles equals the **net force** exerted on them:

$$\sum \frac{\mathrm{d}(m\,\mathbf{v})}{\mathrm{d}t} = \sum \mathbf{F}.$$

Here: m is the mass of particle, v is the particle velocity, and F is the net force acting on the particle.

Derivation from the Newton's second law

Principle of conservation of linear momentum

The time rate of **change of (linear) momentum** of particles equals the **net force** exerted on them:

$$\sum \frac{\mathrm{d}(m\,\mathbf{v})}{\mathrm{d}t} = \sum \mathbf{F}.$$

Here: m is the mass of particle, v is the particle velocity, and F is the net force acting on the particle.

For any (sub)domain Ω of a solid continuum of density $\varrho\left[\frac{kg}{m^3}\right]$, subject to body forces (per unit volume) $f\left[\frac{N}{m^3}\right]$ and surface forces (per unit area) $t\left[\frac{N}{m^2}\right]$ acting on the boundary Γ , the principle of conservation of linear momentum reads:

$$\int_{\Omega} \varrho \frac{\partial^2 \mathbf{u}}{\partial t^2} d\Omega = \int_{\Omega} \mathbf{f} d\Omega + \int_{\Gamma} \mathbf{t} d\Gamma,$$

where u [m] is the displacement vector.

Derivation from the Newton's second law

For any (sub)domain Ω of a solid continuum of density $\varrho\left[\frac{kg}{m^3}\right]$, subject to body forces (per unit volume) $f\left[\frac{N}{m^3}\right]$ and surface forces (per unit area) $t\left[\frac{N}{m^2}\right]$ acting on the boundary Γ , the principle of conservation of linear momentum reads:

$$\int_{\Omega} \varrho \frac{\partial^2 \mathbf{u}}{\partial t^2} d\Omega = \int_{\Omega} \mathbf{f} d\Omega + \int_{\Gamma} \mathbf{t} d\Gamma,$$

where $u\ [\mathrm{m}]$ is the displacement vector. The Cauchy's formula and divergence theorem can be used for the last term, namely

$$\int_{\Gamma} t \, d\Gamma = \int_{\Gamma} \boldsymbol{\sigma} \cdot \boldsymbol{n} \, d\Gamma = \int_{\Omega} \nabla \cdot \boldsymbol{\sigma} \, d\Omega.$$

Introduction

Derivation from the Newton's second law

For any (sub)domain Ω of a solid continuum of density $\varrho\left[\frac{\mathrm{kg}}{\mathrm{m}^3}\right]$, subject to body forces (per unit volume) $f\left[\frac{\mathrm{N}}{\mathrm{m}^3}\right]$ and surface forces (per unit area) $t\left[\frac{\mathrm{N}}{\mathrm{m}^2}\right]$ acting on the boundary Γ , the principle of conservation of linear momentum reads:

$$\int_{\Omega} \varrho \, \frac{\partial^2 \mathbf{u}}{\partial t^2} \, \mathrm{d}\Omega = \int_{\Omega} \mathbf{f} \, \mathrm{d}\Omega + \int_{\Gamma} \mathbf{t} \, \mathrm{d}\Gamma \,,$$

where u [m] is the displacement vector. The **Cauchy's formula** and **divergence theorem** can be used for the last term, namely

$$\int_{\Gamma} \boldsymbol{t} \, d\Gamma = \int_{\Gamma} \boldsymbol{\sigma} \cdot \boldsymbol{n} \, d\Gamma = \int_{\Omega} \nabla \cdot \boldsymbol{\sigma} \, d\Omega.$$

Global and local equations of motion

$$\int\limits_{\Omega} \left(\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f} - \varrho \, \frac{\partial^2 \boldsymbol{u}}{\partial t^2} \right) \mathrm{d}\Omega = \boldsymbol{0} \quad \rightarrow \quad \nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f} = \varrho \, \frac{\partial^2 \boldsymbol{u}}{\partial t^2} \quad \text{or} \quad \sigma_{ji|j} + f_i = \varrho \, \ddot{u}_i \, .$$

The global form is true for *any* subdomain Ω , which yields the local form.

