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Cryptographically Secure Substitutions Based on the
Approximation of Mixing Maps

Janusz Szczepanski, José M. Amigó, Tomasz Michalek, and Ljupco Kocarev

Abstract—In this paper, we explore, following Shannon’s sug-
gestion that diffusion should be one of the ingredients of resistant
block ciphers, the feasibility of designing cryptographically secure
substitutions (think of S-boxes, say) via approximation of mixing
maps by periodic transformations. The expectation behind this ap-
proach is, of course, that the nice diffusion properties of such maps
will be inherited by their approximations, at least if the conver-
gence rate is appropriate and the associated partitions are suffi-
ciently fine. Our results show that this is indeed the case and that,
in principle, block ciphers with close-to-optimal immunity to linear
and differential cryptanalysis (as measured by the linear and dif-
ferential approximation probabilities) can be designed along these
guidelines. We provide also practical examples and numerical evi-
dence for this approximation philosophy.

Index Terms—Black cipher, differential cryptanalysis, linear
cryptanalysis, mixing dynamical system, periodic approximation,
S box.

I. INTRODUCTION

CRYPTOGRAPHY has come to be understood as the sci-
ence of secure communication. The publication in 1949 by

C. E. Shannon of the paper “Communication Theory of Secrecy
Systems” ushered in the era of scientific secret-key cryptography
[1] by providing a theory of secrecy systems almost as compre-
hensive as the theory of communication he had published one
year before. In his masterpiece, Shannon laid the mathematical
foundations of secrecy systems, proved under what conditions
a perfect security may exist and proposed design principles for
practical encryption systems. Two methods were suggested as
basic principles: diffusion and confusion. In the method of dif-
fusion, “the statistical structure of the message which leads to
its redundancy is dissipated into long range statistics —i.e., into
statistical structure involving long combinations of letters in the
cryptogram”. The method of confusion seeks “to make the re-
lation between the simple statistics of the ciphertext and the
simple description of the key a very complex and involved one”.
Shannon also suggested mixing transformations to be used for
practical encryption systems. He wrote:
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“Good mixing transformations are often formed by repeated
products of two simple noncommuting operations. Hopf has
shown, for example, that pastry dough can be mixed by such a
sequence of operations. The dough is first rolled out into a thin
slab, then folded over, then rolled, and then folded again, etc.
In a good mixing transformation of a space with natural coordi-
nates , the point is carried by the transforma-
tion into a point , with

and the functions are complicated, involving all variables in a
“sensitive” way. A small variation of any one, , say, changes
all the considerably. If passes through its range of possible
variation, the point traces a long winding path around the
space.”

Suppose we have a probability or measure space and a
measure-preserving transformation . The transfor-
mation possesses the mixing property (or simply, is mixing)
if, for any two measurable sets ,

(1)

Therefore, given any set of positive measure, any set of
positive measure will always intersect the set as it evolves
with from some initial ’time’, and the measure of that part of

which is contained in at the moment is asymptotically
proportional (for ) to the measure of . At the end,
dilutes, so to speak, in the whole space , becoming there an
homogeneous stationary distribution. It is precisely this prop-
erty which explains the origin of the following expression: “A
set of positive measure in its evolution mixes uniformly in
the phase space.” If we think now of the set of possible messages
as the phase space and the set of sensible (high probability)
messages as an initial region in , then the mixing property
of the dynamics implies the spreading out of the influence of
a single message digit over many ciphertext digits and, by the
same token, the scattering of the high probability messages (ini-
tial region) through the entire phase space as time goes on.

