
On the number of states of the neuronal sources
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Abstract

In a previous paper (Proceedings of the World Congress on Neuroinformatics (2001)) the authors applied the so-

called Lempel�/Ziv complexity to study neural discharges (spike trains) from an information-theoretical point of view.

Along with other results, it is shown there that this concept of complexity allows to characterize the responses of

primary visual cortical neurons to both random and periodic stimuli. To this aim we modeled the neurons as

information sources and the spike trains as messages generated by them. In this paper, we study further consequences of

this mathematical approach, this time concerning the number of states of such neuronal information sources. In this

context, the state of an information source means an internal degree of freedom (or parameter) which allows outputs

with more general stochastic properties, since symbol generation probabilities at every time step may additionally

depend on the value of the current state of the neuron. Furthermore, if the source is ergodic and Markovian, the

number of states is directly related to the stochastic dependence lag of the source and provides a measure of the

autocorrelation of its messages. Here, we find that the number of states of the neurons depends on the kind of stimulus

and the type of preparation ( in vivo versus in vitro recordings), thus providing another way of differentiating neuronal

responses. In particular, we observed that (for the encoding methods considered) in vitro sources have a higher lag than

in vivo sources for periodic stimuli. This supports the conclusion put forward in the paper mentioned above that, for the

same kind of stimulus, in vivo responses are more random (hence, more difficult to compress) than in vitro responses

and, consequently, the former transmit more information than the latter.

# 2002 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

Computational neuroscience is an approach to

understanding the content and transmission of

information in the nervous system. We consider

this process at the level of the information being

transmitted from neuron to neuron by trains of

action potentials (Rieke et al., 1998). Neurons
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respond to stimuli by changes in their membrane
potential. If there is a depolarization of the

membrane potential that reaches threshold,

‘spikes’ or action potentials (sharp peaks of

voltage of the same height) are triggered (Hodgkin

and Huxley, 1952). Basically all the information

that travels without decay along neuronal axons

and is transmitted between neurons, does it in the

form of individual spikes or trains of spikes. It is
still a challenging problem to find out what kind of

encoding and decoding mechanisms are used by

the neurons and which are the properties of these

biological encoders (Borst and Theunissen, 1999).

Important for the mathematical modeler is the fact

that the relation between stimulus and neuron

response is not one-to-one: the same input s can

generate different outputs rk because of noise in
the neuron. In the approach we follow in this

paper, we will furthermore consider the introduc-

tion of internal states in the neuron (Gallanger,

1968), analogously to what occurs also in the

definition of encoders (Ziv and Lempel, 1978);

given s , the actual response r depends additionally

on the current state of the neuron. In doing so we

will be able to apply the Lempel�/Ziv complexity
theory and, in particular, our previous results on

this subject (Amigó et al., 2001).

An essential role when studying properties of

information sources is played by pattern matching

(Wyner et al., 1998). In particular, the complexity

as defined by Lempel and Ziv (1976) counts the

number of new patterns along a discrete sequence,

time series or, in more physical terms, digital
signal. A related quantity, the normalized com-

plexity, provides a lower bound for the compres-

sion ratio of the signal by optimal coding (Ziv and

Lempel, 1978), so that the higher the normalized

complexity of a discrete signal, the more informa-

tion it conveys. Moreover, if the source is sta-

tionary and has ‘good’ statistical properties

(specifically: ergodicity, which allows to calculate
mean values as time averages with respect to some

evolution process over this space), the normalized

complexity of a single output gives with high

probability a very good estimate of the source

entropy, which is the average information in bits

generated by the source. Observe that, whereas

entropy is a property of information sources,

complexity is a property of individual sequences

which can be calculated independently of the

source properties.

Normalized complexity has been extensively

applied by the authors in (Amigó et al., 2001) to

characterize the responses in vivo and in vitro of

single neurons of the primary visual cortex to

different kinds of stimuli, including visual stimula-

tion (sinusoidal drifting gratings) and intracellular

current injections (sinusoidal and random cur-

rents). Our results showed, for example, that the

normalized complexity of the outputs in vivo are

higher (and hence carry more information) than in

vitro for the same kind of stimuli. This paper

builds on such results on the complexity of the

spike trains and, especially, on the experimental

database gathered for this work. Its main goal is to

introduce the concept of neuronal source and to

show that, in general, the number of states of such

sources can also be used as an earmark of neural

discharges.

