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Order patterns and chaos
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Abstract

Chaotic maps can mimic random behavior in a quite impressive way. In particular, those possessing a generating partition can produce any
symbolic sequence by properly choosing the initial state. We study in this Letter the ability of chaotic maps to generate order patterns and come
to the conclusion that their performance in this respect falls short of expectations. This result reveals some basic limitation of a deterministic
dynamic as compared to a random one. This being the case, we propose a non-statistical test based on ‘forbidden’ order patterns to discriminate
chaotic from truly random time series with, in principle, arbitrarily high probability. Some relations with discrete chaos and chaotic cryptography
are also discussed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Random systems and chaotic systems share some important
features, both from the theoretical and practical point of view.
Thus one can define truly random symbolic dynamics by means
of chaotic maps, what boils down to the fact that the dynamical
systems defined by the iteration of such maps are isomorphic
(or conjugate) to shift systems on sequence spaces—standard
models for stationary random processes—despite their differ-
ent nature. For instance, the logistic map f (x) = 4x(1 − x),
0 � x � 1, and the Bernoulli shift B( 1

2 , 1
2 ), modelling the toss-

ing of a fair coin, Xn : {head, tail} → {0,1}, n = 0,1, . . . , are
isomorphic via the following recipe: if f n(x0) ∈ [0, 1

2 ), set
Xn = 0; if f n(x0) ∈ [ 1

2 ,1], set Xn = 1 (for any ‘typical’ ini-
tial point x0). This and similar properties are exploited e.g. in
the generation of pseudo-random sequences in different appli-
cations.
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Although we will address the isomorphy between random
and chaotic systems with more detail below, the actual focus
of this Letter is rather on the differences between random and
chaotic systems and, specifically, on the order relations (or or-
der patterns) defined by chaotic orbits of piecewise monotone
interval maps. Indeed, if an order pattern is missing, then its
absence pervades all longer patterns in form of more missing
order patterns. In other words, chaotic trajectory points, as ran-
dom as they may look, cannot be ordered in arbitrary ways—in
contrast to the orbits of random processes with arbitrary al-
phabets. Not occurring order patterns will be called forbidden
patterns and (somewhat paradoxically) their ‘existence’ can be
used to tell chaotic from random time series with, in principle,
arbitrarily high probability. Furthermore, this method is also ro-
bust against noisy data and, under circumstances, it can be a
practical alternative to more conventional techniques.

We will also refer to some relations to discrete chaos and
chaotic cryptography. In fact, it was in the framework of dis-
crete chaos and its applications to cryptography where the au-
thors first noticed that determinism imposes some limitations
on the permutations (i.e., order patterns) that a chaotic map can
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define directly by means of their orbits. Although the possi-
ble consequences for chaotic cryptography (and, eventually, for
other application areas) are more of a theoretical sort, it seems
nevertheless that there some basic limitations exist as for what
can be done by means of chaotic maps if used in a straightfor-
ward, naive way.

In the last section we will come back to the relation between
chaotic and symbolic dynamics since the different performance
of deterministic and random systems, as measured by the order
patterns, may seem at odds with the possibility of being isomor-
phic.

2. Order patterns

It is well known [1] that given, say, the logistic map f (x) =
4x(1 − x), 0 � x � 1, and any binary block of length L,
bL

1 = b1 . . . bL with bi ∈ {0,1}, then there exists x0 ∈ [0,1]
such that the symbolic sequence generated by the orbit seg-
ment {x0, f (x0), . . . , f

L−1(x0)} is precisely bL
1 . Here and be-

low, f n(x) := f (f n−1(x)) and f 0(x) := x. Let us remind that
the symbol corresponding to f k(x0) is 0 or 1 depending on
whether f k(x0) ∈ [0,1/2) or f k(x0) ∈ [1/2,1], respectively,
the partition {[0,1/2), [1/2,1]} being a generating partition for
the logistic map. It follows easily that any finite-length binary
block can be realized in this way starting from an initial point in
a set of positive Lebesgue measure. This property can be gen-
eralized to any strong mixing map with a generating partition
α = {α1, . . . , α|α|} and length L blocks (‘words’) made out of
the symbols (‘letters’) 1,2, . . . , |α|.