Cryptography is generally acknowledged as the best method
of data protection against passive and active fraud [2]. Block
ciphers transform a relatively short string (typically 64, 128,
or 256 bits) to a string of the same length under control of a
secret key. Several block encryption ciphers based on chaotic
maps have been proposed in literature, in which a discretization
(process that describes the way a chaotic map is implemented
in the computer) is not realized by rounding the chaotic map
according to the computer arithmetic, but rather is constructed
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explicitly. Pichler and Scharinger [3] proposed cryptographic
systems based on chaotic permutations constructed by explic-
itly discretizing the two dimensional baker’s map. Fridrich [4]
extended their ideas to chaotic permutations on any size of
two dimensional lattices. Her permutations benefit from the
expanding property along one axis, technically avoiding the
contracting property along the other axis. The authors of [5]
used two well-known chaotic maps, exponential and logistic,
to construct a class of block encryption algorithms. In a recent
paper [6], they analytically derived the lower bound of a number
of active S-boxes in their algorithms, computed upper bounds
for differential and linear probabilities, and therefore, proved
the resistance of the algorithms proposed in [5] to differential
and linear attacks. Masuda and Aihara [7] considered a discrete
version of the skew-tent map, which exploits important chaotic
properties such as the sensitive dependence on initial condi-
tions and the exponential information decay. They discussed
the difference between the discretized map and the original
map, explaining the ergodic-like and chaotic-like properties of
the discretized map.

In this paper, we explore the feasibility of designing cryp-
tographically secure substitutions via approximation of mixing
maps by periodic transformations. In order to adapt the con-
tinuous dynamics of a mixing map to the block structure of a
cryptosystem and, most importantly, to assure that the good sta-
tistical properties of the first are transferred to the second, we
use periodic approximations of dynamical systems. The approx-
imation of automorphisms of measure spaces by periodic auto-
morphisms first appeared in the works of Halmos and Rohlin.
Clearly, one expects that the better the mixing properties of the
approximated dynamical system, the better the cryptographic
properties of the discrete maps obtained in the process of ap-
proximation. In general, security evaluation of block ciphers
consists of three steps: first, one should prove the resistance to
differential and linear attacks; second, one should check for the
extensions and generalizations of differential and linear attacks;
and third, one should take into account several dedicated attacks
applicable to cipher with a small number of rounds. However,
one should keep in mind that provable security against one or
two important attacks does not imply that the cipher is secure:
other attacks may exist. On the other hand, provable security
against certain attacks is certainly a first step in the right di-
rection. The subject of the present paper is precisely the rela-
tion between the dynamical system used for encryption and the
quality of the resulting cryptosystem as quantified by its immu-
nity to linear and differential cryptanalysis, which are currently
the benchmarks for measuring the safety of the standard block
ciphers.

Let be a permutation of -bit blocks and, as usual, de-
note by and the linear approximation probability
and differential approximation probability of , respectively
(see Sections III and IV for precise definitions of these “prob-
abilities”). and measure the immunity of the block
cipher to attacks mounted on the corresponding cryptanal-
ysis, immunity being higher the smaller their values. We show
in this paper that if is a cyclic periodic approximation of a
mixing automorphism and some assumptions are fulfilled, then

and get asymptotically close to their greatest lower

bounds and , respectively, thus obtaining an arbi-
trarily close-to-optimal immunity to both cryptanalyzes. There-
fore, we prove, as suggested by Shannon, that mixing transfor-
mations may indeed be used in encryption systems, providing
an alternative to the traditional algebraic methods.

This is the outline of the paper. The notation and the neces-
sary framework on approximation of dynamical systems are set
in Section II. Although this section is slightly technical because
of the generality with which it is formulated, we are going how-
ever to apply its results in rather familiar settings where techni-
calities can be dispensed with. In Section III we briefly review
(following [8] ) the properties of the substitution ciphers con-
structed approximating ergodic automorphisms from the point
of view of linear cryptanalysis. Section III also paves the way
to Section IV, devoted to differential cryptanalysis, which con-
tains the main theoretical results. All these sections have been
provided with concrete calculations in order to clarify the basic
ideas. Finally, in Section V, we discuss some implementations
of our approximation-based approach.

II. NOTATIONS AND PRELIMINARIES

In ergodic theory, one may study the relationship between the
properties of dynamical systems and the speed of their approx-
imations by dynamical systems of some particular fixed class,
such as periodic dynamical systems. The following definitions
and theorems related to this topic can be found in [9].