Symmetry of stress tensor

Principle of conservation of angular momentum

The time rate of **change of the total moment of momentum** for a system of particles is equal to the vector **sum of the moments of external forces** acting on them:

$$\sum \frac{\mathrm{d}(m\,\mathbf{v}\times\mathbf{x})}{\mathrm{d}t} = \sum \mathbf{F}\times\mathbf{x}.$$

Symmetry of stress tensor

Introduction

Principle of conservation of angular momentum

The time rate of **change of the total moment of momentum** for a system of particles is equal to the vector **sum of the moments of external forces** acting on them:

$$\sum \frac{\mathrm{d}(m\,\mathbf{v}\times\mathbf{x})}{\mathrm{d}t} = \sum \mathbf{F}\times\mathbf{x}.$$

For continuum, in the absence of body couples (i.e., without volume-dependent couples), the principle leads to **the symmetry of stress tensor**, that is,

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}^{\mathrm{T}}$$
 or $\sigma_{ij} = \sigma_{ji}$.

Thus, only six (of nine) stress components are independent:

$$\sigma \sim \left[\sigma_{ij}\right] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ & \sigma_{22} & \sigma_{23} \\ \text{sym.} & \sigma_{33} \end{bmatrix}.$$

Outline

III III (oduction

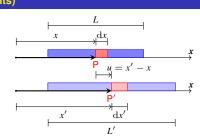
2 Equations of motion

- Cauchy stress tensor
- Derivation from the Newton's second law
- Symmetry of stress tensor
- 3 Kinematic relations
 - Strain measure and tensor (for small displacements)
 - Strain compatibility equations
- 4 Constitutive equations: Hooke's Law
 - Original version
 - Generalized formulation
 - Voigt-Kelvin notation
 - Thermoelastic constitutive relations
- 5 Problem of linear elasticity
 - Initial-Boundary-Value Problem
 - Displacement formulation of elastodynamics
- 6 Principle of virtual work

Strain measure and tensor (for small displacements)

Longitudinal strain (global and local) is defined as follows:

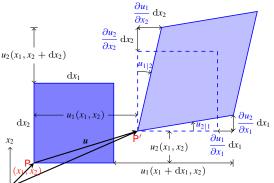
$$\varepsilon = \frac{L' - L}{L}, \qquad \varepsilon(x) = \frac{\mathrm{d}x' - \mathrm{d}x}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x}.$$

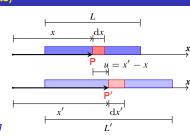


Strain measure and tensor (for small displacements)

Longitudinal strain (global and local) is defined as follows:

$$\varepsilon = \frac{L' - L}{L}, \qquad \varepsilon(x) = \frac{\mathrm{d}x' - \mathrm{d}x}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x}.$$





$$\begin{split} \mathbf{Strain\ tensor} \\ \boldsymbol{\varepsilon} &= \mathrm{sym}(\nabla \boldsymbol{u}) = \frac{1}{2} \Big(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^\mathrm{T} \Big), \\ \boldsymbol{\varepsilon}_{ij} &= \frac{1}{2} \Big(u_{i|j} + u_{j|i} \Big), \\ \boldsymbol{\varepsilon} &\sim \left[\varepsilon_{ij} \right] = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{22} & \varepsilon_{23} \\ \mathrm{sym.} & \varepsilon_{33} \end{bmatrix}. \end{split}$$

Strain compatibility equations

In the strain-displacement relationships, there are 6 strain measures but only 3 independent displacements.

Strain compatibility equations

- In the strain-displacement relationships, there are 6 strain measures but only 3 independent displacements.
- If ε_{ij} are given as functions of x, they cannot be arbitrary: they should have a relationship such that the 6 strain-displacement equations are compatible.

Strain compatibility equations

- In the strain-displacement relationships, there are 6 strain measures but only 3 independent displacements.
- If ε_{ij} are given as functions of x, they cannot be arbitrary: they should have a relationship such that the 6 strain-displacement equations are compatible.

2D case:

$$u_{1|1} = \varepsilon_{11}, \qquad u_{2|2} = \varepsilon_{22}, \qquad u_{1|2} + u_{2|1} = 2\varepsilon_{12},$$

Here, ε_{11} , ε_{22} , ε_{12} must satisfy the following **compatibility equation**:

$$\varepsilon_{11|22} + \varepsilon_{22|11} = 2\varepsilon_{12|12}.$$

Strain compatibility equations

- In the strain-displacement relationships, there are 6 strain measures but only 3 independent displacements.
- If ε_{ii} are given as functions of x, they cannot be arbitrary: they should have a relationship such that the 6 strain-displacement equations are compatible.