In a similar way, given an interval map f : I → I , we can
also associate to the orbit segment {f k(x): 0 � k � L − 1} its
order pattern π(x) ∈ σL, where σL is the set of permutations on
{0,1, . . . ,L − 1}, as follows. We say that x defines the order
pattern π = π(x) = [π(0), . . . , π(L − 1)] (shorthand for 0 �→
π(0), . . . ,L − 1 �→ π(L − 1)) of length L � 2, if

f π(0)(x) < f π(1)(x) < · · · < f π(L−1)(x).

Alternatively, we say that π is realized by x. Furthermore, set

Pπ = {x ∈ I : x defines π ∈ σL}.
Numerical simulation shows that, contrarily to what happens
with symbol blocks, not all possible order patterns π ∈ σL are
realized by the points of I for L sufficiently large. In other
words, there are L � 2 and π ∈ σL such that Pπ = ∅. If f

is piecewise continuous and Pπ �= ∅, then Pπ has positive
Lebesgue measure.

Example 1. As a simple illustration, consider again the logistic
map. For L = 2 we have

P[0,1] =
(

0,
3

4

)
, P[1,0] =

(
3

4
,1

)
.

But already for L = 3 (f 2(x) = −64x4 +128x3 −80x2 +16x)
there are permutations that are not realized:
P[0,1,2] =
(

0,
1

4

)
, P[0,2,1] =

(
1

4
,

5 − √
5

8

)
,

P[2,0,1] =
(

5 − √
5

8
,

3

4

)
, P[1,0,2] =

(
3

4
,

5 + √
5

8

)
,

P[1,2,0] =
(

5 + √
5

8
,1

)
, P[2,1,0] = ∅.

In turn, this implies that the pattern [∗,2,∗,1,∗,0,∗] (where
∗ stands eventually for any other entries of the pattern) can-
not be realized by any x ∈ [0,1] since the inequality f 2(x) <

f (x) < f 0(x) cannot occur. By the same token, the pattern
[∗, n+2,∗, n+1,∗, n,∗] (obtained by substituting x by f n(x)

in the previous pattern) cannot be realized either for the same
reason.

Numerical experimentation strongly suggests that the num-
ber of Pπ �= ∅, π ∈ σL, grows only exponentially with L, while
the number of all such patterns grows as L! ∝ (L/e)L

√
2πL

(Stirling’s formula). The same follows for the tent map,

(1)Λ(x) =
{

2x 0 � x � 1
2 ,

2 − 2x 1
2 � x � 1.

In fact, Λ preserves Lebesgue measure dλ = dx and the logistic
map f preserves dμ = 1

π
√

x(1−x)
dx; if φ : (I, λ) → (I,μ) is the

measure preserving isomorphism given by

(2)φ(x) = sin2
(

π

2
x

)
,

then the dynamical systems (Λ,λ) and (f,μ) are isomorphic
(or conjugate) by means of φ, i.e., f ◦ φ = φ ◦ Λ. Since, more-
over, φ is strictly increasing, forbidden patterns for f corre-
spond to forbidden patterns for Λ in a one-to-one way.

From the last paragraph it should be clear that isomorphic
dynamical systems need not have the same forbidden patterns:
the isomorphism (φ above) must also preserve the linear or-
der of both spaces (supposing both spaces are linearly ordered),
and this will be in general not the case. For example, the
λ-preserving shift map x �→ 2x (mod 1), 0 � x � 1, has no for-
bidden patterns of length 3, although it is isomorphic to the
logistic and tent maps.

At hand of these and other examples, we conclude that, when
looking for order patterns in the orbits of a chaotic map, they
seem to be ‘short’ on supply. Somehow, the weird behavior that
chaos entails to deterministic maps is not enough to display all
possibilities that order patterns offer. This may seem puzzling
when one thinks that the logistic and tent maps are, in turn,
isomorphic to the ( 1

2 , 1
2 )-Bernoulli shift, a probabilistic model

for the repeated tossing of a fair coin. We will elaborate on this
below.

