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Abstract-The aim of this paper is to answer the question if such properties of reflection law as 
ergodicity, chaotic behavior and periodicity transfer directly to the motion of a particle in sufficiently 
large and commonly used classes of the containers. We present two examples. In the first, the above 
listed properties transfer directly, i.e. ergodicity, periodicity and chaos of the reflection law yield, 
respectively, ergodicity, periodicity and chaos of the motion but the second example exhibits an 
opposite relationship: ergodicity and chaotic behavior of the law each imply periodicity of the 
motion, while periodicity yields ergodicity. These examples show that the answer to the question is 
negative and the role of the shape of the container is very important even in the case when we 
assume very strong properties of the reflection laws. Some related macroscopic properties following 
from the microscopic dynamics are presented, e.g. the properties of the long-time behavior of the 
distribution function for the corresponding Knudsen gas. Conversely, it turns out that the dynamical 
systems obtained are closely related to some intensively studied dynamical systems, namely ‘standard 
maps’ (topologically conjugated) and one-dimensional (1D) systems. The reflection law correspond- 
ing to each standard map is given. 

INTRODUCTION 

The problem of what happens when the particle reaches the boundary is not only of 
theoretical interest but of practical importance. This question has been studied for a long 
time by a number of scientists; up to now there are only hypothesis in this subject, more or 
less confirmed by experiment. 

One of the approaches for studying the behavior of a fluid confined to a container is the 
approximation that consists of replacing the wall by a smooth surface and assuming that 
when a particle encounters the wall it ‘reflects’, that is, its velocity instantaneously changes 
from its incident value to another ‘reflected’ value, the latter being such as to take the 
particle back into the domain of the gas. We call any such transformation of incident 
velocities into reflected ones a reflection law. Reflection law models were first considered 
rigorously by Schnute and Shinbrot [l]. They showed that within a reasonable class of 
reflection laws (in particular, they assumed that a reflection law is a Cl, isotropic, planar, 
one-to-one map), there exist only two reflection laws: specular or reverse, such that the 
fluid does not slip at the boundary. Moreover, under the above assumptions these two 
reflection laws are the only two for which the entropy function cannot increase for any 

initial distribution function [2]. 
Specular reflection is a commonly investigated reflection laws: it states that the angle of 

incidence is equal to the angle of reflection. If we additionally assume that the gas is very o 

*A part of this paper has been presented at the SIAM Conference on Application of Dynamical Systems. 
Snowbird, Utah, USA, October 15-19, 1992. 

77 



78 J. SZCZEPAfiSKI and E. WAJNRYB 

rarefied, i.e. the particles do not interact, then the trajectory of every particle is of billiard 
type. There are a number of results concerning ergodicity and mixing properties of classical 
billiards, i.e. billiards with specular reflection law, and this theory is now being intensively 
developed. On the other hand, it is well known that some simple mechanical systems are 
equivalent to billiards in a convex plane domain [3, 43. Moreover, there are interesting 
physical phenomena like propagation of neutrinos in a medium composed of nuclei [5] or 
more generally propagation of a test particle through the medium of infinitely many heavy 
randomly distributed scatterers (mobile [6] or not mobile 17, 81) which can be understood 
in some sense as billiards. 

In 1984 Babovsky [9] provided a general description of reflection laws in kinetic theory 
and presented a construction of the solution of the corresponding initial and boundary- 
value problems for a collisionless gas in the case of the Knudsen gas and for interacting 
particles in the general case of the Boltzmann equation in a bounded region. 

The aim of this paper is to investigate the transfer of some interesting (both from a 
theoretical and practical point of view) properties of the reflection law (boundary 
conditions) to the dynamics of a particle. To do this it is necessary to assume that in our 
systems the reflection law is not one-to-one [lo]. Then we can investigate ergodic or 
chaotic reflection laws. The ergodic theorem asserts that the time average of any physical 
quantity exists for almost all initial conditions and it is equal to the ensemble average. This 
fact plays a very important role when we make any measurement of a physical quantity for 
a system in equilibrium. Note that our models are in some sense an intermediate case 
between the systems first considered by Schnute and Shinbrot and systems with random 
reflection laws (see [ll] and references there). 
The following natural questions arise. 