2D case:

Introduction

$$u_{1|1} = \varepsilon_{11}$$
, $u_{2|2} = \varepsilon_{22}$, $u_{1|2} + u_{2|1} = 2\varepsilon_{12}$,

Here, ε_{11} , ε_{22} , ε_{12} must satisfy the following **compatibility equation**:

$$\varepsilon_{11|22} + \varepsilon_{22|11} = 2\varepsilon_{12|12}.$$

3D case:

$$\varepsilon_{ij|kl} + \varepsilon_{kl|ij} = \varepsilon_{lj|ki} + \varepsilon_{ki|lj}$$
.

Of these 81 equations only 6 are different (i.e., linearly independent).

Strain compatibility equations

- In the strain-displacement relationships, there are 6 strain measures but only 3 independent displacements.
- If ε_{ij} are given as functions of x, they cannot be arbitrary: they should have a relationship such that the 6 strain-displacement equations are compatible.

2D case:

Introduction

$$u_{1|1} = \varepsilon_{11}$$
, $u_{2|2} = \varepsilon_{22}$, $u_{1|2} + u_{2|1} = 2\varepsilon_{12}$,

Here, ε_{11} , ε_{22} , ε_{12} must satisfy the following **compatibility equation**:

$$\varepsilon_{11|22} + \varepsilon_{22|11} = 2\varepsilon_{12|12}.$$

3D case:

$$\varepsilon_{ii|kl} + \varepsilon_{kl|ii} = \varepsilon_{li|ki} + \varepsilon_{ki|li}$$
.

Of these 81 equations only 6 are different (i.e., linearly independent).

The strain compatibility equations are satisfied automatically when the strains are computed from a displacement field.

				100	
ın				CTI	
	610	<i>/ / / / / / / / / /</i>	Ca v	O CI	U II

- 2 Equations of motion
 - Cauchy stress tensor
 - Derivation from the Newton's second law
 - Symmetry of stress tensor
- 3 Kinematic relations
 - Strain measure and tensor (for small displacements)
 - Strain compatibility equations
- 4 Constitutive equations: Hooke's Law
 - Original version
 - Generalized formulation
 - Voigt-Kelvin notation
 - Thermoelastic constitutive relations
- 5 Problem of linear elasticity
 - Initial-Boundary-Value Problem
 - Displacement formulation of elastodynamics
- 6 Principle of virtual work

Original version

Original formulation of Hooke's Law (1660)

Robert Hooke (1635-1703) first presented his law in the form of a Latin anagram

$$CEIINOSSITTUV = UT TENSIO, SIC VIS$$

which translates to "as is the extension, so is the force" or in contemporary language "extension is directly proportional to force".

Original version

Introduction

Original formulation of Hooke's Law (1660)

Robert Hooke (1635-1703) first presented his law in the form of a Latin anagram

$$CEIINOSSITTUV = UT TENSIO, SIC VIS$$

which translates to "as is the extension, so is the force" or in contemporary language "extension is directly proportional to force".

The classical (1-dimensional) Hooke's Law describe the linear variation of tension with extension in an elastic spring:

$$F = k u$$
 or $\sigma = E \varepsilon$.

Here:

- \blacksquare *F* is the **force** acting on the spring, whereas σ is the **tension**,
- \blacksquare *k* is the **spring constant**, whereas *E* is the **Young's modulus**,
- **u** is the displacement (of the spring end), and ε is the **extension** (elongation).

Generalized formulation

Generalized Hooke's Law (GHL)

$$oldsymbol{\sigma} = oldsymbol{C} : oldsymbol{arepsilon} \quad ext{ or } \quad oldsymbol{arepsilon} = oldsymbol{S} : oldsymbol{\sigma} \quad ext{ where } \quad oldsymbol{S} = oldsymbol{C}^{-1} \, .$$

Here: C [N/m²] is the (fourth-order) elasticity tensor, S [m²/N] is the compliance tensor (inverse of C).