Let be a set, a -algebra of subsets of and a pos-
itive measure on . A finite measure space is
a Lebesgue space if it is isomorphic (in the sense of measure
theory) to an interval of together with countably many point
masses. Suppose is an automorphism of the Lebesgue space

, i.e., is a one-to-one map of onto itself such that,
for all , we have and

. We shall consider sequences of finite partitions
of the space and sequences of automorphisms such that

preserves . The automorphism preserves the parti-
tion , if it sends every element of into an element of the
same partition. The elements of will be denoted by ,

(we will eventually drop the upper index of the
partition elements to ease the notation). By we denote
the -algebra of subsets of the space consisting of elements
of (except, possibly, for zero-measure sets). The notation

(when ), where is the partition of into
separate points, means that, for each , there is a sequence
of sets such that , where

stands for symmetric set difference. Since the number of ele-
ments of the partition is finite, the trajectory of each is
finite, i.e., for some , , we have .
For the sequel it is not important how interchanges the
points within , but it is convenient to assume that
for any point . By we denote the order of , i.e.,
the smallest natural number such that is the identity.

Finally, will denote, as usual, the Hilbert
space of the square-integrable functions with
scalar product and norm

. Given an automorphism of , the
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unitary operator defined by
is called the Koopman operator induced by .

Definition 1: Suppose is a function on the integers such
that monotonically.

1) An automorphism of the space possesses an
approximation of the first type by periodic transforma-
tions (a.p.t. I) with speed , if there exists a sequence
of partitions and a sequence of automorphisms

preserving such that

2) If for the sequences , , where is a periodic
automorphism of order , we have the inequality

and in the strong topology of operators in
, then possesses an approximation of the

second type by periodic transformations (a.p.t. I) with
speed .

3) If the automorphism possesses an a.p.t. I and cycli-
cally permutes the elements of , then is said to pos-
sess a cyclic approximation with speed .

Equivalently, we will also say that is a periodic ap-
proximation (of the corresponding type) of the automorphism

. Let us illustrate these concepts with a classical example.
Example: Given an irrational number , let be the rota-

tion of the circle by the angle , i.e., ,
. Thus is an aperiodic automorphism of .

It is known from the theory of continuous fractions [10] that for
every irrational , there exists a sequence of irreducible frac-
tions such that

(The number is the best possible one: any larger value ren-
ders the proposition false.) Taking
with

(2)

and the sequence of rotations of the circle by the angles
(so that with and

is the identity on ), it follows that

This proves that is a cyclic approximation of with
speed .

The Rohlin–Halmos Lemma [9] states that, if is an auto-
morphism of the Lebesgue space , then for all
and every positive integer there exists a set (depending
on and ) such that (i) the sets are disjoint,
and (ii) . It follows that any automor-
phism has periodic approximations. In fact, one defines a peri-
odic approximation of by putting

if
if
if

where is the set whose existence is guaranteed by the
Rohlin–Halmos Lemma for ; the corresponding par-
tition is also defined by means of . Unfortunately, the
proof of the Rohlin–Halmos Lemma is not constructive, so that
periodic approximations of aperiodic automorphisms are only
known in simple cases, like for rigid motions in the circle (see
previous example), disc, sphere and torus, while their construc-
tion in more general cases remains a challenging task.

A different question is the relation between the properties
of the approximating periodic transformations and the approx-
imated one. Intuition says that the faster the approximation
speed, the worse the statistical properties of the approximated
automorphism, e.g., ergodicity and mixing. On the other hand,
a “good” cyclic approximation of an automorphism should
guarantee its ergodicity. In fact, the following results can be
proved [9].

Theorem 1:

1) Any automorphism possesses a.p.t. I with speed
, where is an arbitrary monotonic sequence of

real numbers tending to infinity.
2) If the automorphism possesses a cyclic a.p.t. I with

speed and , then is ergodic.
3) If the automorphism possesses an a.p.t. II with speed

and , then is not mixing.