--Do ergodic (chaotic, periodic) properties of a reflection law imply ergodicity (chaotic, 
periodic behavior) of the trajectories of the moving particles, respectively? 
--What is the influence of the shape of the container? 

Some related problems of transferring and the influence of different types of imposed 
properties of a subsystem into the dynamical system have been studied in [12] (and 
references therein). It was shown that in the case of horseshoe-like scenario (see also [13]) 
for a dynamical system the action of contracting, stretching and twist-folding of the phase 
space leads to a distinct form of dynamics. Implications for ergodicity and turbulence were 
discussed in connection with Sierpinski and Peano-Hilbert spaces in 4D. The link between 
quasi-periodic forcing in case of pendulum and the associated capacity dimension of 
possible strange attractors were calculated. 

Related problems of transfer were also considered in the context of spin systems with 
long-range interaction [14]. It was shown that under appropriate conditions the inhomo- 
geneous R-matrices lead to integrable spin chains. 

To give some insight into our problems we consider the motion of a free particle inside 
two typically used containers: a unit ball in a plane [lo] and a square. It turns out that 
these two systems exhibit quite different properties. 

In the first model ergodicity (chaotic behavior) of a reflection law implies ergodicity 
(chaotic behavior) of the trajectory of a particle and if the reflection law has an attracting 
periodic orbit then the trajectories of a moving particle are asymptotically periodic. In the 
second case, ergodicity (or chaotic behavior) of a reflection law leads to periodic properties 
of the trajectories, while a periodic reflection law leads to ergodic properties of the 
trajectories. 

In both cases we assume that the reflection law is a unimodal map [15] (more specifically 
a logistic map) and changing the parameter in the reflection law we obtain the required 
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qualitative properties. Up to now it is not known what happens when the particle reaches 
the boundary. The logistic map can be interpreted as a Taylor approximation of the 
reflection law. 

From the other side in our models the logistic reflection law plays a role of coupling for 
the extended dynamical system describing the particle’s motion. Such type of coupling is 
now extensively studied [16-191 and a number of results (e.g. chaotic behaviour) 
particularly in the case of coupled map lattices, were obtained. (In [14] several pairwise 
potentials are presented which lead to integrable systems.) Notice that most of our results 
can be generalized to other coupling maps. 

Qne of the physical contexts of the problem investigated in this paper is the single 
particle dynamics that is recently intensively studied in relation to the motion of a particle 
in circular accelerators [20]. The Hamiltonian for an electron rotating in a plane 
perpendicular to a uniform magnetic field is of the form 

H = ;P2 - $A 5 cos (24X - nt)). 
n=-m 

(1) 

The Poincare map associated with equation (1) is (see [21]) 

X n+l = xl + Pn+l, 

P 
(2) 

n+l = P,, + A sin (277X,). 

We show that the dynamical systems of this type are equivalent (i.e. topologically 
corijugated) to the systems considered in our paper for an appropriate reflection law. 

It turns out that from the mathematical point of view these two models lead to the 
following problems. 

(a) The first model 

Assume that the map x,+~ = Txn exhibits some property (ergodicity, periodicity, etc.) 
and consider the extended dynamical system 

J&l+1 = TX,,, 

Yn+l = ml, Y”>. 

Then the question arises under what assumptions on T and F these properties of T 
transfer to the extended system (3). 

The system of this form appears in the paper by Beck [22] and in papers of other authors 
[23-281 in some physical contexts (Brownian motion) and also as a purely mathematical 
problem [29]. In [22] a class of nonlinear dynamical systems describing the movement of a 
particle in a viscous medium under the influence of a kick force is investigated. In this case 
the time evolution of the velocity of the particle is governed by the system of equations 

-%+I = TX,,, 

Yn+l = AYrl + fed 
It was proven [22] that under appropriate conditions on the map T, the force f and A 
(IAl < 1, A d p d e en s on the viscosity of the liquid) periodicity, ergodicity and the mixing 
property of T each imply the same property of the extended dynamical system (4). The 
variable y corresponds here to the velocity of the kicked particle and the ergodic (periodic, 
mixing) property is supported by the vicinity consisting of other particles (whose evolution 
is governed by T) through the force f. In our paper ergodicity (periodicity, chaos) is 
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transmitted to the velocity of the particle from the boundary of the container by means of 
the reflection law and then the question is whether each of these properties transfers to the 
motion of the particle in the whole phase space, i.e. in the space describing the velocity 
and position of the particle. 