GHL in index notation:

$$\sigma_{ij} = C_{ijkl} \, arepsilon_{kl} \qquad ext{or} \qquad arepsilon_{ij} = S_{ijkl} \, \sigma_{kl} \, .$$

Generalized formulation

Introduction

Generalized Hooke's Law (GHL)

$$\sigma = C : \varepsilon$$
 or $\varepsilon = S : \sigma$ where $S = C^{-1}$.

Here: C [N/m²] is the (fourth-order) elasticity tensor, S [m²/N] is the compliance tensor (inverse of C).

GHL in index notation:

$$\sigma_{ij} = C_{ijkl} \, \varepsilon_{kl} \qquad \text{or} \qquad \varepsilon_{ij} = S_{ijkl} \, \sigma_{kl} \, .$$

Symmetries of elastic tensor

$$C_{ijkl} = C_{klij}$$
, $C_{ijkl} = C_{jikl}$, $C_{ijkl} = C_{ijlk}$.

- The first symmetry is valid for the so-called **hyperelastic** materials (for which the stress-strain relationship derives from a strain energy density function).
- Thus, at most, only 21 material constants out of 81 components are independent.

Generalized formulation

Introduction

Generalized Hooke's Law (GHL)

$$oldsymbol{\sigma} = oldsymbol{C}: oldsymbol{arepsilon} \quad ext{ or } \quad oldsymbol{arepsilon} = oldsymbol{S}: oldsymbol{\sigma} \quad ext{ where } \quad oldsymbol{S} = oldsymbol{C}^{-1} \, .$$

Here: $C [N/m^2]$ is the (fourth-order) elasticity tensor, $S[m^2/N]$ is the **compliance tensor** (inverse of C).

GHL in index notation:

$$\sigma_{ij} = C_{ijkl} \, \varepsilon_{kl} \qquad \text{or} \qquad \varepsilon_{ij} = S_{ijkl} \, \sigma_{kl} \, .$$

Hooke's Law for an isotropic material

$$\sigma = 2\mu \, \varepsilon + \lambda (\operatorname{tr} \varepsilon) I$$
 or $\sigma_{ij} = 2\mu \, \varepsilon_{ij} + \lambda \, \varepsilon_{kk} \, \delta_{ij}$.

Here, the so-called **Lamé coefficients** are used (related to the **Young's modulus** E and **Poisson's ratio** ν):

- the shear modulus $\mu = \frac{E}{2(1+\nu)}$,
- the dilatational constant $\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}$.

Voigt-Kelvin notation

Introduction

Rule of change of subscripts

$$11 \to 1$$
, $22 \to 2$, $33 \to 3$, $23 \to 4$, $13 \to 5$, $12 \to 6$.

Anisotropy (21 independent material constants)

$$\begin{cases} \sigma_1 = \sigma_{11} \\ \sigma_2 = \sigma_{22} \\ \sigma_3 = \sigma_{33} \\ \sigma_4 = \sigma_{23} \\ \sigma_5 = \sigma_{13} \\ \sigma_6 = \sigma_{12} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ & & C_{33} & C_{34} & C_{35} & C_{36} \\ & & & C_{44} & C_{45} & C_{46} \\ & & & & & C_{55} & C_{56} \\ & & & & & & C_{66} \end{bmatrix} \begin{cases} \varepsilon_1 = \varepsilon_{11} \\ \varepsilon_2 = \varepsilon_{22} \\ \varepsilon_3 = \varepsilon_{33} \\ \varepsilon_4 = \gamma_{23} = 2\varepsilon_{23} \\ \varepsilon_5 = \gamma_{13} = 2\varepsilon_{13} \\ \varepsilon_6 = \gamma_{12} = 2\varepsilon_{12} \end{cases}$$

Notice that the elastic strain energy per unit volume equals:

$$\frac{1}{2}\sigma_{ij}\varepsilon_{ij}=\frac{1}{2}\sigma_{\alpha}\varepsilon_{\alpha}$$
 (with summation here over $i,j=1,2,3$ and $\alpha=1,\ldots,6$).

Orthotropy (9 nonzero independent material constants)

Transversal isotropy (**5** independent out of 9 nonzero components)

Isotropy (2 independent material constants)

Voigt-Kelvin notation

Introduction

Rule of change of subscripts

$$11 \to 1$$
, $22 \to 2$, $33 \to 3$, $23 \to 4$, $13 \to 5$, $12 \to 6$.

