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Abstract
Pattern matching is a simple method for studying the properties of
information sources based on individual sequences (Wyner et al 1998 IEEE
Trans. Inf. Theory 44 2045–56). In particular, the normalized Lempel–
Ziv complexity (Lempel and Ziv 1976 IEEE Trans. Inf. Theory 22 75–88),
which measures the rate of generation of new patterns along a sequence, is
closely related to such important source properties as entropy and information
compression ratio. We make use of this concept to characterize the responses
of neurons of the primary visual cortex to different kinds of stimulus,
including visual stimulation (sinusoidal drifting gratings) and intracellular
current injections (sinusoidal and random currents), under two conditions
(in vivo and in vitro preparations). Specifically, we digitize the neuronal
discharges with several encoding techniques and employ the complexity curves
of the resulting discrete signals as fingerprints of the stimuli ensembles. Our
results show, for example, that if the neural discharges are encoded with a
particular one-parameter method (‘interspike time coding’), the normalized
complexity remains constant within some classes of stimuli for a wide range
of the parameter. Such constant values of the normalized complexity allow
then the differentiation of the stimuli classes. With other encodings (e.g. ‘bin
coding’), the whole complexity curve is needed to achieve this goal. In any
case, it turns out that the normalized complexity of the neural discharges in vivo
are higher (and hence carry more information in the sense of Shannon) than in
vitro for the same kind of stimulus.

1. Introduction

The transmission of information in the nervous system takes place in multiple stages. We
consider this process at the stage of the information being transmitted among neurons by trains
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Figure 1. Intracellular recording from a cortical cell in vitro during sinusoidal current injection.
(A) A membrane potential trace showing the trajectory while intracellular sinusoidal current was
injected. During the depolarizing phase the membrane potential value reached threshold, inducing
a train of spikes or action potentials. (B) Spikes as acquired in a separate channel to be used for
the analysis presented here. (C) Sinusoidal current injected into the cell.

of action potentials or spikes, which are sharp voltage peaks of about the same amplitude,
eventually in clusters or bursts, with comparatively long periods of silence between them
(figure 1). In this paper we will focus on the responses of visual cortical neurons to different
stimuli. One peculiarity of this particular process is the fact that stimulus and response are
not one-to-one related, i.e. there is a variability in the occurrence of the spikes induced by the
repetition of the same stimulus. This variability accounts for the introduction of internal states
in the deterministic models of neuronal communication and might indicate that the information
is basically comprised in the temporal spike patterns or, rather, in some invariant features of
them. One ultimate goal of computational neuroscience is precisely to find out what kinds
of encoding and decoding mechanisms are concealed behind spiking. In some approaches
to neuronal communication, the neuron plays the role of an information source or encoder,
the spike trains become messages generated by it and the modeller worries about entropy,
number of internal states or compression ratios, just to mention a few keywords. In other
approaches, the attention shifts to the relation between stimulus and response as expressed by
conditional probabilities, correlations, mutual information and the like. We will follow here
the first approach.

The mathematical modelling of nervous systems is as old as the first physical and chemical
models of the action potentials (Hodgkin and Huxley 1952). In fact, only four years after
Shannon’s seminal work (1948), MacKay and McCulloch (1952) estimated the entropy of
spike trains in what was probably the first application of information theory to neuroscience.
Since then, the theory of information has become a major tool in the mathematical approach
to the nervous phenomena and, in particular, to the communication among neurons.

Pattern matching is a combinatorial approach to understanding the properties of
information sources (Wyner et al 1998). One of the main roles in this approach is played
by the complexity as defined by Lempel and Ziv (1976), which counts the number of different
patterns along a sequence, time series or, in more physical terms, digital signal output by a
source. A related quantity, the normalized complexity, measures the rate of generation of new
patterns. We will see below that the normalized complexity is on average a lower bound of
the source entropy, so, in general, the higher the normalized complexity of a spike train, the
more Shannon information it conveys. Moreover, if the source is stationary and has ‘good’
statistical properties (specifically: ergodicity, which allows one to calculate mean values as
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time averages), the normalized complexity of a single signal gives with high probability a close
estimate of the source entropy, which is the average Shannon information in bits per second
(bits s−1) generated by the source. But observe that, whereas entropy is a property of sources
and thus difficult to evaluate, complexity is a property of individual sequences which can be
calculated straightforwardly and independently of the source properties. Further advantages
of the normalized complexity when applied to the analysis of neural responses include its
practical invariance under repetition of the same stimulus.