In [29] necessary and sufficient conditions for a so called group extension of a minimal 
(uniqueIy ergodic) f30] dynamical system to be minimal (uniquely ergodic) are given. It was 
also shown that in a certain sense a general group extension lifts the above properties. 

(b) The second model 

In the following sections we will see that the investigation of the motion of a particle in a 
square is closely related to the study a map G .of the interval [O, a], obtained from the 
reflection law by a suitable translation of the argument; to be more precise. G = T 2 h 
where T is the reflection law and 

h(v) = 1 v + n-12 for 0 4 u < 42 

v - $2 for ii-:2 d u d 7i. 
(5) 

If T is unimodal, T(0) = T(n) and n/2 is a critical point for T then so is G. Similar shaped 
maps arise in the context of chaotic oscillations in open chemical systems and were studied 
in [31]. 

PRELIMINARIES 

To describe the motion of a particle we consider the two-dimensional discrete dynamical 
system that is obtained from the basic system by considering the position and velocity of 
the moving particle on the boundary when it hits the wall of a container. (The system 
obtained in such a way is called the special flow.) In order to get the most simple form of 
equations of particle motion we use two slightly different systems of co-ordinates in both 
examples. Therefore, we introduce the following coordinate system: x,, denotes the position 
of the particle on the boundary at the moment of the nth reflection, v, is the angle 
between the velocity of the point before reflection (in the unit baLl case, Fig. l(a)) and 
after reflection (in the square case, Fig. l(b)), and the tangent to the boundary at x,‘,. 

We assume that the law of conservation of energy is valid which implies that we shall 
restrict our considerations to the case u E .S1 (S’ is the unit circle). 

THE MOTION IN THE BALL 

In this section we briefly recall the result of [lo] for a ball and we present a connection 
between the so-called ‘standard maps’ and the system of equations describing the motion of 
a particle in a ball. 

For a ball. these equations are 

(mod 2ir) 
CO? 

where x, E [0, 27r), v, E (0, a). 
The second equation is inherently connected with systems of such type and the first 

constitutes a reflection law. 
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Fig. !. Thz coordinate system used to describe the motion of a particle: (aj in a ball: here R denotes a. refIection 
law: (b) in a square. 

In our considerations we take as reflection law T a logistic map 

on+1 = (Dl~>U,(R - v,*) D = 4.0. (71 

For this parameter D, T is ergodic from [O, n] into itself [32]. The study of histograms 
(Fig. 2) for such a system showed that the extended system is also ergodic. 

Now. for the parameter D successively equal to 4.0, 3.57, 3.59. 0.988 + j:,i’s. 0.995 + $8 
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Fig. 2. Histogram for 5000000 iterates of a typical point by the map (6) in 5OGU squares (the case of the unit ball) 
for the reflection law given by (7) and D = 4.0. 

the reflection law T is a chaotic map [32-341 (i.e. the Lyapunov exponent for T is positive 
[32], hence the trajectories of the dynamical system generated by T exponentially diverge). 
It follows from the form of the extended dynamical system (6) (with T given by (7)) that 
one of the Lyapunov exponents of this system has to be equal to the Lyapunov exponent of 
the base equation T’, thus the extended system is also chaotic. 

Finally, we take D = 2.90007 (3.0,3.1) so that the reflection Iaw has a stable periodic 
orbit. Then the trajectories of (6) become reguIar in the sense that each of them, after a 
number of reflections, becomes tangent to a finite number of concentric circles and gets 
asymptotically periodic. These results suggest that ergodicity {chaotic behavior, periodicity) 
of a reflection law imply the same property of the trajectories. However, the next section 
shows that this conjecture fails even in the case of a container being a polygon. 