3. Permutation entropy

The sets Pπ (each being, in general, a union of intervals) ap-
pear in the theory and practice of permutation entropy. Given
a closed interval I ⊂ R and a map f : I → I with invariant
measure μ (i.e., μ(f −1B) = μ(B) for every Borel set B ⊂ I ),
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define the partition P∗
L of I as

P∗
L = {Pπ �= ∅: π ∈ σL}

and the topological permutation entropy of order L � 2 as

H̄
(L)
0 (f ) = 1

L − 1
log

∣∣P∗
L

∣∣,
where | · | denotes here cardinality. If f is a piecewise monotone
interval map (i.e., there is a finite partition of I into intervals,
such that f is continuous and monotone on each of those inter-
vals), then [2]

(3)lim
L→∞ H̄

(L)
0 (f ) = htop(f ),

where htop(f ) is the topological entropy of f , an upper bound
of Kolmogorov–Sinai (or measure-theoretic) entropy with bet-
ter continuity properties. It follows that

(4)
∣∣P∗

L

∣∣ = ∣∣{Pπ �= ∅: π ∈ σL}∣∣ ∝ eLhtop(f ),

as anticipated above. Take now L finite in (3) to find that
H̄

(L)
0 (f ) can be used as an estimator of the topological entropy,

albeit the convergence with L turns out to be slow.
Along similar lines one can also define a measure-theoretic

permutation entropy [2,3]. A very appealing aspect of per-
mutation entropy is its no need for generating partitions nor
suprema, as in the case of measure-theoretic and topological
entropies. Both measure-theoretic and topological permutation
entropy only resort to the family of partitions P∗

L, L � 2,
whose intervals are given by the crossings of the curves y = x,
y = f (x), . . . , y = f L−1(x).

Let us emphasize at this point that the (for physical appli-
cations, very mild) mathematical assumptions we made above,
are important. For example, (3) and, hence, (4) do not hold if
the number of monotony intervals is not finite [4]. Summariz-
ing, we have:

Proposition 1. If f is a piecewise monotone map on a one-
dimensional closed interval, then there are L � 2 and π ∈ σL

such that Pπ = ∅.

This result, applied to chaotic maps, shows that determinis-
tic chaotic dynamics is detectable by means of order patterns.
In other words, chaos cannot mimic all features of randomness.
The problem remains though in that randomness can mimic
chaos against all odds. How high are the odds against?

4. Forbidden patterns

The bottom line of Proposition 1 is that, for every piece-
wise monotone interval map f , there are order patterns of
minimal length which cannot occur in any orbit. We will
call them forbidden patterns for f and recall how their
absence paradoxically pervades all longer patterns in form
of forbidden outgrowth patterns: If πforb = [π1, . . . , πL0 ] is
forbidden for f , then all the patterns [∗,π1 + n,∗, . . . ,∗,

πL0 + n,∗] ∈ σL with n = 0,1, . . . ,L − L0, are also forbidden
for f . Denote now by σ out(πforb) the family of length L > L0
L
outgrowth patterns of πforb. Alone the outgrowth patterns
[∗,π1,∗, . . . ,∗,πL0 ,∗] ∈ σL (corresponding to n = 0) amount
to L!/L0!, so that |σ out

L (πforb)| = O(L!) = O(LL+1/2e−L) =
O(eL(logL−1)+(1/2) logL). Thanks to this super-exponential
magnifying effect, the probability of a false forbidden pattern
vanishes extremely fast with L and, consequently, a missing
pattern π ∈ σL0 can be promoted to forbidden with virtu-
ally absolute confidence if σ out

L (π) = ∅ for moderate values
of L > L0. Only those chaotic maps with all forbidden pat-
terns of exceedingly long length seem to be intractable from
the practical point of view. Knowing that |P∗

L| ∝ ehtop(f )L and
|σL| ∝ (L/e)L

√
2πL, we deduce that this can only happen if

htop(f ) � lnL0, where L0 � 1 is the shortest length of the for-
bidden patterns.