In short, we promote the stimulus, the neuron

(eventually, neural network) and the encoding

technique of the spike trains (to be explained

below) to a finite-state information source gener-

ating discrete signals which contain information

about the stimulus. In order to quantify the

number of states of the neuronal sources, we use

a method which is a modification of others already

known by Ziv (1990): we compare the entropy

estimated by means of the Lempel�/Ziv normalized

complexity with the entropy of the source, as-

sumed to be ergodic and finite-order Markovian.

This procedure is then applied to the same

experimental cases studied by Amigó et al.

(2001). For convenience we will eventually talk

of periodic or random in vivo and in vitro sources,

according to the kind of stimulus and to the

experimental preparation (in vivo, in vitro).

Among other results, we found that the number

of states of periodic in vivo sources can differ

significantly (depending on the encoding techni-

que) from the number of states of periodic in vitro

sources and the same happens with the random in

vitro sources as compared with the periodic in

vitro sources.
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2. Methods

2.1. Codings

Let us consider a single neuron firing a spike

train (‘output’) as response to a stimulus (‘input’).

Now, in information theory one basically talks of

sources and messages sent by them, where ‘mes-
sage’ (or word) stands in this framework for a

(finite or infinite) sequence of finitely many

symbols or ‘letters’ (think of a digital signal).

Therefore, let us consider for the time being the

stimulus together with the neuron as a signal

source and the spike train as the would-be message

sent by it. In fact, a spike train, far from being

digital, is an analog signal which actually comes
into the analysis as a table of real numbers

generally corresponding to the absolute times of

the spike occurrences (Fig. 1). In order to trans-

form them in bona fide messages, one needs to

translate these sequences of real numbers into

sequences of symbols drawn from a finite set called

alphabet. This step is called the codification of the

signal and the procedure, the (en )coding . Hence-
forth, always when we talk about spike trains as

messages we mean that the signal has been

previously codified.

Codification can be made in different ways

(Amigó et al., 2001). In this contribution we will

restrict, however, to one we call interval coding

(MacKay and McCulloch, 1952), the reason for

this choice being that this coding (out of other we

also investigated, like the interspike time and

median codings ) delivers the neatest results for

our purposes. The recipe to codify a spike train

according to this method goes as follows (Fig. 2).

Let the first spike of a train occur at time 0 and the

last one T time units later. The time interval [0, T ]

is then split in n bins Dti (10/i 0/n ) of the same

length. If there are Nk spikes in the bin Dtk, then

assign the number Nk to Dtk (Dan et al., 1996;

Rieke et al., 1998; Zador, 1998). The result is a

message of length n with no more than n different

letters. If, instead, each bin Dti is coded by 0 or 1

according to whether it contains no or at least one

spike, respectively, the message will be binary.

Whenever necessary, the latter method will be

called binary interval coding to distinguish it from

the former one, the general (multi-symbol) interval

coding. Notice that, when n is so large (or,

equivalently, the length of the bins so small) that

Fig. 1. Intracellular recording from a cortical cell in vitro

during sinusoidal current injection. (A) Membrane potential

trace showing the trajectory while intracellular sinusoidal

current was injected. During the depolarizing phase the

membrane potential value reached threshold, inducing a train

of spikes or action potentials. (B) Spikes as acquired in a

separate channel to be used for the analysis presented here. (C)

Sinusoidal current injected into the cell.

Fig. 2. (A) Illustration of the interval coding with n�/

1,2,3,. . .,2000 subintervals. Divide the time duration T of the

given spike train in n subintervals Dtk (10/k0/n ) of the same

length L�/T /n . If Nk spikes occur in the subinterval Dtk then

assign the ‘letter’ Nk to the subinterval Dtk. The length of the

ensuing (in general, multi-symbol) message is n. A binary

message results instead if Dtk is coded by 0 or 1 according to

Nk�/0 or Nk�/0, respectively. (B) A spike train of, say, 19

spikes is encoded with n�/1,2,3 subintervals. The correspond-

ing multi-symbol messages are shown on the right column.
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only one spike at most occurs in each Dti , both
interval codings coincide. This happens for n E/T /

tmin where tmin denotes the shortest interspike

time.