From the presented analysis of microscopic behavior of a very rarefied gas? i.e. the 
Knudsen gas (particles do not interact) it is possible to deduce some properties of the 
long-time behavior of a one-particle distribution function [lo], in particular the loss of 
analyticity for the Knudsen gas with a periodic reflection law. 

It is interesting to observe that the so-called ‘standard maps’ [ZO, 21? 35-403 can be 
inrerpreted as dynamical systems describing the motion of a free particle in a ball with an 
appropriate reflection law. To be more precise, we have checked that the system of the 
form 1401 

Xn+l =xn + f(Yn) (mod a) 

yn+] = xn + Y, + fbd (mod 4 
(8) 
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(f is a smooth periodic function with period rr> is topologically conjugate to the system 

Un+l = vii - ifk) (mod ST) 

x n+l = x, - 2v,+1 (mod 2n) 
(9) 

and the conjugation is given by the map 

P: [O, 2?r) x IO, n] + IO, rr) x [O, n] 

P(xn,v.):=(r-$-,x.) 
00) 

where the first equation in (9) can be interpreted as the reflection law corresponding to the 
standard map (8). 

THE MOTION IN THE SQUARE 

Now we consider the motion of a particle with a non-ideal reflection law in the square. 
As before we take into account an ergodic reflection law, i.e. we assume D = 4.0. This 
reflection law is the same on every wall of the square. In this case our numerical 
computations show that the trajectories become closer and closer to the walls of the square 
(Fig. 3) and after some initial collisions with the sides the particles will hit successively the 
sides of the container counterclockwise. 

We now justify this result. First notice that due to the geometry of the square (see 
Fig. l(b)) the velocity v, of the particle varies in the following way. 

(4 vn+1= - (4/7r)v,(7~ - v,) if particle hits opposite sides; this is only possible when 
n/4 < v, < (3/4)?7. 

Fig. 3. The trajectory of a typical point for the refiection law with parameter D = 4.0 (the case of an ergodic and 
simultaneously chaotic reflection law). 
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!b) u,+1 = -(4mbi - (n/2)][un + (r/2)] if the particle hits the sides clockwise; this is 
only possible when 0 < u, < n/2. 

cc> U,*+I = -(4/a& - (n/2)][u, - (3/2)n] if the particle hits the sides counterclockwise; 
this is only possible when n/Z < u,, < n5. 

Now we notice that if case (a) happens then lim,u, = a. 
Thus. it is enough to show the following. 

T/zheorer~ Consider the map G: [O, r]--$ [O, n] (Fig. 4) given by 

G(u) := 
-(4/a - b?/~lc~ + b-/2)1 for u f [0, n/2]: 

-(4h)b - bm[~ - (3/2)d for 0 E (n/2, n]. 

Note that G is a unimodal map. 
Let v,~ E [0, r] and u,,~ := G(u,) for n = 0, 1, 2. 3, . . . . 

(un := Woo)) 

Then lim,v, = a for almost all initial velocities u. (with respect to Lebesgue measure m). 

This theorem follows from the more general theorems [15] concerning one-dimensional 
maps (so called unimodal maps). For completeness we present our proof in the Appendix. 

Remark I. It is easy to notice that the above result holds for maps more general than the 
unimodal maps. 

Remmk 2. Using the above method one can show that if D is close to 4.0 then almost all 

G(v) : 

d4 (y5/4)?? TT-(&/4)T (3/4)P 

Fig. 4. The graph of G. 



Reflection law and particle motion 

points of the interval [0, a] tend to a fixed point of the map G and consequently almost all 
orbits of the particle are also asymptotically periodic. 

Remark 3. Note that G = T 0 h where h is an involution, i.e. h2(u) = v for every II E 
[(L al. 

Remark 4. It is well known [32] that for D = 4.0 the reflection law considered is also 
chaotic. Hence, even chaotic behavior of a reflection law can lead to an asymptotically 
periodic motion of the particle. 

It follows from the Theorem that for this reflection law an enclave free of particles will 
appear in the middle of the square (a typical trajectory is presented in Fig. 3). This implies 
that the distribution function in the position space of the corresponding Knudsen gas loses 
analyticity independently of the initial distribution function. 