The reader must be cautioned at this point that there are different definitions and measures
of complexity in the literature (Ebeling et al 2000, Gonzalez Andino et al 2000, Rapp et al
1994). Historically, the early works linked the complexity of a sequence to that of the simplest
algorithm able to produce it, a notion which goes nowadays by the name of Kolmogorov–
Chaitin algorithmic complexity (Chaitin 1982). More concretely, the algorithmic complexity
of a symbol sequence is given by the number of bits of the shortest computer program that
outputs the said sequence. However, there is no general recipe for such a minimal program.
Instead, Lempel and Ziv proposed a complexity measure that does not necessarily deliver the
length of the shortest program generating the sequence in question but, rather, a number that is a
useful bound of this length (Rapp et al2001). Other quantitative measures of complexity assess
the level of disorder or randomness, very much in the same way as thermodynamic entropy
does. These include, for example, the entropies associated with the names of Shannon, Renyi
and Gelfand-Yaglom. Finally, still other measures stem from non-linear dynamics or Chaos
theory (Lyapunov exponents, fractal dimensions of attractors etc). Let us mention in passing
that, unlike Lempel–Ziv complexity, most of them are difficult to apply because they are
numerically demanding or suffer from other drawbacks such as requiring long time series or
exhaustive sampling. Sequences which are complex by one definition need not be complex
by the other, since these definitions may target distinct aspects of what is actually meant by
complexity. Hereafter, complexity is always meant in the sense of Lempel and Ziv (1976)5.
Roughly speaking, time series with a repetitive or simple pattern structure (e.g. periodic or
quasi-periodic) have a low normalized complexity, while those unfolding a rich pattern diversity
as time goes on (e.g. random sequences) have a normalized complexity very likely around 1.

In this paper we show that the complexity can be used to discriminate the responses of
single neurons to different kinds of stimulus. The recordings were made from simple cells of
the primary visual cortex in vivo and from layers 2/3 and 4 in vitro. The stimuli consisted
of visual stimulation by sinusoidal drifting gratings (only in vivo) and intracellular injections
of sinusoidal and random currents (in vivo and in vitro). The results show that the neural
discharges have different degrees of complexity depending on the kind of stimulus and the
experimental preparation (in vivo, in vitro), so, in general, one can identify both of them by
just measuring the normalized complexity of a single discharge. In particular, it turns out that
the normalized complexities of the responses in vivo are higher (and hence carry more Shannon
information) than in vitro for the same kind of stimulus.

2. Encoding of spike trains

The application of information theory to neuronal discharges poses some problems on its own.
To begin with, spike trains are, from a mathematical point of view, continuous signals with two
very dissimilar timescales. On a millisecond scale, the spikes are bumps of the same height
and width; on a scale comparable to the train duration though, a spike train is practically an

5 The reader may not be aware that a concept of complexity related to but developed later (Ziv and Lempel 1978) is
widely implemented in information technologies for lossless data compression (e.g. ‘WinZip’, ‘PK-Zip’).
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Figure 2. Divide the interval [τmin, τmax] between the minimal and maximal interspike times of a
given spike train in α time bins �τn , 0 � n < α−1, of the same length L = (τmax −τmin)/α. Let τi

be the time elapsed between the ith and (i +1)th spikes and suppose τmin +k L � τi < τmin +(k +1)L
so that τi belongs to the time bin �τk . In this case, assign the ‘letter’ k to the spike i . Analogously,
if τi+1, the time elapsed between the (i + 1)th and (i + 2)th spikes, belongs to the time bin �τ j ,
then the spike i + 1 is assigned the letter j . The length of the message is the number of spikes. The
resulting alphabet has α letters: 0, 1, . . . , α − 1.