We conclude that the existence of forbidden patterns is a
feature that chaotic dynamics does not share with random dy-
namics and, therefore, can be used as a test to tell random
from pseudo-random orbit generation. A naive implementation
of this test could be computationally costly, but one can easily
devise different strategies (e.g., using many short orbit seg-
ments instead of a very long one) in order to lower the pattern
lengths to manageable values—assuming the existence of for-
bidden patterns of moderate lengths.

Of course, given an information source that outputs a seem-
ingly non-periodic sequence of real numbers xi , one can try
to decide whether the ensuing time series is deterministic or
random just by plotting the pairs (xi, xi+1). But depending on
the length of the series and, given the case, on the complexity
of the deterministic dynamics, this approach will work or fail.
In such cases, the search and tracing of forbidden patterns and
their outgrowths in sliding windows of increasing widths can
make the difference. Moreover, order patterns are robust against
experimental and numerical noise (since they are defined by in-
equalities), provided in the second case that data precision does
not deteriorate with map iteration beyond some minimal and
sufficiently high threshold. Forbidden patterns masked by noisy
data can eventually be uncovered using different initial points.

5. Discrete Lyapunov exponent

Interestingly enough, the authors came across the fore-going
questions when developing the theory of discrete chaos [5,6]
and, specifically, when generalizing the concept of Lyapunov
exponent to maps on finite sets—a concept we call discrete Lya-
punov exponent.

Definition 1. Let S = {s0, s1, . . . , sM−1} be a linearly or-
dered set by means of the order <, endowed with a metric
d(·, ·), and let F :S → S be a bijection (or, equivalently, an
M-permutation). We define the discrete Lyapunov exponent
(DLE) of f on (S,<,d), λF , as

λF = 1

M − 1

M−2∑
i=0

ln
d(F (si),F (si+1))

d(si, si+1)
.

As in the usual definition of Lyapunov exponent, we have
also taken natural logarithms. Without loss of generality, we
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may assume S = {0,1, . . . ,M − 1} ≡ ZM setting, if necessary,
F(i) ≡ F(si) and d(i, j) ≡ d(si, sj ). Observe that λF depends
both on the order < and on the metric d , but it is invariant under
rescaling and, furthermore, has the same invariances as d .

Example 2. Suppose that M = 2m, d is Euclidean distance, and
define

F max
M (s) =

{
m + k if s = 2k, 0 � k � m − 1,

k if s = 2k + 1, 0 � k � m − 1,

on {0,1, . . . ,M − 1}. The DLE of F max
M is

λF max
M

= m

2m − 1
lnm + m − 1

2m − 1
ln(m + 1).

It can be proved [6] that λF � λF max
M

for all permuta-
tions F on {0,1, . . . ,M − 1} endowed with Euclidean dis-
tance d(i, j) = |i − j |. In this sense, F max

M is the most
chaotic map on (ZM,<, |·|). Observe for further reference that
limM→∞ λF max

M
= ∞.

For simplicity, we will consider henceforth chaotic maps
only on one-dimensional intervals. Specifically, let f : I → I be
a piecewise smooth map with invariant measure μ and Lyapu-
nov exponent λf = ∫

I
ln|f ′(x)|dμ(x) > 0. Let xj+1 = f (xj ),

j = 0,1, . . . ,M − 1, be a typical trajectory of length M of a
one-dimensional chaotic map f , such that xj+1 �= xj for all
j and |xM−1 − x0| < ε. We define f (xM−1) = x0 and order
x0, x1, . . . , xM−1 according to the metric to obtain xn0 < xn1 <

· · · < xnM−1 , so that xni
and xni+1 are neighbors in the metric

sense. Furthermore, set mi = �xni
N�, where N is chosen such

that mi �= mj for all i �= j . The map f induces then the obvious
permutation

F(mi) = mj if f (xni
) = xnj

on ({m0, . . . ,mM−1},<, |·|). The following theorem justifies
calling λFM

a discrete Lyapunov exponent.

Theorem 1. Let f : I → I be a one-dimensional chaotic map
with piecewise continuous derivative. Then limM→∞ λFM

=
λf , where λf is the Lyapunov exponent of f .