Finally, taking D = 2.90007 (or 3.0, 3.1) we get a reflection law with a stable periodic 
orbit attracting almost all points of the interval (0, a). The typical trajectory for this system 
describing the motion of the particle is shown in Fig. 6. We observe that the trajectory is 
dense in the configuration space. We also note that the histograms of this dynamical system 
(see Fig. 5) are independent of the initial point chosen, which is equivalent by the Birkhoff 
Ergodic Theorem to ergodicity of the system [30]. The graph presented is just the 
distribution function for invariant measure of the system. 

Fig. 5. Histogram for 5OOOOOO iterates of a typical point in a square for reflection law (7) with attracting periodic 
orbit (D = 2.90007). 
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Fig. 6. ‘The trajectory of a typical point in a square for reffection law with attract+ periodic orblt (D = 2.90~07). 

FINAL REMARKS 

Our models show that there are no simple relations between properties of a reflection 
law, the shape of the container and the properties of the motion of the particle. Even very 
strong properties of the reflection law like ergodicity or chaos do not necessarily transfer to 
the dynamics of the particle for typically used containers with piecewise of class C” 
boundary (like the square or an arbitrary polygon). 

It is an open problem to determine additional assumptions OR the reflection law and/or 
the boundary of the container which would ensure this transfer. It seems that these types of 
reflection could be interesting from a physical point of view. On the other hand, it turns 
out that the dynamical systems investigated are in close connection with the systems 
describing not only the motion of a particle but also other systems like ‘standard maps’ or 
even one-dimensional systems. 

Acknowledgement-J. S. would like to thank the KoSciuszko Foundation for finttncial support 
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APPENDIX 

Proof of the Theorem 

(The notation used in the Appendix is presented in Fig. 4) 

(I) Notice that for any initial velocity 

uo E [O. r/4] u [(V3/4) li. B - ($/3/4)r] G [(3j4)n. T]. lim V, = 71. 
I? 

(2) Assume that ug E [n/4, (v’3/4)~] U [r - (V’3/4)?r, (3/4)lr]. We show that for almost every u0 there exists n such 
that ~7, E [(1!3/‘4)?r, r7 - (\/3/4)lr]; hence by the above observation we conclude that lim,u,, = rr. 

To do this it is enough to show that: 

for every yo. yfi in [n/4. (li3/4)n] U [r - (\/‘3/4)8. (3/4)4)~] satisfying 

ynn, y& E [n/4, ($;3/4)17] U [T - fV’3/4)n, (3/4)lr] for every n E N (AI) 
(where yo,, := G”(yo), y& := G”(yb)) there exists a subset A C [ yO. yh] and a constant 0 < c < 1 (independent of 
yo. ~6) such that lim,G=(u) = n for every Y E A and 

4-J) ’ W[YO. ~611. (A?) 

(In the case when no such points yo, yb exist the Theorem of course holds). 
((u) Assume that for each n, yo,, and y& are both in [n/4, (V/3/4) ] zr or both in [n - ($3/4)~, (3/4fn]. 
By the Lagrange Theorem for every n E N there is g,, E (~0, yb) with 

IYOn - Y& = lG”‘I5,)~IYo - ~61. (A31 
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Since 2 < G’(z) q 2V’3 for .$ E [n/4. (\J3/4)7] U Ia - (tj3/4)77, (3/4) ] 
to infinity (because G”‘(&) = rl:$G’(G’($,)) > 29, 

n , we conclude that the right side of (A3) tends 
which contradicts the fact that the left side is hounded. 

Thus. for some n,, the condition (a) does not hotd. Hence, by (Al) and the Darboux property of G. 

[(\!3/4)n. 3-r - (\!3/4)n] C [yg%, y&J for some 110. (A41 

(We chose the smallest one.) 
Now we introduce the following notation of the pre-images of the points ( L”?T/~)R and n - (\! 3/4)x 

G-‘((~~3/4)n) = {UC, u,}. c-q17 - (d3/4)n) F {b,, b,}, 

where uf c: U, and b, < b,, A, = [b,, a,], A, = {a,. b,]. 
We study the pre-images of the interval A, (the same considerations apply to A!). 
fly (A4) we can assume that 

Lenvna. for each i = U, 1, 2. ., no - 1, the four points G-‘(q), G-‘(b,). GV~-‘-’ (.hl). Go,,- Ix l(,Q all belong 
either to [r/4- (v’3/4)5~] or to [a - (q’3/4)r7, 33’4~3. 