The information-theoretic properties of the

spike trains depend, in general, on the encoding

method used (Amigó et al., 2001; Panzeri and

Schultz, 2001; Rieke et al., 1998). This must be

kept in mind when studying and comparing such
properties.

2.2. SNE sources

Once a spike train has been codified into a

message, this can be viewed as emitted by an

information source, the source comprising every-

thing preceding the message, namely, the stimulus
(S), the neuron or neuronal network (N) and, last

but not least, the encoding technique (E). This

formal counterpart of the neuron considered as an

information source will be called sometimes a SNE

source to highlight the dependence of the encoded

neural responses on both stimulus and codifica-

tion. Any source property applied to a neuron or

neuron network makes only sense if referred to the
corresponding SNE source. By the same token,

source properties evaluated from neural outputs

should only be compared if codified with the same

technique; the numerical differences can then be

traced back to differences in the stimuli.

To be more specific, by an information source

we mean a so-called finite-state source. Before

defining this information-theoretical concept, we
need to dwell in the next two subsections on a few

technical details. We start with the complexity.

2.3. Lempel�/Ziv complexity

Suppose that the source S generates words x1
n �/

x1x2. . .xn of length n whose letters xi (10/i 0/n)

belong to a set A�fa1; . . . ; aag of size jAj�aB

�; called the source alphabet. Given the word x1
n ,

a block of length l (10/l 0/n) is just a segment of

x1
n of length l , i.e. a subsequence of l consecutive

letters, say xi�l
i�l �xi�1xi�2 . . . xi�l (00/i 0/n�/l). In

particular, letters are blocks of length 1 and blocks

of higher length are obtained by juxtaposition of

blocks of lower length. Set B1�/x1
1�/x1. If x2"/x1,

set B2�/x2
2�/x2; otherwise, consider blocks of

increasing length x2
3�/x2x3,. . . until a block x2

n2 is

found such that it does not occur previously.

Define then B2�/x2
n2. Suppose recursively that,

after k steps,

B1B2 . . . Bk�x
nk

1

where B1B2. . .Bk denotes the juxtaposition of the

blocks B1�x1
1; B2�x

n2

2 ; . . . ; Bk�x
nk

nk�1�1 and

nk�1�/10/nk B/n (with n0�/0 and n1�/1). Define

Bk�1�x
nk�1

nk�1 (nk�15nk�15n);

to be the block of minimal length such that it does

not occur in the sequence x
nk�1�1

1 : Proceeding in

this way, we obtain a decomposition of x1
n in

‘minimal’ blocks, say

xn
1�B1B2 . . . Bp (1)

in which only the last block Bp can occasionally
coincide with one of the foregoing blocks. The

Lempel�/Ziv complexity Ca (x1
n) of x1

n is then

defined as the number of blocks in the (clearly

unique) decomposition (Eq. (1)):

Ca(xn
1)�p�p(a)

The reader must be reminded at this point that

there are different definitions and measures of

complexity in the literature (Chaitin, 1982; Ebeling
and Jiménez-Montaño, 1980; Gonzalez Andino et

al., 2000; Rapp et al., 1994). In this paper,

complexity is always meant in the sense of

Lempel�/Ziv. Intuitively speaking, the complexity

of a word counts the number of different patterns

appearing during its generation process. As ex-

plained above formally, the first symbol on the left

of the word defines the first block. From there one
moves rightward letter by letter, until the string of

symbols beginning just after the previous block

and ending at the current position happens not to

have appeared before. At this point, a new block is

defined. The procedure is illustrated by the follow-

ing example. The decomposition of the binary

word x1
19�/01011010001101110010 into minimal

blocks of new patterns is

0j1j011j0100j011011j1001j0

where the vertical lines separate the blocks. There-

fore, the complexity of x1
19 is 7.
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The generation rate of new patterns along x1
n , a