all-or-none signal. This explains why there have been in computational neuroscience two
different approaches to spike train analysis based on continuous and discrete methods. For the
first approach (including differential entropy and clustering reconstruction), see for example
McFadden (1995), Victor and Purpura (1997) or Victor (2002). In this paper we follow the
second approach, but making use of complexity theory rather than discrete information theory
(Rieke et al 1998). A first technical difficulty in this pursuit is the fact that a spike train is not
digital in the sense needed (figure 1), i.e. a sequence of finitely many symbols or ‘letters’ called
a message or word. The transformation of a spike train into a bona fide message is called the
codification of the signal and the procedure, the (en)coding. In the following, whenever we
talk about spike trains as messages, we mean that the signal has been previously codified.

Codification can be achieved in a variety of ways. Hereafter we will consider only two of
the many codings proposed in the literature:

(1) Interspike time coding (figure 2). Let τmin and τmax be the minimal and maximal
interspike times, respectively, in the signal. Divide the interval [τmin, τmax] into α slots
�τi (1 � i � α) of the same length. If τ j is the interspike time following spike s j and
τ j belongs to, say, the kth slot �τk , then assign to the spike s j the k-symbol ak from a set
A = {a1, . . . , aα} of α symbols (Rapp et al 1994). In this way, we get an α-nary message
whose length equals the number of spikes.

(2) Bin coding (figure 3). Let the first spike of a train occur at time 0 and the last one T
time units later. The time interval [0, T ] is then split into n bins �ti (1 � i � n) of
the same length. If there are Nk spikes in the bin �tk , then assign the number Nk to �tk
(Dan et al 1996, Rieke et al 1998, Zador 1998). The result is a message of length n with
no more than n different letters. If, instead, each bin �ti is coded by 0 or 1 according
to whether it contains no or at least one spike, respectively, the message will be binary.
Whenever necessary, the latter method will be called binary bin coding to distinguish it
from the former one, the general (multi-symbol) bin coding. Notice that, when n is so
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Figure 3. Divide the time duration T of the spike train into N subintervals �tn , 0 � n < N − 1,
of the same length L = T/N . If Nk spikes occur in the subinterval �tk , then assign the ‘letter’
Nk (0 � Nk � N) to the subinterval �tk . The length of the ensuing (in general, multi-symbol)
message is N , the number of subintervals. A binary message results instead if �tk is coded by 0
or 1 according to Nk = 0 or Nk > 0, respectively.

large (or, equivalently, the bin length so small) that only one spike at most occurs in each
�ti , the two bin codings coincide. This happens for n � T/τmin.

For other methods (such as the median coding), see for example Rapp et al (1994).
Codings turn out to be like microscopes resolving the structure of spike trains at the scale
set by the number of letters (interspike time coding) or the word length (bin coding). It is
clear that the information-theoretic properties of encoded spike trains related to the stimuli
depend, in general, on the parameters of the encoding method used (Amigó et al 2001). This
entails different codings catching different features of the spike trains or, rather, of the stimuli,
since the properties of inputs and outputs must be related. Needless to say, these ‘by-hand’
codifications are not meant to model the codification(s) that the neurons might employ to
communicate, but they are necessary artefacts of the mathematical approach. Observe also
that neurons codify input signals in real time, whereas our codifications require the whole spike
train to be previously given.

3. Information sources and entropy

Once a spike train has been codified into a message, this can be viewed as emitted by an
information source (Gallanger 1968), the source comprising everything preceding the message,
namely, the stimulus (S), the neuron or neuronal network (N) and,last but not least, the encoding
technique (E). This formal counterpart of the neuron considered as an information source will
be called sometimes a SNE source to highlight the dependence of the encoded neural responses
on both stimulus and codification. Any source property applied to a neuron or neuron network
makes sense only if referred to the corresponding SNE source. By the same token, source
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properties evaluated from neural outputs should only be compared if codified with the same
technique; the numerical differences can then be traced back to differences in the stimuli.