Anisotropy (21 independent material constants)

Orthotropy (9 nonzero independent material constants)

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ & C_{22} & C_{23} & 0 & 0 & 0 \\ & & C_{33} & 0 & 0 & 0 \\ & & & C_{44} & 0 & 0 \\ & & & & C_{55} & 0 \\ & & & & & C_{66} \end{bmatrix} \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \\ 2\varepsilon_{12} \end{cases}$$

Notice that there is no interaction between the normal stresses and the shear strains.

Transversal isotropy (**5** independent out of 9 nonzero components) **Isotropy** (2 independent material constants)

Kinematic relations

Voigt-Kelvin notation

Introduction

Rule of change of subscripts

$$11 \to 1$$
, $22 \to 2$, $33 \to 3$, $23 \to 4$, $13 \to 5$, $12 \to 6$.

Anisotropy (21 independent material constants)

Orthotropy (9 nonzero independent material constants)

Transversal isotropy (5 independent out of 9 nonzero components)

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ & C_{11} & C_{13} & 0 & 0 & 0 \\ & & C_{33} & 0 & 0 & 0 \\ & & & C_{44} & 0 & 0 \\ & & & & & C_{44} & 0 \\ & & & & & & \frac{C_{11} - C_{12}}{2} \end{bmatrix} \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \\ 2\varepsilon_{12} \end{cases}$$

$$C_{22} = C_{11}$$
, $C_{23} = C_{13}$, $C_{55} = C_{44}$, $C_{66} = \frac{C_{11} - C_{12}}{2}$.

Isotropy (2 independent material constants)

Voigt-Kelvin notation

Rule of change of subscripts

$$11 \to 1$$
, $22 \to 2$, $33 \to 3$, $23 \to 4$, $13 \to 5$, $12 \to 6$.

Anisotropy (21 independent material constants)

Orthotropy (9 nonzero independent material constants)

Transversal isotropy (5 independent out of 9 nonzero components)

Isotropy (2 independent material constants)

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{cases} = \begin{bmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ & & \lambda + 2\mu & 0 & 0 & 0 \\ & & & \mu & 0 & 0 \\ & & & & \mu & 0 \\ & & & & \mu & 0 \\ & & & & & \mu \end{cases} \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \\ 2\varepsilon_{12} \end{cases}$$

Voigt-Kelvin notation

Rule of change of subscripts

$$11 \to 1$$
, $22 \to 2$, $33 \to 3$, $23 \to 4$, $13 \to 5$, $12 \to 6$.

Anisotropy (21 independent material constants)

Orthotropy (9 nonzero independent material constants)

Transversal isotropy (5 independent out of 9 nonzero components)

Isotropy (2 independent material constants)

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{cases} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 \\ & 1-\nu & \nu & 0 & 0 & 0 \\ & & 1-\nu & 0 & 0 & 0 \\ & & & \frac{1-2\nu}{2} & 0 & 0 \\ & & & & \frac{1-2\nu}{2} & 0 \\ & & & & \frac{1-2\nu}{2} & 0 \end{cases} \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \\ 2\varepsilon_{12} \end{cases}$$

Thermoelastic constitutive relations

■ **Temperature changes** in the elastic body **cause thermal expansion** of the material, even though the variation of elastic constants with temperature is neglected.

Thermoelastic constitutive relations

- **Temperature changes** in the elastic body **cause thermal expansion** of the material, even though the variation of elastic constants with temperature is neglected.
- When the strains, geometric changes, and temperature variations are sufficiently small all governing equations are linear and superposition of mechanical and thermal effects is possible.

Thermoelastic constitutive relations

- Temperature changes in the elastic body cause thermal expansion of the material, even though the variation of elastic constants with temperature is neglected.
- When the strains, geometric changes, and temperature variations are sufficiently small all governing equations are linear and superposition of mechanical and thermal effects is possible.

Uncoupled thermoelasticity (theory of thermal stresses)

Usually, the above assumptions are satisfied and the thermo-mechanical problem (involving heat transfer) can be dealt as follows:

- 1 the heat equations are uncoupled from the (elastic) mechanical equations and are solved first,
- 2 the computed temperature field is used as data ("thermal loads") for the mechanical problem.