The periodic approximation can be viewed as
a coarse-grained approximation of the actual dynamic .
Once the approximation speed has been correctly tuned,
is asymptotically the best approximation of as far as its
diffusion properties are concerned.

Example (continued): For the rotation of the circle by an ir-
rational angle, we have shown before that , so
that we recover from Theorem 1 2) the otherwise easy-to-prove
result that such an automorphism is ergodic. It is also straight-
forward to show that is not mixing directly from the definition,
(1) (take, for instance, , and see
what happens when and is irrational). Let us show,
however, how this follows from Theorem 1 3) in a rather simple
fashion too.

In fact, since the order of equals the cardinality of (i.e.,
, we only need to check that in the strong

topology of operators in , where
is the Borel -algebra of and the corresponding

Lebesgue measure) in order to prove that possesses an a.p.t.
II with speed [see Definition 1 2)]. According
to Theorem 1 3), it will follow then that is not mixing.
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The Koopman operators
in question are given by

and

for all . Thus,

Now, since
smooth with support in is dense in

[11], there exists such that for
every . Therefore, for all , we have

where

Since both and can be done arbi-
trarily small by choosing and in convenient ways, it follows

.

III. LINEAR APPROXIMATION PROBABILITY

Linear cryptanalysis was proposed by Matsui [12]. This at-
tack on block ciphers exploits the statistical inhomogeneities
of certain expressions called linear approximations involving
different digits of the plaintext, ciphertext and the key of the
encryption round considered. We go first over the basics we
need. Given any pair of -bit blocks ,

, and a map , define
as

(3)

where, as usual, denotes addition in (also called the XOR
operation), and is the parity of the
bitwise product of and (and analogously for ). Next
we define the linear approximation probability of ( for
short) as

(4)

where

(5)

and

Therefore, the linear approximation probability is the
square of the maximal imbalance of the following event: the
parity of the input bits selected by the mask is equal to the
parity of the output bits selected by the mask . Since [12]

one gets . Immunity of to linear cryptanal-
ysis means that should be uniformly distributed in

(resp. ) for fixed (resp. ) so that

or, equivalently, . Observe for further ref-
erences that, if is a cyclic permutation (i.e.,

for all ), then (5) can
be written as

(6)

independently of .
Let be a Lebesgue space and an

automorphism. Let be a periodic approximation of and
the corresponding partition of .

For definiteness and without restriction, we choose for
the time being, this choice being dictated by the applications
to the design of -bit -boxes we have in mind; other choices
will be made in Section V. With this proviso, let

be a one-to-one map that associates to each element
an -bit block , . Hence, labels

the elements with binary words of length like, for
instance, the assignment , where

, does. In this setup, the action
of on the elements of , , induces the obvious
permutation ,

on their -bit -labels. Needless to say, we expect that
the diffusion properties the automorphism has if it is mixing,
will not be completely lost on the way from to our substitution
candidate via and .

For , let be the element of the partition
such that and, mimicking (3) and (6) with ,

, define the binary function
(subordinated to the partition ) as
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and also

(7)

According to these definitions

which shows [see (7) with instead of , and (6) with
replaced by ] that, for cyclic approximations ,
the equality

(8)

holds independently of . The expression (8) relates a crypto-
graphic quantity (a measure of immunity to linear cryptanalysis)
to a dynamical quantity (average of along orbits), allowing
to study the first one with the help of the second. Moreover, it
gives us a handle for calculating the -value of the substitu-
tion by means of the properties of and . In fact, the
following theorem is proved in [8].

Theorem 2: Let be a uniquely ergodic au-
tomorphism with invariant measure . Furthermore, suppose

, , is a cyclic approxima-
tion of with speed , such that

(9)

and

(10)

Then

The ergodic automorphism is said to be uniquely
ergodic if there exists on only one -invariant measure (up
to normalization). Cyclic approximations with speed were
defined in Definition 1 3). If for (or,
more generally, all partition elements have the same mea-
sure), the condition (9) is redundant since then it follows from
the ergodicity of [8]. The proof of the following corollary can
be also found in [8].