word of length n with letters from an alphabet of

size a , is measured by the normalized complexity

ca (x1
n), which is defined by

ca(xn
1)�

Ca(xn
1)

n=logan
�

p(a)

n
logan

Sequences with a repetitive or poor pattern

structure (e.g. periodic or quasi-periodic) have a

very small normalized complexity. On the opposite

end stand the random sequences, which unfold a

rich pattern diversity as time goes on. Although

the normalized complexity can take values higher

than 1, its value for completely random sequences

is about 1 with very high probability.
The normalized complexity is closely related to

the source entropy (Amigó et al., 2001), compres-

sion ratio for information of lossless sources (Ziv

and Lempel, 1978), optimal encoding (Ziv and

Lempel, 1978) and randomness (Leung and Ta-

vares, 1985). Other applications of the normalized

complexity will be addressed below.

2.4. Finite-state sources

Let X1
n �/X1X2. . .Xn be a sequence of observable

random variables taking on values in the alphabet
A�fa1; . . . ; aag: Similarly, let Z1

n �/Z1Z2. . .Zn be

a sequence of observable random variables (states)

corresponding to X1
n , which take on values in

another finite set Z of size jZj�s: One can think

of the realization x1
n �/x1x2. . .xn as being a mes-

sage generated by a source with a set of internal

states Z; the letter xi occurring at time i , when the

source is in the state zi . An information source is
said to be finite-state (with s states) if the joint

probability of x1
n and z1

n is given by (Gallanger,

1968; Ziv, 1990)

P(xn
1; zn

1)�
Yn

i�1

p(xi; zi½zi�1)

where the initial state z0 	 Z is assumed fixed and

known, and p(xi , zi jzi�1) denotes the joint prob-

ability of a letter xi and a state zi at time instant i ,

given the previous state zi�1 at time instant i�/1.

Furthermore, a source is said to be stationary

and/or ergodic if the stochastic process (Xi)
�
i�0 is

stationary and/or ergodic, respectively. In simple
terms, a source is stationary if the statistical

properties of the (in principle, arbitrarily long)

messages do not change if the origin of time is

shifted. On the other hand, a stationary source is

ergodic if sample averages and time averages

coincide almost surely in the long run, i.e. one

can calculate expected values over the word

ensemble using the relative frequencies of the
letters in a ‘typical’, sufficiently long word. In

particular, all the sequences produced by an

ergodic source (except maybe a set of probability

zero) have the same statistical properties.

As a rule, stationarity is an assumption which

cannot be taken for granted in biological systems

and should be checked on a case-by-case basis.

Indeed, phenomena such as adaptability, fatigue,
etc. amounts to a non-negligeable time variability

in the statistical properties of the performances.

With regard to ergodicity, it can be tested in

practical cases by sampling typical trajectories;

every such trajectory should produce the same

average. Ergodicity is a kind of efficiency principle

which is very often encountered in nature for

stationary processes.
Because of its practical importance, we focus

henceforth on the subclass of the finite-state

sources defined by the ergodic Markovian sources

of finite order. That is, if xn
��� . . . xn�1xn; then

p(xijxi�1
��)�p(xijxi�1

i�k); i�1; 2; . . . ; n (2)

for some integer k E/1 called the order of the

source. Eq. (2) reads that the probability for the

letter xi at instant i depends directly only on the

previous k outcomes: xi�1,. . ., xi�k . For this
reason, k is also called the lag of the source. In

this case, the set of states can in-principle be

identified with the set of all k -tuples of the form

xi�1
i�k�(xi�k; . . . ; xi�2; xi�1)“zi�1

Therefore, if all substrings of length k are

feasible, the number of states N of such a source

is N�/ak . But, in general,

N0ak (3)

because not all states need to be occupied. Non-

feasible states have formally probability zero and

will be dispensed for in the sequel. We conclude
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that to estimate the number of states of an ergodic
finite-state Markovian source, only its order k is

needed.