The most important property of a source S is its entropy (Borst and Theunissen 1999,
Cover and Thomas 1991, Shannon 1948), which can be interpreted as the average information
generated by the source per unit of time (assuming that one letter is produced at every time unit).
Suppose that S generates words xn

1 := x1x2 · · · xn of length n whose letters xi (1 � i � n)

belong to a set A = {a1, . . . , aα} of size |A| = α < ∞, called the source alphabet. The
entropy of S is then defined as

Hb(S) = − 1

n

∑
xn

1

p(xn
1 ) logb p(xn

1 )

where p(xn
1 ) denotes the probability of the word xn

1 happening and the sum is over all words
of length n (αn in total, although some of them could have zero probability). The subscript
b stands for any real constant b > 1 and refers to the base of the logarithm. If b = 2, the
entropy is measured in bits s−1. Of course, the entropy can always be expressed in bits s−1 via
the formula

H (S) := H2(S) = Hb(S) log2 b. (1)

In the special case that the letters are independently generated (i.e. there are no correlations
among letters in the words) and pi is the probability for the letter ai to occur, then Hb(S)

simplifies to

Hb(S) = −
α∑

i=1

pi logb pi .

Such sources are called memoryless. If, moreover, all letters have the same probability
pi = 1/α, the source is called symmetric. In this case, Hb(S) = logb α. Finally, if words can
be arbitrarily long, one has to let n go to infinity:

Hb(S) = − lim
n→∞

1

n

∑
xn

1

p(xn
1 ) logb p(xn

1 )

provided the limit exists.

4. Complexity

The entropy is a property of sources and, therefore, difficult to evaluate. In fact, the estimation
of all probabilities involved in its calculation requires an extensive sampling which very often
cannot be performed, not to mention the reproducibility of the test conditions. In contrast,
complexity, as formulated by Lempel and Ziv (1976), is a property of individual sequences
which can be used to estimate the entropy or, more generally, to bound it from below (along
with other applications). Furthermore, its calculation is straightforward, as we see next.

The formal definition of Lempel–Ziv complexity is recursive. Given the word xn
1 , a block

of length l (1 � l � n) is just a segment of xn
1 of length l, i.e. a subsequence of l consecutive

letters, say x i+l
i+1 := xi+1xi+2 · · · xi+l (0 � i � n − l). In particular, letters are blocks of length

1 and blocks of higher length are obtained by juxtaposition of blocks of lower length. Set
B1 = x1

1 = x1 and suppose that

B1 B2 · · · Bk = xnk
1

where B1 B2 · · · Bk denotes the juxtaposition of the blocks B1, B2 = xn2
2 , . . . , Bk = xnk

nk−1+1
and nk−1 + 1 � nk < n (with n0 = 0 and n1 = 1). Define

Bk+1 := xnk+1
nk+1 (nk + 1 � nk+1 � n),
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to be the block of minimal length such that it does not occur in the sequence xnk+1−1
1 . Proceeding

in this way, we obtain a decomposition of xn
1 in ‘minimal’ blocks, say

xn
1 = B1 B2 · · · Bp (2)

in which only the last block Bp can occasionally coincide with one of the foregoing blocks
B1, . . . , Bp−1. The complexity Cα(xn

1 ) of xn
1 is then defined as the number of blocks in the

(clearly unique) decomposition (2):

Cα(xn
1 ) := p = p(α).

Intuitively speaking, the complexity of a word counts the number of different patterns
that it contains. As explained above formally, the first symbol on the left of the word defines
the first block. From there one moves rightward letter by letter, until the string of symbols
beginning just after the previous block and ending at the current position happens not to have
appeared before. At this point, a new block is defined. The procedure is illustrated by the
following example. The decomposition of the binary word x19

1 = 01011010001101110010
into minimal blocks of new patterns is

0|1|011|0100|011011|1001|0
where the vertical lines separate the blocks. Therefore, the complexity of x19

1 is 7.
The generation rate of new patterns along xn

1 , a word of length n with letters from an
alphabet of size α, is measured by the normalized complexity cα(xn

1 ), which is defined by

cα(xn
1 ) = Cα(xn

1 )

n/ logα n
= p(α)

n
logα n.

Sequences which are not ‘complex’ (e.g. periodic or quasi-periodic) have a very small
normalized complexity. At the opposite end are the random sequences. Although the
normalized complexity can take values higher than one, the normalized probability of random
sequences is about one with very high probability.