Corollary 3: If is asymptotically uniformly dis-
tributed with respect to and , then the approximation speed
of to the ergodic automorphism is with

.
According to Theorem 1, if is a periodic approxima-

tion of of the second type with , then is not mixing.

Therefore, Corollary 3 suggests that to get by this method a
cryptosystem immune to linear cryptanalysis, ergodicity and ap-
proximations of the first type might not be enough, rather one
should use a mixing automorphism and approximations of the
second type.

Example (continued): Suppose now , , and
enumerate lexicographically the partition elements (2) by means
of -bit blocks. Let . Then, the rotation
of the circle by the rational angle , with

, generates the block substitution

where denotes the sum modulo 2 of and with carry and
deletion of the -th leftmost digit if it is 1 (to account for
the modulo 2 congruence). In order to keep track of the carries
without introducing too much notational machinery, let us take
a concrete , say for simplicity, so that

(11)

where, as usual, , , denotes the complementary digit
of (i.e., if and if ) and we use the
shorthand

if
otherwise

(12)

for . Therefore, if and only
if

(13)

Thus, for masks with , the condition
(13) holds at least for all blocks with , since then

. Hence, for such masks

and, consequently

It should be clear that other choices of are dealt with in
a similar manner and lead to the same result. We conclude that
the ergodicity of the aperiodic rotations of the circle does not
suffice to obtain block substitutions with good properties from
the standpoint of linear cryptanalysis.

IV. DIFFERENTIAL APPROXIMATION PROBABILITY

Resistance against differential cryptanalysis of a block cipher
with key , , means that, for every fixed nonzero input dif-
ference to , none of the output differences occurs with high
probability [13]. In order to formulate this concept mathemati-
cally, let be a permutation of -bit blocks. The
immunity of to differential cryptanalysis is measured by the



448 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 2, FEBRUARY 2005

differential approximation probability of ( for short) as
defined by

(14)

where is the input difference, the output difference and

Here denotes the componentwise
XOR (or vector addition modulo 2) of the -bit blocks and
(and analogously for ). It follows

The smaller , the better the immunity of the block cipher
to differential cryptanalysis. As compared to ,

the worse lower bound holds now because with
trivially

as well. With the approach followed in Section III in mind, we
notice that, if is a cyclic permutation, then can
also be written as an average on orbits of , namely

(15)

independently of , where is the characteristic func-
tion of the set .

Let be a Lebesgue space and a -in-
variant automorphism. Let be a periodic approximation of

and the corresponding partition.
As before, let be a one-to-one labeling of the
subsets with -bit blocks and let denote the substitution

induced on by the
periodic approximation . For , let be the
element of the partition such that and set

(16)

Let us notice that, if the periodic approximation is cyclic, the
quantity

(17)

is independent of ; set . Fur-
thermore, since if and only if

, the equality

(18)

trivially holds (replace by in (15)). This equation is the
equivalent of (8) for differential cryptanalysis and, given the au-
tomorphism and its cyclic approximation , it permits
in a similar way to calculate the -value of the ensuing sub-
stitution .

Analogously, define

(19)

Before stating precisely our main result concerning the resis-
tance of the block cipher against differential cryptanalysis,
we need the following lemma.

Lemma 4:

1) Let be the product of a -preserving automor-
phism with itself times. Suppose

, is a cyclic approx-
imation of with speed . If fulfills the condition
(10), then

2) If, furthermore, is mixing and , then

where can be made arbitrarily small by taking large
enough.