The convergence of λFM
to λf with increasing M was

proved in [5] under some restrictive assumptions on f . For the
reader’s convenience, we will prove here the more general re-
sult stated in Theorem 1.

Proof. Let x̄i = mi/N =: �xni
N�/N ≈ xni

and define the map

f̄ (x̄i) = x̄j ⇔ x̄j = mj

N
= FM(mi)

N
.

It follows f̄ (x̄i ) = x̄j ≈ xnj
= f (xni

). Moreover, x̄i+1 ≈
xni+1 =: xni

+εni
and, hence, f̄ (x̄i+1) ≈ f (xni

+εni
). Note that

M → ∞ implies N → ∞ and max|εni
| → 0, so that x̄i → xni

and f̄ (x̄i ) → f (xni
). Therefore,
lim
M→∞λFM

= lim
M→∞

1

M

M−1∑
i=0

ln

∣∣∣∣FM(mi+1) − FM(mi)

mi+1 − mi

∣∣∣∣
= lim

M→∞
1

M

M−1∑
i=0

ln

∣∣∣∣ f̄ (x̄i+1) − f̄ (x̄i)

x̄i+1 − x̄i

∣∣∣∣
= lim

M→∞
1

M

M−1∑
i=0

ln

∣∣∣∣f (xni
+ εni

) − f (xni
)

εni

∣∣∣∣
= lim

M→∞
1

M

M−1∑
i=0

ln
∣∣f ′(xni

)
∣∣. �

A straightforward consequence of Theorem 1 is that any
family of M-permutations FM (on {m0, . . . ,mM−1} and thus)
on {0, . . . ,M − 1} obtained in the way just explained from a
piecewise smooth chaotic map f , cannot be arbitrary (at least,
for generic initial points) since all of them must deliver
limM→∞ λFM

= λf < ∞. In particular, there are no typical
initial points for any chaotic map such that FM = F max

M for
every M . Of course, measure zero sets can have infinite ele-
ments and be dense, but the probability of picking one or several
of their elements in a random sample is zero, so that, from the
practical point of view, they play no role.

Since permutations and order patterns can be identified as
we did above, we arrive again at our previous result on the in-
ability of chaotic maps to generate arbitrary order patterns—in
contrast with their ability for producing arbitrary symbols pat-
terns. The sort of limitation we are talking about might have
some nontrivial consequences. Think, for example, of chaotic
cryptography, where chaotic orbits are used in different ways
to define cryptographic primitives and algorithms. As we have
just pointed out, Theorem 1 implies some restrictions on the
structure of the permutation families that can be obtained via
truncation and discretization from chaotic orbits. In particular,
we cannot obtain the sequence of permutations F max

M with the
optimal diffusion factors (i.e., greatest possible DLEs) for ar-
bitrary M . As a consequence, truncation and discretization of
chaotic orbits may be not the best option when defining crypto-
graphic substitutions; for better methods, see e.g. [7].

6. Chaos and symbolic dynamics

To close our excursion through order, chaos and randomness,
we would like to return to one of the most intriguing aspects: the
isomorphy of random and chaotic systems, despite the different
quality of their orbits.

Any stationary stochastic process corresponds to a measure-
preserving shift transformation on a sequence space in a stan-
dard way [3,8]. Such shift systems, sometimes called sequence
space models, allow to focus on the random process itself as
given by the probability distribution of its outputs, dispens-
ing with a perhaps complicated underlying probability space.
Among them, the Bernoulli shift B(p1, . . . , pk) (acting on two-
sided or one-sided infinite strings made out of k symbols)
models (or is) an independent identically distributed stochastic
process indexed by the integers or by the non-negative integers
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(respectively), where pi is the probability for obtaining the ith
symbol in any draw. In particular, B( 1

2 , 1
2 ) models an experi-

menter tossing a fair coin forever.
On the other hand, the stochastic process B( 1

2 , 1
2 ) is iso-

morphic to the dynamical system defined by, say, the tent map
Λ on I = [0,1] (see (1)). Indeed, let X = Π∞

0 {0,1} = {ξ =
(ξ0, ξ1, . . . , ξn, . . .): ξn = 0,1} be the space of one-sided in-
finite binary strings, each symbol ai ∈ {0,1} having measure
pai

= 1
2 and the product measure ν being given on the cylinder

sets {ξ ∈ X: ξt+1 = a1, . . . , ξt+n = an} (they are the generators
of the product sigma-algebra) by

ν
({ξ ∈ X: ξt+1 = a1, . . . , ξt+n = an}

) = pa1 · · ·pan.