Normalized complexity is connected with several important concepts of information
theory such as entropy, compression ratio for information of lossless sources (Ziv 1978),
optimal encoding (Ziv and Lempel 1978) and randomness (Leung and Tavares 1985). Further
applications concerning the number of internal states of the neuronal sources are addressed in
Amigó et al (2003). Here we will pursue only its relation to entropy.

5. Complexity and entropy

To explain the relation between cα(xn
1 ) and the entropy Hα(S) of the source S which has

produced xn
1 , some definitions are needed. S is said to be stationary if

p(x∞
1 : xi1 = αi1 , . . . , xik = αik ) = p(x∞

1 : xi1+ j = αi1 , . . . , xik + j = αik )

for every j, k, αi1, . . . , αik , which means that the statistical properties of the (in principle,
arbitrarily long) words do not change if the origin of time is shifted. Since, in general,
the entropy fails to exist for non-stationary sources, we dispense with them henceforth. A
stationary source is called ergodic if sample averages and time averages coincide almost surely,
i.e. one can calculate expected values over the word ensemble using the relative frequencies
of the letters in a ‘typical’ word. As a consequence, all the sequences produced by a ergodic
source have the same statistical properties (except maybe for a set of probability zero).

One can prove (Ziv 1978) that (i) if S is stationary, then

lim sup
n→∞

cα(xn
1 ) � Hα(S) on average (3)
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and, moreover, (ii) if S is ergodic, then

lim sup
n→∞

cα(xn
1 ) = Hα(S) almost surely. (4)

For the practitioner, this second inequality boils down to the following: the normalized
complexity of a sufficiently long word is, with high probability, a close estimate of the source
entropy (with the proviso that S is ergodic). Numerical simulations with Markov processes
suggest that for, say, 1000-bit-long sequences (such as those that we consider below) the
entropy estimation via Lempel–Ziv complexity is less than 2% off the true value, which is very
satisfactory. In the general case (S stationary), the normalized complexity provides on average
lower bounds to the source entropy. In either case, the higher the normalized complexity of a
typical word, the higher the corresponding source entropy.

As a rule, stationarity is an assumption which cannot be taken for granted in biological
systems and should be checked on a case-by-case basis. Indeed, phenomena such as adaptation,
synaptic plasticity etc amount to a sizable time variability in the statistical properties of the
performances. As regards ergodicity, it can be tested in practical cases by sampling typical
trajectories; every such time series x1x2 · · · should produce the same time average for any
observable f of the data, limn→∞ 1

n

∑n
i=1 f (xi). Ergodicity is a kind of efficiency principle

which is very often encountered in Nature for stationary processes.
In practice, when estimating the entropy of stationary sources one way or the other, one

always faces the problem of undersampling. It is therefore very important to know about the
convergence rate of the estimator used. Eventually, one can resort to numerical simulation to
get the necessary insight. This issue has been addressed in the context of pattern matching by
Farach et al (1995), Kontoyiannis et al (1998) and Wyner et al (1998). In any case, it should
be clear that, for our present purposes, the role of the normalized complexity as an entropy
estimator is of secondary importance since we are primarily interested in using it to distinguish
neuronal sources under different conditions. This means that we can (and will) use it even
when the existence of the entropy is dubious because of non-stationarity.

6. Experimental work

We have studied experimentally the complexity of neuron responses to different stimuli under
controlled conditions. The data was obtained from primary cortex recordings both in vivo
and in brain slice preparations (in vitro). Intracellular recordings in vivo were obtained from
anaesthetized adult cats (see Sanchez-Vives et al 2000a for details). For the preparation of
slices, 2–4-month-old ferrets of either sex were used (see Sanchez-Vives et al 2000b for
details). Action potentials were detected with a window discriminator and the time of their
occurrence was collected with a 10 µs resolution. All the recordings included in this study
corresponded to stable recordings from neurons with a membrane potential of at least −60 mV
and overshooting action potentials. The resulting time series were used to analyse the neuron
spiking. As regards the stimuli, they were of three kinds:

(1) Periodic current. Intracellular sinusoidal currents were injected in vivo and in vitro. The
frequency of the waveform was 2 Hz and the intensity ranged between 0.2 and 1.5 nA.