Thermoelastic constitutive relations

- **Temperature changes** in the elastic body **cause thermal expansion** of the material, even though the variation of elastic constants with temperature is neglected.
- When the strains, geometric changes, and temperature variations are sufficiently small all governing equations are linear and superposition of mechanical and thermal effects is possible.

Uncoupled thermoelasticity (theory of thermal stresses)

Usually, the above assumptions are satisfied and the thermo-mechanical problem (involving heat transfer) can be dealt as follows:

- 1 the heat equations are uncoupled from the (elastic) mechanical equations and are solved first,
- 2 the computed temperature field is used as data ("thermal loads") for the mechanical problem.

If the thermoelastic dissipation significantly influence the thermal field the **fully coupled theory of thermo-elasticity** must be applied, where the coupled heat and mechanical equations are solved simultaneously.

Thermoelastic constitutive relations

GHL with linear thermal terms (thermal stresses)

$$\sigma = C : \left[\varepsilon - \alpha \, \Delta T\right] = C : \varepsilon - \underbrace{C : \alpha \, \Delta T}_{\text{thermal stress}} \quad \text{or} \quad \varepsilon = S : \sigma + \underbrace{\alpha \, \Delta T}_{\text{thermal stress}},$$

or in index notation

$$\sigma_{ij} = C_{ijkl} \left[arepsilon_{kl} - lpha_{kl} \, \Delta T
ight] \qquad ext{or} \qquad arepsilon_{ij} = S_{ijkl} \, \sigma_{kl} + lpha_{ij} \, \Delta T \, .$$

Here, $\Delta T\left[\mathrm{K}\right]$ is the temperature difference (from the reference temperature of the undeformed body), whereas the tensor $\alpha\left[\mathrm{K}^{-1}\right]$ groups **linear coefficients of thermal expansion**

$$m{lpha} \sim egin{bmatrix} lpha_{ij} \end{bmatrix} = egin{bmatrix} lpha_{11} & 0 & 0 \ 0 & lpha_{22} & 0 \ 0 & 0 & lpha_{33} \end{bmatrix}.$$

For isotropic materials: $\alpha_{11} = \alpha_{22} = \alpha_{33} \equiv \alpha$, that is, $\alpha = \alpha I$ or $\alpha_{ij} = \alpha \delta_{ij}$.

Introduction Equations of motion Kinematic relations Hooke's Law Problem of linear elasticity Principle of virtual work

Outline

	n	ŧν.	_	٦		٥ŧ	ŧ,		
	ш	u	U	u	u	υı	Ц	J	

- 2 Equations of motion
 - Cauchy stress tensor
 - Derivation from the Newton's second law
 - Symmetry of stress tensor
- 3 Kinematic relations
 - Strain measure and tensor (for small displacements)
 - Strain compatibility equations
- 4 Constitutive equations: Hooke's Law
 - Original version
 - Generalized formulation
 - Voigt-Kelvin notation
 - Thermoelastic constitutive relations
- 5 Problem of linear elasticity
 - Initial-Boundary-Value Problem
 - Displacement formulation of elastodynamics
- 6 Principle of virtual work

Introduction

General IBVP of elastodynamics

Find **15** unknown fields: u_i (**3** displacements), ε_{ii} (**6** strains), and σ_{ii} (6 stresses) – satisfying:

- **3** equations of motion: $\sigma_{ii|i} + f_i = \varrho \ddot{u}_i$,
- **6** strain-displacement relations: $\varepsilon_{ij} = \frac{1}{2}(u_{i|i} + u_{i|i})$,
- **6** stress-strain laws: $\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$,

with the initial conditions (at $t = t_0$):

$$u_i(\mathbf{x}, t_0) = u_i^0(\mathbf{x})$$
 and $\dot{u}_i(\mathbf{x}, t_0) = v_i^0(\mathbf{x})$ in Ω ,

and subject to the **boundary conditions**:

$$u_i(\mathbf{x},t) = \hat{u}_i(\mathbf{x},t) \text{ on } \Gamma_u$$
, $\sigma_{ij}(\mathbf{x},t) \, n_j = \hat{t}_i(\mathbf{x},t) \text{ on } \Gamma_t$, $\sigma_{ij}(\mathbf{x},t) \, n_j = \hat{t}_i + h \, (\hat{u}_i - u_i) \text{ on } \Gamma_h$,

where $\Gamma_u \cup \Gamma_t \cup \Gamma_h = \Gamma$, and $\Gamma_u \cap \Gamma_t = \emptyset$, $\Gamma_u \cap \Gamma_h = \emptyset$, $\Gamma_t \cap \Gamma_h = \emptyset$.