Let zi�1�xi�1
i�k 	 A� � � ��A“Ak (10 i0n)

denote the state of a k -order Markovian source

at time i . We denote by d (xi , a , zi�1, z) the

indicator function for xi �/a and zi�1�/z(a 	 /A ,

z 	 /Ak ), i.e.

d(xi; a; zi�1; z)�
1 if xi�a and zi�1�z

0 otherwise

�

Now write for notational convenience x�/x1
n

and let define

qk
x(a; z)�

1

n

Xn

i�1

d(xi; a; zi�1; z)

qk
x(z)�

X
a 	A

qk
x(a; z)

qk
x(ajz)� qk

x(a; z)=qk
x(z) if qk

x(z)�0

0 if qk
x(z)�0

�

The ak �/a matrix whose entries are qx
k (a , z ) will

be referred to as the k th order Markov-type of x

and will be denoted by qx
k . It can be proved that qx

k

can be viewed as a k th order Markovian prob-
ability measure Pk for any x.

Define next the k th order empirical entropy as

H(qk
x)��

X
z 	Ak

qk
x(z)

X
a 	A

qk
x(ajz)log2qk

x(ajz)

An order estimator is then given by (Ziv, 1990)

k+�min

�
k:H(qk

x)�
1

n
LLZ(x)5l

�
; (4)

where LLZ(x) is the Lempel�/Ziv codeword length

of x (Ziv and Lempel, 1978). This estimator has

the following intuitive interpretation. We seek the
smallest model order k for encoding x, such that

the empirical entropy will be sufficiently close

(difference less than ln ) to the codeword length

associated with the Lempel�/Ziv algorithm, which

in turn serves as an estimate of the source entropy.

Then, for any positive integer k ,

Pk(k+]k)5
1

2ln

i.e. the k th order Markovian probability that k*
overestimates k vanishes exponentially with ln .

On the other hand, our numerical experiments

with 2-state Markov processes with transition

matrix

M�
1�p p

p 1�p

� �

and different transition probabilities p (in parti-

cular, for p�/1/2 one gets a completely random

process) suggest that the normalized complexity of

x converges faster than LLZ(x)/n (with increasing
n) to the source entropy H(S ) (�/�/p log2 p�/(1�/

p)log2 (1�/p ) for the above Markov process), so

that we propose to use

k+�minfk:H(qk
x)�ca(x)log2a5lg (5)

as the order estimator instead of Eq. (4). In the

calculations we set l�/0.02.

Of course, always when one applies concepts
involving mathematical limits (like entropy, com-

plexity, etc.) to real time series, the problem of

undersampling or good estimation is lurking. As

said above, our experience shows that the com-

plexity converges very fast so that it typically

saturates from word length 400 on, what covers

the samples we use.

2.5. Experimental work

The experimental data was obtained from

primary cortex recordings both in vivo and in

brain slice preparations (in vitro). Intracellular
recordings in vivo were obtained from anesthetized

adult cats (see Sanchez-Vives et al., 2000a for

details). For the preparation of slices, 2�/4 month

old ferrets of either sex were used (see Sanchez-

Vives et al., 2000b for details). Action potentials

were detected with a window discriminator and the

time of their occurrence was collected with a 10 ms

resolution. The resulting time series were used to
analyze the neuronal spiking. Concerning the

stimuli, they were of three kinds:

(1) Periodic current injection. Intracellular sinu-

soidal currents were injected in vivo and in vitro.

The frequency of the waveform was 2 Hz and the

intensity ranged between 0.2 and 1.5 nA.
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(2) Periodic visual stimulation. The visual stimu-
lus used in vivo consisted of a sinusoidal drifting

grating presented in a circular patch of 38�/58
diameter, centered on the receptive field. The

preferred spatial frequency, temporal frequency

and orientation were previously determined from

peristimulus time histograms, in order to use the

optimal stimulus during the experiment. Only

simple cells (classified as shown by Skottun et
al., 1991) were included in this study.

(3) Random current injection. Correlated sto-

chastic currents with either 1/f2 or 1/f statistics

were injected during the intracellular recording

from cortical brain slices (in vitro).