(2) Periodic visual stimulation. The visual stimulus consisted of a sinusoidal drifting grating
presented in a circular patch of 3◦–5◦ diameter, centred on the receptive field centre (in
vivo). Only simple cells (classified as shown by Skottun et al 1991) were included in this
study.

(3) Random current. Random currents with different degrees of correlations were injected
during the intracellular recordings from cortical brain slices (in vitro).
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IN VITRO SINUSOIDAL CURRENT
IN VIVO SINUSOIDAL CURRENT
IN VIVO SINUSOIDAL GRATINGS

Figure 4. Interspike time coding and periodic stimuli. The curves show the normalized complexity
versus number of bins for periodic stimuli (visual stimulation and current injection) both in vivo
and in vitro. The curves saturate as the number of bins increases. This behaviour is typical for the
interspike time coding.

All in all we have four ensembles of stimuli with well-defined properties. The sample counts
are as follows:

(1) Periodic current injection in vivo: 8 samples (spike train lengths between 15.56 and
47.64 s).

(2) Periodic current injection in vitro: 8 samples (spike train lengths between 15.87 and
23.62 s).

(3) Periodic visual stimulation: 8 samples (spike train lengths between 36.74 and 81.81 s).
(4) Random current injection in vitro: 20 samples (spike train lengths between 16.32 and

35.47 s). For details, see Wang et al (2003).

For convenience, the corresponding SNE sources will be referred to as in vivo, in vivo
periodic current etc. We will verify experimentally in the next section that it is safe to assume
these sources to be stationary.

7. Results

Let xn
1 be the result of encoding a spike train recorded in any of the above four experimental

settings. In order to gain more insight into the complexity of neuronal responses, we have
graphically represented cα(xn

1 ) as a function of the number of letters α (for interspike time
coding) and also as a function of the word length n (for bin coding). This graphical analysis
was repeated with spike trains covering all cases. Remember that n is fixed (and equal to the
number of spikes) for the interspike time coding and α = 2 for the binary bin coding while, for
the general bin coding, there is a weak dependence of α on n which shows up in the graphs as
instabilities. For this reason we limit the discussion of the complexity curves to the interspike
time coding and the binary bin coding. The results obtained can be summarized as follows.

(1) For interspike time coding (see figures 4 and 5), the curves cα(xn
1 ) versus α are convex ∩,

converging sharply with increasing α to flat horizontal profiles. We call these stationary
values saturation levels and they are about the same for periodic stimuli (in vivo and in
vitro). The saturation levels corresponding to random inputs are more scattered due to
their manifold autocorrelation functions but, as one expects, they do not overlap with
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Figure 5. Interspike time coding and random stimuli. Two of the curves show the saturation levels
for in vitro random stimuli with short and long correlations. The third curve (corresponding to
periodic current injection) is shown for comparison.

the non-random ones. The non-parametric bootstrap 95% confidence intervals for the
saturation levels are the following:

(i) Periodic current injection in vivo: the complexity curve increases sharply to its
horizontal saturation level with small fluctuations. Saturation levels lie in the interval
[0.4379, 0.5390].

(ii) Periodic visual stimulation in vivo: saturation occurs typically at a level cα in
[0.4793, 0.5307].

(iii) Periodic current injection in vitro: saturation sets in around α = 600 at a level cα in
[0.3948, 0.4072].

(iv) Random current injection in vitro: the saturation level changes with the input signal,
which hints at a relation between the asymptotic complexity values and the rate of
decay of the autocorrelation function of the corresponding stimulus. The confidence
interval for long correlations is [0.1961, 0.2440] and for short correlations it is
[0.0986, 0.1339].