Introduction

Displacement formulation of elastodynamics

Anisotropic case:

$$\sigma_{ij} = C_{ijkl} \, arepsilon_{kl} = C_{ijkl} \, rac{1}{2} ig(u_{k|l} + u_{l|k} ig) = C_{ijkl} \, u_{k|l} \quad ig(ext{since } C_{ijkl} = C_{ijlk} ig)$$

Displacement formulation of elastodynamics

$$(C_{ijkl} u_{k|l})_{|i} + f_i = \varrho \ddot{u}_i \quad \text{or} \quad \nabla \cdot (C : \nabla u) + f = \varrho \ddot{u}$$

Introduction

Problem of linear elasticity

Displacement formulation of elastodynamics

Anisotropic case:

$$\sigma_{ij} = C_{ijkl} \, arepsilon_{kl} = C_{ijkl} \, rac{1}{2} ig(u_{k|l} + u_{l|k} ig) = C_{ijkl} \, u_{k|l} \quad ig(ext{since } C_{ijkl} = C_{ijlk} ig)$$

Displacement formulation of elastodynamics

$$\left(C_{ijkl}\,u_{k|l}
ight)_{|j}+f_i=arrho\,\ddot{u}_i \quad ext{or} \quad
abla\cdot\left(oldsymbol{C}:
abla u_k
ight)+oldsymbol{f}=arrho\,\ddot{oldsymbol{u}}$$

Isotropic case:

$$\sigma_{ij} = 2\mu \,\varepsilon_{ij} + \lambda \,\varepsilon_{kk} \,\delta_{ij} = \mu \big(u_{i|j} + u_{j|i} \big) + \lambda \,u_{k|k} \,\delta_{ij}$$

Navier's equations for isotropic elasticity

For homogeneous materials (i.e., when $\mu = \mathrm{const}$. and $\lambda = \mathrm{const}$.):

$$\mu u_{i|j} + (\mu + \lambda)u_{j|ji} + f_i = \varrho \ddot{u}_i$$
 or $\mu \triangle u + (\mu + \lambda)\nabla(\nabla \cdot u) + f = \varrho \ddot{u}$

Displacement formulation of elastodynamics

Anisotropic case:

Introduction

Displacement formulation of elastodynamics

$$(C_{ijkl} u_{k|l})_{|i} + f_i = \varrho \ddot{u}_i \quad \text{or} \quad \nabla \cdot (C : \nabla u) + f = \varrho \ddot{u}$$

Isotropic case:

Navier's equations for isotropic elasticity

For homogeneous materials (i.e., when $\mu = \mathrm{const}$. and $\lambda = \mathrm{const}$.):

$$\mu\,u_{i|jj} + \big(\mu + \lambda\big)u_{j|ji} + f_i = \varrho\,\ddot{u}_i \quad \text{or} \quad \mu\,\triangle\boldsymbol{u} + \big(\mu + \lambda\big)\nabla\big(\nabla\cdot\boldsymbol{u}\big) + \boldsymbol{f} = \varrho\,\ddot{\boldsymbol{u}}$$

Boundary conditions:

$$\begin{aligned} & \text{(Dirichlet)} & \text{(Neumann)} & \text{(Robin)} \\ & u_i = \hat{u}_i \text{ on } \Gamma_u \,, \qquad t_i = \hat{t}_i \text{ on } \Gamma_t \,, \qquad t_i = \hat{t}_i + h \big(\hat{u}_i - u_i \big) \text{ on } \Gamma_h \,, \\ & t_i = \sigma_{ij} \, n_j = \begin{cases} C_{ijkl} \, u_{k|l} \, n_j & -\text{ for anisotropic materials,} \\ \mu \big(u_{i|j} + u_{j|i} \big) n_j + \lambda \, u_{k|k} \, n_i & -\text{ for isotropic materials.} \end{cases}$$