All in all we have four ensembles of stimuli with

well-defined properties. The sample count is as

follows:

1) Periodic current injection in vivo: 8 samples

(spike train lengths between 15.56 and 47.64
s). The average firing rate of these samples was

13.32 spikes/s.

2) Periodic current injection in vitro: 8 samples

(spike train lengths between 15.87 and 23.62

s). The average firing rate of these samples was

15.97 spikes/s.

3) Periodic visual stimulation: 8 samples (spike

train lengths between 36.74 and 81.81 s). The
average firing rate of these samples was 15.98

spikes/s.

4) Random current injection in vitro: 20 samples

(spike train lengths between 16.32 and 35.47

s). The average firing rate of these samples was

22.30 spikes/s.

3. Results

As explained above, in order to apply the

methods of the information theory to neuronal

responses, it is necessary to codify them. After the

codification, the original neuronal output becomes
a message x�/x1x2. . .xn, where both the length n

and the number of letters a depend in general on

the particular coding. Correspondingly, we iden-

tify the source of x with everything preceding it,

namely, the stimulus, the neuron and the encoding

method. Out of several codification techniques

considered in the literature, we use the sharpest
one for our present purposes, which happens to be

the (general and binary) interval coding. Then one

calculates the normalized complexity ca(x) and the

k th order empirical entropy H (qx
k ) of x and insert

them in Eq. (5) to obtain the order estimator k*

for each single spike train. Finally, the different k*

are averaged over each sample.

We have carried out this program on the sample
of spike trains listed in the previous subsection.

The normalized complexity of the sensory outputs

have been taken from Amigó et al. (2001). The

tables of results below show the (rounded-off)

values taken by k* within the samples in form of

intervals. We got the following estimations for k .

(1) General interval coding (with 5000 intervals)

k* In vivo In vitro

Periodic current injection 2�/4 9�/11

Visual stimulation 2�/4 �/

Random current injection �/ 1�/3

(2) Binary interval coding (with 4048 intervals)

k* In vivo In vitro

Periodic current injection 4�/6 9�/11
Visual stimulation 3�/4 �/

Random current injection �/ 2�/3

Although these numbers are the order estima-

tors of the corresponding SNE sources assumed to

be ergodic and finite-order Markovian, we will

refer to them with the more neutral term of

‘number of states’. The reason should be clear.

Our primary purpose is to use them to distinguish

neuronal sources from each other, independently
of the concrete meaning of k and the source

properties. If the source is actually ergodic and

Markovian of finite order, then the number of

states N and the source order k are related

through Eq. (3) but, since k is smaller, it is more

manageable. Otherwise, k is no longer the lag of a

Markovian source or process but, nevertheless, it

retains its capability to differentiate neuronal
sources. Important for us is that k* is a numerical

invariant for SNE sources. In particular, for a

given neuron preparation and coding, k* depends

only on the kind of stimulus (i.e. on the experi-

mental subcase considered out of the four experi-

mental cases given in Section 2.5), but not on
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individual stimuli. This comes as no surprise since

the same is true for the normalized complexity

(Amigó et al., 2001).

4. Discussion

The mathematical model we use to study the

transmission of information among neurons via

spike trains is a finite-state information source.

The neurons, which in our case belong to the

primary visual cortex in vivo or in vitro, are

exposed to several external stimuli (sinusoidal

modulation of luminosity, injection of sinusoidal

and random currents). The properties of these

stimuli (periodicity, randomness, etc.) go into the

model as subsets of the parameter space, each

stimulus being determined by fixed values of the

parameters (e.g. frequency or correlation length).