Proof:

1) The proof of this part of the lemma is illustrated in Fig. 1.
From (17)–(19) it follows the inequality

where is the set (16). On integrating this inequality
over with the normalized measure , we get
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Fig. 1. Graphical illustration of the essence of periodic approximations. Here,
the partition P (with q = 2 = 64 elements) is depicted as a regular mesh
for simplicity. The action of T is exemplified on the partition elements P =
P and P only. The shadowed areas show the corresponding set difference
T (P )4T (P ) for n = 6. According to the approximation property this area
tends to zero when n tends to infinity (i.e., when the partition becomes finer)
with the rate f(2 ) = �=2 . This estimation was used in the proof of point 1
at Lemma 4.

where, by the assumption (10)

2) The proof of this part of the lemma is illustrated in Fig. 2.
Fix , and consider the expression

By the definition (16) of , we have

Fig. 2. Illustration of mixing. The mixing property ofT implies that any region
A consisting of some number of blocks spreads uniformly over the whole
space of blocks also under the action of the approximation T because of its
shadowing property (see text). The number of blocks belonging to A that after
transformation by T reaches another region A is proportional to the area of
A (see definition of mixing in the Introduction). This property was exploited
in the proof of the second part of Lemma 4.

We introduce now the following auxiliary sets. Given
such that , define

Then

Moreover, since (disjoint union) and the
automorphism is -preserving

holds. Due to the mixing property of , for each , we
have
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Adding over all , the bound

follows, since and
for all . Hence

with . Finally,
can be made arbitrarily small by taking in large
enough.

The main theorem of this paper is now a straightforward con-
sequence of the previous Lemma.

Theorem 5: Let be the product of a mixing au-
tomorphism with itself times. Suppose

is a cyclic approximation
of with speed satisfying (10). Then

where can be made arbitrarily small by taking large
enough.

Example (continued): If , then we get from
(11)

so that

If we choose now , it follows that

We see again that ergodicity without mixing is not enough to
derive cryptographically secure substitutions.

V. EXAMPLES

As already mentioned in Section II, given a Lebesgue space
and a mixing, -invariant automorphism in , it is

in general not known how to construct periodic approximations
of , where . So, in imple-

mentations of the approximation philosophy explained above,
one has to circumvent this problem and this calls for using only
the fact that is a periodic approximation of . In our
case the situation is somewhat simpler, since all we need for

our purposes is to come up with the reshuffling of the -bit
blocks .

One way we propose to make the trick is the following. First
observe that, if is a cyclic approximation of and

, then holds with
high probability (in the sense of the measure ), in fact, with
arbitrarily high probability as increases. If is sufficiently
mixing, this will be even the case for moderate . Therefore, for
a ’typical’ one may reasonably expect, being
a cyclic approximation of , that the finite sequence of iterates

will visit all sets once (and
only once). Moreover, from

for and , and the cyclicity of , it
follows that

where is the speed of the approximation. This spells
out that, up to the precision set by the partition , the sequence

“shadows” the mixing dynamics of the
approximated automorphism for most (asymptotically, almost
all) . Remember that , where is the partition of

into separate points, so that the partitions gets finer (i.e.,
their diameters get smaller) with increasing and thus
locates within its vanishing diameter. Let us stress again
that for us to define is not important how the sets look
like but only the order in which they are visited by the iterates
of .

It remains to enumerate the (unknown) partition elements
in order to be done; clearly, the cryptographic perfor-

mance of will depend in general on this enumeration. For
this reason, we propose to enhance the diffusion properties of

by numbering the partition elements in such a way that close
elements (in the sense of the metric, assuming is a metric
space) get close -blocks (in the sense of Hamming distance,
assuming , 1). To make sure that the iterates

, , have scattered evenly over , one
might want to set on a uniform mesh of subintervals and
check that all iterates belong to different subintervals. (For good
mixing maps, it should not take many attempts to find such an

.)
To be more specific, we may assume that the -dynamic on

the (unknown) partition is given by ,
, for a typical . This dynamic is then carried over

by some diffusion-enhancing labeling to
in the obvious way: . We

1We stress here that a small number of points/blocks does not satisfy this
property. However, the measure of such points/blocks tends to 0 when the parti-
tion becomes finer and the quality of the designed S-boxes becomes better. This
fact can be observed in the the numerical example presented in Table I.
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TABLE I
VALUES OF LP AND DP FOR DIFFERENT BLOCK LENGTHS l

will presently explain a simple realization of such a for
and that, as a matter of fact, easily

generalizes to other intervals and dimensions. Furthermore, in
the light of Theorem 5, it may be convenient to “accelerate” this
dynamic by using , , instead.