This follows from the fact that the image of the interval 1~0, y;] under the first nc - 1 iterations of G dozs not 
contain [($3.!4)R, n - (‘y’3/4)n\. 

Define 

G, and i& are left inverses to bi, and Hz respectively: G 1 o H1(~~) = II. for ever? u E [O, z$!] and Gz 3 Hz(u) = I; 
for every II E [7iiZ, 7r], 

We shirll estimate the ratio 

c;-(V’)(A,)I 

IF0 - Y&l 
where, by definition, G-‘(A,) = (G-I(<): c E A,} and G-‘(c) = G, 0 G,,_, 1. 0 G<, 0 GJ;,,(;). with .sj -II 1 OI 2 

accordingly as G”~-‘(y,l) E [O, l;,‘2] or G”u-J(yo) E [nh. z], j = 1. 2, ., i. In this d&nition, we can equally well 

use ~6 in place of yrr by the timma above. 
First notice that by the Lagrange Theorem we have 

AIG-(“U-‘J(wflr,-])I 3 I?* - y;l (AS) 

for some r+ I E P-‘([yo. JJA]). 

Hence 

IC;-cn’-l)(AI)/ ~ IG-(“n-‘I@,) - G-(“n-ll(a,)l 
‘J’,) - Y;! RIG-(“-~I~(~,~-,)I 

where <,,.I~u,0-, E (A - (J/3/4)17, (3/4)a) and for every i, G-‘(&-1), G-‘(w,“-l) belong to the intcrvalh 

G,,([O, n]), where G1([O, rr]} r [r/4, ($3/4)n] and G#, R]) C [n - (63/4)~, (3/4)rr]. 
To finish the proof we make use of the following fact. 
If for every i = 0, 1, 2, ui > fi for some p > 0 then there is a(b) -D II such that e- ‘rcB1 l-.,1 < LI( and 
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consequently under the notation pn = n:=aa,, s, = c:,ajl - a,] we have for every n, e-a(o)Sq < P,, and so if 
s, <: dr < +m then there is cr > 0 such that p,, > cl for every n 

Hence to show that there is c > 0 such that 

V* /G,(G-‘(L-d)1 ~ inf fl 
“0 t=o IGE,(G-i(W,“-I))I 

it k enough to prove that there is d < +m such that 

lG,(‘.-‘(Lo-d 
IG:,(G-‘(wzo-J)/ 

c>o (‘471 

< d. (A@ 

Indeed, we have 

IGl,(G-G,-,))I < 2 IG~,(G-YUQ) - GI,(G-‘G-d)1 
IG:,(G-i(~,o-d)l !=o iG,(W~no-d)i 

I 
< +m. 

Here we have used the fact that for every 5, w that belong either to [n/4, (d3/4)n] or to [a - (q3/4)rr, (3/4)a] we 
have 

P,,(E) - G,(w)1 < WV3)lt - WI (Ah)) 

and consequently 

lG-i(E,,-d - G-‘(wnl,-d < (1/2~3)i/Eno-~ - +,I> (All) 

and the fact that there exists bI > 0 such that /G;,(G-‘(uI+))] > bl (since G-L(~,O-I) E [n/4, (q3/4)rr] U 

[r7 - (v/3/4)11, (3/4)11]). Furthermore, we have set D := max {sup G;, sup Gi} < +m. 
The estimate obtained is independent of ya, yb thus we have proved the existence of c > 0 such that (A2) is 

satisfied. 
Removing from the interval [ya, yh] successfully subintervals satisfying (A2) (’ I.e. intervals with all points tending 

to r) we conclude that the Lebesgue measure of the union of the removed intervals is equal to m([yo, yh]) 
(moreover, the set of points that do not tend to B has a Cantorlike structure). This implies that for almost every 
u. E [0, a], lim, 0, = tr, which finishes the proof of the Theorem. 