(2) For binary bin coding (see figure 6), the curves c2(xn
1 ) versus n are not as smooth as

with the previous coding. This means that the transfer of information is very sensitive
to the changes in the number of intervals used in the encoding process. In this case, the
complexity curves do not display plateaus. Rather, from n ≈ 2500–3500 time bins on,
they decay (figure 7) in a convex ∪ way following the classical formula of MacKay and
McCulloch for the entropy (Rieke et al 1998, formula (3.22)):

H (S) ≈ r T

n
log2

(
ne

r T

)
= r T

n ln 2
ln

(
ne

r T

)
(5)

where T is the duration of the spike train and r the mean firing rate. Inserting in (5) the
average experimental value r T = 199 obtained from periodic current injection in vivo,
it can be checked in figure 7 that the normalized complexity and MacKay–McCulloch
entropy curves fit very well along the tail and that, in fact, the normalized complexity
bounds from below the entropy.

Similarly to the previous case, the complexity curves for the binary bin coding also
permit one to discriminate what kind of stimulus was applied in each case (figure 6).
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Figure 6. Binary bin coding. Normalized complexity versus number of intervals for periodic
stimuli.

(3) Suppose c0 is the saturation level of the curve cα(xn
1 ) versus α for a given spike train

encoded by the interspike time technique. Then, from

cα(xn
1 ) = Cα(xn

1 )

n/ logα n
= c0

it follows that

Cα(xn
1 ) = c0n

logα n
= c0n

log2 n
log2 α.

Recall that the factor log2 α is the entropy in bits s−1 of a memoryless symmetric source
with α letters. Moreover, if the source can be assumed to be ergodic, then, according
to (4) and (1), we have

c0 ≈ Hα(S) = H (S)

log2 α

for α in the saturation region. Thus, (i) the complexity grows logarithmically when α

varies in the saturation region and (ii) the ratio between the informations generated by an
ergodic SNE source and the memoryless symmetric source with α letters (both in bits s−1)
is constant and equal to c0. This means that the efficiency of the ergodic SNE sources
stabilizes when the number of letters increases.

(4) The spike train is encoded by the binary bin method, so holds c2(xn
1 ) ≈ H (S). It follows

that the entropy of the ergodic SNE sources (‘E’ meaning binary bin coding) can be directly
read in bits s−1 from the normalized complexity curves.

(5) For non-ergodic sources, the above ‘≈’ must be replaced by ‘�’, the resulting inequalities
holding now on average. In this way, some bounds for the entropy can be easily derived.
Another possible way to circumvent non-ergodicity consists of decomposing the stationary
source in ergodic components. But then one needs to estimate the size of the components.

8. Discussion

The general picture that one gets from the previous results is that the complexity curves (and,
in particular, saturation levels) are able to distinguish some neuronal responses from others
according to the stimulus features. Interestingly enough, the saturation levels are also invariant
in the sense that the neuronal responses to the same stimulus have about the same value. We
elaborate further on these and other relevant considerations in the following points.
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Figure 7. Comparison of the MacKay and McCulloch entropy with the normalized complexity
for periodic current injection in vivo. The parameter value r T = 199 (see equation (5)) has been
obtained from the experimental spike trains by averaging.

(1) The saturation levels obtained with the interspike time coding clearly distinguish in vivo
from the two in vitro sources, but do not discriminate between the two in vivo sources.
This drawback does not arise if the bin coding is used. Hence, the two codings together
do differentiate all four experimental cases.

(2) If α (interspike time coding) is so high that every spike gets a different letter, then a
further increase in α only changes the names but not the number of different letters of the
encoded spike train xn

1 . Hence, the complexity Cα(xn
1 ) remains the same. Likewise, if

n (bin coding) is so high that there is at most one spike per bin, then a further increase
in n only adds more zeros to the encoded spike train, without practically changing its
complexity Cα(xn

1 ). In both cases, the refinement of the respective gauge has no effect on
the complexity value. In other words, spike trains have a threshold scale (corresponding to
the maximal firing rate of the neurons) beyond which no further structure can be resolved
because there is none. Upon division of Cα(xn

1 ) by the ever increasing factor n/ logα n, the
resulting cα(xn

1 ) tends to zero both with α and n, i.e. the tails of the normalized complexity
curves in both codings go down to zero.