In this spirit, let us consider the first points
of the orbit of under a mixing map

, i.e.,

where the initial point has to be chosen according to the
previous recommendations. After ordering the points
first by the size of their -coordinates and then by the size of the
corresponding -coordinates in consecutive, disjoint groups of

points, we shall associate to each of them a block .
This amounts to labeling the partition elements as follows: if

, then . The
resulting substitution on is . Thus, start by
putting the -coordinates in order of size

(20)

Next, group them in consecutive, disjoint segments of ele-
ments, , , and label the
-th segment by the -bit representation of . Order, in turn,

the corresponding -coordinates, , by
their size

and label , , by the -bit representation
of .

Given now , , suppose is the rank
(starting from 0) of the said segment of (20) in which lies and,
among the corresponding abscissas, is the rank (starting from
0) of . We assign then to the -block
which, as above, codifies the rank parameters in binary
form. This completes the ’encoding’ , see also
Fig. 3. Generalizations to other intervals and dimensions need
no further elucidation.

For we have considered algebraic automorphisms on
of the form

Fig. 3. The encoding method applied in the example, here n = 64.

with , , , integers and , because they are
invariant with respect to Lebesgue measure and computationally
efficient. Table I summarizes the results obtained in the case

with the accelerated dynamic : In particular, for
one finds and , which compare
very favorably with the performances of other methods pro-
posed in the literature for designing -boxes of size 8, for in-
stance in [6]. Finally, let us make a few remarks concerning the
previous results.

1) For blocks of lengths 8 and 10 bits, the search was exhaus-
tive both for and .

2) In the case of linear cryptanalysis of blocks of lengths 12
to 18 bits, the number of (randomly chosen) linear approx-
imations considered was .

3) Similarly, in the case of differential cryptanalysis of
blocks of lengths 12 and 14 bits, the number of (ran-
domly chosen) pairs (input difference, output difference)
checked was also – . For blocks of lengths 16 and
18 bits, this number was .

In the next example, we use Baker’s map (without accelera-
tion) to construct cryptographically secure substitutions directly
from two seed binary vectors. Let be
Baker’s map

if
if
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and let , be two random
binary vectors with . First of all, we associate to and

the point by using the dyadic representation

Then, the action of on , , trans-
lates in the dyadic representation (with fixed length ) into the
following left and right shifts:

In general, , where

, and stands for a string of zeros. We will
consider hereafter only the first iterates (so
that ).

Observe next that if denotes the lexicographical order of
-blocks, viz.,

then

iff

Therefore, rather than ordering the coordinates and ac-
cording to their sizes to find out , we can instead order the
-blocks

(21)

, lexicographically (first the to get and
then the corresponding in consecutive, disjoint groups of
vectors to get , when implementing the general procedure).

As a result, to any pair of random blocks ,
, corresponds a unique substitution

on -blocks, where now and are
given by the lexicograpical order of the -vector pairs

and in (21), respectively.
Note that is obtained recursively from by
shifting the leftmost bit of into the leftmost bit of (with

and ).
In the numerical simulation, we chose ,

and (8-bit blocks). For a sample of
3000 seed random vector pairs, the best performance was

and .

VI. CONCLUSIONS

In this paper, we proposed periodic approximations of mixing
dynamical systems as a practicable way one can go to con-
struct cryptographically secure substitutions. Indeed, although

the theoretical results stated in Sections III and IV are of ab-
stract nature, the leading principle behind can be materialized in
a simple form. More importantly, numerical implementations,
two of which were reported in Section V, support this approach
in quite satisfactory terms.
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