This measure is preserved by the one-sided Bernoulli shift
transformation Σ : (ξ0, ξ1, ξ2, . . .) �→ (ξ1, ξ2, ξ3, . . .). Further-
more, define the measure preserving coding map ϕ : I → X

(I endowed with Lebesgue measure λ) by

ϕ(x) = (a0, . . . , an, . . .) if Λn(x) ∈ Aan

where A0 = [0, 1
2 ) and A1 = [ 1

2 ,1] build a generating partition
for Λ. Then ϕ ◦ Λ = Σ ◦ ϕ, i.e., (Λ,λ) and (Σ,ν) are isomor-
phic. Observe that ϕ converts the orbits of Λ (sequences of real
numbers) into binary strings. It was precisely the map ϕ ◦ f ,
with f the logistic map, whose orbits we stated in Section 2
can realize any possible binary string.

But, in spite of the dynamical equivalence of (Σ,ν) and
(Λ,λ) (or (f,μ), f the logistic map, for that matter), we know
that the orbits of Λ and f cannot realize any possible order,
while the orbits of Σ can. The mechanism responsible for this
hides in the coding map ϕ, since it clearly does not preserve
the linear order of I . As a result, the coarse-grained dynamics
(Σ,ν) can be truly random (hence, without forbidden patterns),
whereas the underlying fine-grained dynamics (Λ,λ) or (f,μ)

is deterministic (hence, with forbidden patterns).
7. Conclusion

Chaos manages easily to reproduce an exponentially grow-
ing manifold of patterns (like symbol blocks) but, subject to
very mild mathematical conditions, cannot cope with a super-
exponentially growing manifold such as that of order patterns.
This shortcoming has been exposed by means of the permuta-
tion entropy and the discrete Lyapunov exponent. Only truly
random dynamical systems (i.e., stationary random processes
with arbitrary alphabets) are up to the task. A first consequence
of this limitation is the possibility of distinguishing random
from chaotic systems with, in principle, arbitrarily high prob-
ability, by tracing forbidden patterns and their outgrowths. Fur-
ther consequences related to discrete chaos and chaotic cryp-
tography have been also discussed.

Acknowledgements

J.M.A. has been partially supported by the Spanish Ministry
of Education and Science, grant GRUPOS 04/79. L.K. has been

supported by the Spanish Ministry of Education and Science,
grant SAB2004-0048. L.K. also thanks NSF for partial support.

References

[1] P. Collet, J.P. Eckmann, Iterated Maps on the Interval as Dynamical Sys-
tems, Birkhäuser, Boston, 1997.

[2] C. Bandt, G. Keller, B. Pompe, Nonlinearity 15 (2002) 1595.
[3] J.M. Amigó, M.B. Kennel, L. Kocarev, Physica D 210 (2005) 77.
[4] M. Misiurewicz, Nonlinearity 16 (2003) 971.
[5] L. Kocarev, J. Szczepanski, Phys. Rev. Lett. 93 (2004) 234101.
[6] L. Kocarev, J. Szczepanski, J.M. Amigó, I. Tomovski, Discrete chaos,

Part I: Theory, in press.
[7] J. Szczepanski, J.M. Amigó, T. Michalek, L. Kocarev, IEEE Trans. Cir-

cuits Systems I 52 (2005) 443.
[8] K. Petersen, Ergodic Theory, Cambridge Univ. Press, Cambridge, 1983.


	Order patterns and chaos
	Introduction
	Order patterns
	Permutation entropy
	Forbidden patterns
	Discrete Lyapunov exponent
	Chaos and symbolic dynamics
	Conclusion
	Acknowledgements
	References