By observing different properties of the stimuli

(what effectively amounts to exploring distinct

domains of the parameter space), we can have

different distribution functions on the same en-

semble of stimuli. In the sense of Shannon (1948),

this means that the same subset of stimuli can

contain different amounts of information depend-

ing on the properties we are interested in. The

question arises as to (i) what is (are) the encod-

ing(s) neurons use and (ii) whether the same

encoding method is actually employed to transmit

different groups of properties of the stimuli. To

gain some insight into these interesting and

difficult problems we study information sources

consisting of the neuron together with the stimulus

and the encoding method. In our approach we

further assume such sources to be ergodic and

Markovian of order k and estimate k .
The results of the calculations show:

1) For periodic stimuli, the number of states in

vivo are smaller than the number of states in

vitro in all encoding methods used. The

restriction to periodic stimuli is due, of course,

to the fact that output records both in vivo

and in vitro were available only for this kind

of stimuli.

2) The number of states in vivo is similar for
periodic current injection and periodic visual

stimulation within the same encoding method.

3) The number of states in vitro is significantly

larger for periodic stimuli than for random

stimuli if (binary or general) interval coding is

used.

Multiplicity of coding methods poses the fol-

lowing question: if quantitative results depend on

the coding used, are they meaningful in some

sense? From a formal point of view there is no

objection since, in our approach, the coding is part

of the source being analyzed: quantities gained

with different codings refer rather to different

sources.

Another important issue concerns the choice of

the coding. First of all, information tools are

sometimes used only to discriminate neural signals

produced under different conditions. In this case,

one should choose, of course, those codings which

lead to different behaviors or numerical values of

the properties in question (entropy, complex-

ity,. . .)*/the coding becomes part of the tag which

characterizes the signal. So to say, two codings are

equivalent as far as any of them can be used for

this purpose, but the best will be the one providing

the broadest or sharpest gaps so that the neural

responses to different stimuli classes can be

unambiguously differentiated.
But many times one seeks quantitative rather

than qualitative results. In these cases, the choice

of the coding depends, generally speaking, on the

information one wants to get. In principle, differ-

ent codings target different properties, although in

a concrete situation it can be difficult to find an

appropriate coding. One could even try to tailor

codings to differentiate specific features of the

neural behavior! As it was already said in the

Section 1, the ultimate problem in this context is to

unveil the ‘natural’ code employed by the neurons.

Finally, the question about the choice of the

coding can be also reversed: for a given coding of

the spike trains, what kind of information can be

obtained about the stimuli as a whole (e.g.

distribution function of quantities characterizing

stimuli) or about the individual stimuli that caused

the spike train under consideration (Borst and
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Theunissen, 1999)? This is something that, in
general, can only be answered out of experience,

although the very definition of the coding might

help to figure out the relevant aspects involved.

5. Conclusions

A first general conclusion is that the number of

states of the neuronal sources can be used to
characterize neural discharges according to the

experimental conditions (four in our study) they

come from. To be more specific, we have actually

estimated the order of ergodic SNE sources,

additionally assumed to be Markovian. In princi-

ple, the estimators obtained form a set of invar-

iants which tell some neuronal sources from

others, independently of their real meaning (sto-
chastic lag) and whether ergodicity is fulfilled. For

example, the cases ‘periodic current injection’ in

vivo and in vitro can be easily distinguished from

each other if either interval coding is employed. In

the ideal case that the hypotheses on the source are

fulfilled, these invariants can eventually tell about

other interesting properties too. So, if the source

happens to be Markovian, we conclude that in
vitro responses are more correlated than in vivo

responses.

The estimation of the number of states of a

given neuronal source requires the codification of

a typical discharge and the calculation of its

normalized complexity. We already mentioned

that the choice of coding affects the results, what

translates in different SNE sources having differ-
ent number of states. As a consequence, the

information obtained from a neuronal source

depends on the coding used and, eventually,

several codings may be necessary to discriminate

them. We think that this interplay between proper-

ties and codings is something more than a

mathematical artifact of our model and somehow

reflects what actually happens at the neuronal
level. We conjecture that different properties are

transmitted by means of different codes.

In conclusion, we have shown in this paper how

neural responses can be singled-out via the number

of states of neuronal sources. In doing so we have

modelled the neuron as an information source and

discussed our results according to this approach.
Eventual practical applications thereof include the

assessment of the spike trains entropy in an

alternative way and the study of epilepsy (Rapp

et al., 1994) as well as the decorrelation effects of

neurons. Further applications are the subject of

current investigation.
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