Introduction Equations of motion Kinematic relations Hooke's Law Problem of linear elasticity Principle of virtual work

Outline

		40		٦		A#1		
	Ш	u	U	u	u	Gu	U	

2 Equations of motion

- Cauchy stress tensor
- Derivation from the Newton's second law
- Symmetry of stress tensor

3 Kinematic relations

- Strain measure and tensor (for small displacements)
- Strain compatibility equations

4 Constitutive equations: Hooke's Law

- Original version
- Generalized formulation
- Voigt-Kelvin notation
- Thermoelastic constitutive relations

5 Problem of linear elasticity

- Initial-Boundary-Value Problem
- Displacement formulation of elastodynamics
- 6 Principle of virtual work

Admissible and virtual displacements

Introduction

Definition (Admissible displacements)

Admissible displacements (or configuration) of a mechanical system are any displacements (configuration) that satisfy the *geometric constraints* of the system. The **geometric constraints** are:

- geometric (essential) boundary conditions,
- kinematic relations (strain-displacement equations and compatibility equations).

Of all (kinematically) admissible configurations only one corresponds to the equilibrium configuration under the applied loads (it is the one that also satisfies Newton's second law).

Admissible and virtual displacements

Introduction

Definition (Admissible displacements)

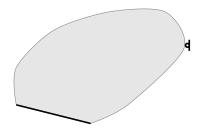
Admissible displacements (or configuration) of a mechanical system are any displacements (configuration) that satisfy the *geometric constraints* of the system. The **geometric constraints** are:

- geometric (essential) boundary conditions,
- kinematic relations (strain-displacement equations and compatibility equations).

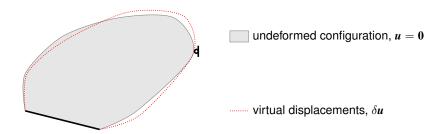
Of all (kinematically) admissible configurations only one corresponds to the equilibrium configuration under the applied loads (it is the one that also satisfies Newton's second law).

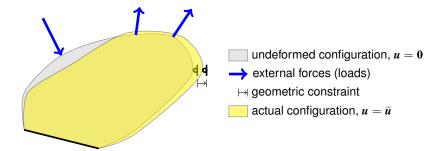
Definition (Virtual displacements)

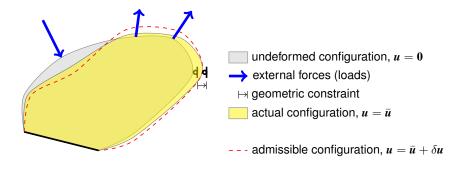
Virtual displacements are any displacements that describe small (infinitesimal) *variations* of the true configurations. They satisfy the *homogeneous* form of the specified *geometric boundary conditions*.

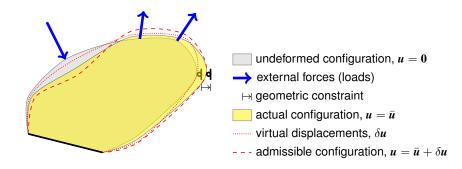


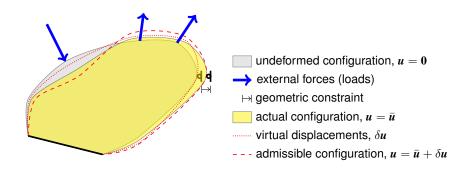
undeformed configuration, u = 0







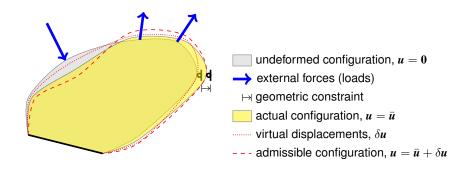




Definition (Virtual work)

Virtual work is the work done by the actual forces through the virtual displacement of the actual configuration. The virtual work in a deformable body consists of two parts:

- 1 the internal virtual work done by internal forces (stresses),
- 2 the external virtual work done by external forces (i.e., loads).



Theorem (Principle of virtual work)

A continuous body is in equilibrium if and only if the virtual work of all forces, internal and external, acting on the body is zero in a virtual displacement:

$$\delta W = \delta W_{int} + \delta W_{ext} = 0.$$