(3) In order to check the stationarity of our experimental data series, we have also calculated
the normalized complexity of encoded spike trains within a window sliding along the
responses to periodic stimuli, i.e. the normalized complexity of a block x i+l−1

i with fixed
length l and variable starting position i in the encoded response. Figures 8 and 9 represent
cα(x i+l−1

i ) versus i with l = 0.6L (L = total length of the spike train) for interspike
time coding and binary bin coding, respectively, showing that, in our case, stationarity
is certainly an acceptable assumption. This also implies that the repetition of the same
stimulus produces outputs of comparable complexity. We have separately checked this
point in figure 10, where the normalized complexity of neural responses (discretized
with interspike time coding) to periodic visual stimulation in vivo is seen to be about the
same when the stimulus is repeated. Hence, although responses to the same stimulus
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Figure 8. Calculation of the normalized complexity with sliding windows—interspike time coding
(128 bins used for encoding). The window length is 60% of the train length. The position of the
left end of the window is given by the abscissa.

change, their complexity remains approximately constant. This invariance property of the
normalized complexity was observed in Amigó et al (2003).

(4) In vivo spike trains are more complex than in vitro spike trains in all codings considered.
In the language of neuronal sources this can be reworded by saying that in vivo sources
convey more Shannon information than in vitro sources. We suggest that this fact might
be due to a higher synaptic noise in vivo. Neurons in vitro are embedded in a network that
is silent and, therefore, there is no ongoing synaptic activity. On the other hand, neurons
recorded in vivo are highly connected in a network that is active and they have access to
more information sources, which enhances the information content of their responses. A
similar result for a measure of variability which compares adjacent interspike intervals
was obtained by Holt et al (1996).

(5) As already mentioned, the complexity of encoded spike trains depends on the coding
method used. In particular, neuronal signals can be binary coded in such a way that
the normalized complexity is about 1 and, therefore, they are completely random. This
provides a biometric technique for generating random binary sequences.

9. Conclusions

The main and most general conclusion we can draw from our results is that Lempel–Ziv
complexity allows one to characterize the spike trains, albeit in a coding-dependent way,
according to the experimental setting that they come from. The simplest characterization
occurs for the interspike time coding. The complexity curves exhibit then long saturation
levels, which are about the same for stimuli belonging to the same experimental case. For the
(binary) bin coding, the complexity curves have long tails whose decay rates are related to the
mean firing rates obtained from the corresponding spike trains. We conclude that saturation
levels and mean firing rates must describe some common features of those stimuli. From
these facts we conjecture that different properties of the stimuli are transmitted by means of
different codes, so the communication in the nervous system would be based rather on multiple
neural codes.
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Figure 9. Calculation of normalized complexity with sliding windows—binary bin coding (2048
intervals used for encoding). The window length is 60% of the train length. The position of the
left end of the window is given by the abscissa.
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Figure 10. Interspike time coding. This figure shows the complexity curve of the neural response
to a repeated application of the same stimulus (sinusoidal visual stimulation).

The reason for choosing Lempel–Ziv complexity is its conceptual and computational
simplicity, together with its independence from the source properties since it refers to individual
sequences. Moreover, the normalized complexity is related in a mathematically sound way
to several information-theoretical properties, the most prominent being the source entropy,
which permits in turn the study of the information-theoretical aspects of our model whenever
feasible.

Returning to the general dependence of the complexity on the encoding technique, let us
stress that complexity values obtained with different codings refer, of course, to different SNE
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sources, so there is no formal objection to that dependence. Along these lines, remember, for
example, that the interspike time coding does not discriminate between the two in vivo cases
(visual stimulation and random current injection), whereas the binary bin coding does. But,
more significantly, the complexity is higher in vivo than in vitro in any coding that we have
considered so far, which hints at some basic difference regarding the Shannon information
being transferred.

To sum up, we believe that complexity theory is a valuable tool in the quest to understand
the nervous system from the point of view of information theory. We have shown in this
paper how neural responses can be singled out in various ways and their information content
estimated by means of the (normalized) complexity. In doing so we have modelled the neuron
as an information source and discussed our quantitative results in the light of this approach.
Eventual practical applications thereof will include the assessment of the spike train entropy
in an alternative way and the study of epilepsy (Rapp et al 1994) as well as the decorrelation
effects of neurons. Further applications of complexity (also in other approaches) are the subject
of current investigation.
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