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During the last years a new approach to construct safe block and stream ciphers has been
developed using the theory of dynamical systems. Since a block cryptosystem is generally, from
the mathematical point of view, a family (parametrized by the keys) of permutations of n-bit
numbers, one of the main problems of this approach is to adapt the dynamics defined by a map
f to the block structure of the cryptosystem. In this paper we propose a method based on the
approximation of f by periodic maps Tn (v.g. some interval exchange transformations). The
approximation of automorphisms of measure spaces by periodic automorphisms was introduced
by Halmos and Rohlin. One important aspect studied in our paper is the relation between
the dynamical properties of the map f (say, ergodicity or mixing) and the immunity of the
resulting cipher to cryptolinear attacks, which is currently one of the standard benchmarks
for cryptosystems to be considered secure. Linear cryptanalysis, first proposed by M. Matsui,
exploits some statistical inhomogeneities of expressions called linear approximations for a given
cipher. Our paper quantifies immunity to cryptolinear attacks in terms of the approximation
speed of the map f by the periodic Tn. We show that the most resistant block ciphers are
expected when the approximated dynamical system is mixing.

Keywords : Approximations of dynamical systems; block ciphers; immunity to linear
cryptanalysis.

1. Introduction

Nowadays, secure communications play an im-
portant role in many fields of common life like
telecommunications, industry, banking, commerce,
etc. Traditionally, this issue has been handled
with increasingly sophisticated algorithms like DES
(private key block cipher) or RSA (public key en-
cryption), which eventually have to be upgraded
as computer power makes theoretical threads more
practical. The construction of such algorithms is

based on number theory, algebra, algebraic geom-

etry (recently: elliptic curves over finite fields),
combinatorics and complexity theory.

During the last decade, different alternatives

to algorithmic encryption have been proposed.
One of them makes use of the theory of both contin-
uous and discrete dynamical systems to construct

cryptosystems. This approach relies on dynamical
properties such as ergodicity, mixing, chaos, . . . to
obtain safe ciphers. In the frame of the continuous

1937



July 22, 2003 12:2 00777

1938 J. M. Amigó & J. Szczepański

theory, the method of synchronization of chaotic
systems [Kapitaniak, 1996] and chaos control [Kap-
itaniak, 1996; Ott et al., 1990] are applied. In the
case of discrete systems, the method focuses on it-
erations of chaotic (ergodic, mixing, . . . ) maps and
intelligent ways of introducing secret keys.

The earliest applications of continuous systems
in cryptography were proposed by Pecora and Car-
oll [1990] as a possible application of the synchro-
nization of chaotic dynamical systems. This idea has
been further developed by Kocarev et al. [1992] and
Parlitz et al. [1992], where they present an experi-
mental test system based on a chaotic electronic cir-
cuit. In the first paper analog signals are used, while
digital information is used in the second one. Other
more recent applications of chaos synchronization
to cryptography in the case of discrete maps can
be found in [Millerioux & Mira, 1997, 1998]. For an
overview of encryption methods based on the mod-
ulation of the trajectories of continuous dynamical
systems, see [Kapitaniak, 1996]. On the other hand,
application of discrete chaotic systems to cryptogra-
phy was first proposed by Habutsu et al. [1991] and
developed in [Kotulski, 1997, 1999; Fridrich, 1998;
Kohda & Tsuneda, 1997].

In practical applications, the main problem of
this approach consists of adapting the dynamics
defined on a continuum to the n-bit block struc-
ture of the cryptosystems. While it is probably true
that the typical behavior of finite approximations of
chaotic systems should “converge” to that of their
continuous counterparts, only very little is known so
far. As a matter of fact, one expects that the better
the ergodic properties of the approximated dynam-
ical system, the better the cryptographic proper-
ties of the discrete maps obtained in the process
of approximation. The subject of this paper is pre-
cisely the relation between the dynamical system
used for encryption and the quality of the result-
ing cryptosystem. Traditionally, extensive statisti-
cal testing was used to assess this quality. Currently
interest has shifted to immunity to linear and differ-
ential cryptanalysis and their modifications, which
exploits certain statistical inhomogeneities of the
block ciphers most commonly used. In the following
pages, we will deal only with linear cryptanalysis.

Assuming that obtaining arbitrary numbers of
known plaintext–ciphertext pairs is feasible, linear
cryptanalysis (proposed by Matsui [1993]) provides
the most powerful attack on DES to date [Menezes
et al., 1997]. The idea behind Matsui’s method is

to construct a linear approximation among the bits
of the plaintext, the corresponding ciphertext and
the key used for encryption such that the deviation
|p − 1

2 | is large, where p is the probability over all
plaintexts (considered equiprobable) that the linear
approximation constructed holds. It is known that
the best block cipher occurs when the deviation of
all linear approximations equals 2−(n+2)/2, n being
the block length of the cipher. This raises the ques-
tion of how to design such maps. We prove that
the discrete approximations of appropriate dynam-
ical systems provide a family of block permutations
which implements such cryptosystems.

This paper is organized as follows. Sections 2
and 3 are devoted to introduce the concepts of dy-
namical systems and linear cryptanalysis, respec-
tively, needed in Sec. 4 to study the cryptanalytical
properties of the periodic approximations of dynam-
ical systems, which build the core of the present
paper. Section 5 contains the conclusions and final
remarks.

2. Approximations of Dynamical

Systems

Let (X, A, µ) be a measure space and (Pn)n≥1 a se-
quence of increasingly finer partitions of (X, A, µ).
We say that (Pn)n≥1 is a Lebesgue sequence if, for
every nested sequence (Pn)n≥1 with Pn ∈ Pn, the
intersection

⋂

n≥1 Pn contains exactly one point.
The measure space (X, A, µ) is a Lebesgue space

if there exists X0 ∈ A with µ(X\X0) = 0 such that
(X0, A∩X0, µ|A∩X0) has a Lebesgue sequence of
partitions.

The following statement [Cornfeld et al., 1982]
refers to the automorphisms of Lebesgue spaces.

Theorem 2.1. If T is an aperiodic automorphism

of the Lebesgue space (X, A, µ), then for all ε > 0
and every n ∈ N there is a set E ∈ A such that

(1) the sets E, TE, . . . , T n−1E are disjoint,

(2) µ
(

⋃n−1
i=0 T iE

)

> 1 − ε.

An ergodic automorphism T : X → X is said
to be uniquely ergodic if (up to normalization) there
exists only one T -invariant measure. For uniquely
ergodic automorphism, the Birkhoff–Khinchin er-
godic theorem can be sharpened in the following
way [Cornfeld et al., 1982]:

Theorem 2.2. Let T be an automorphism of the

probability space (X, A, µ). The following condi-

tions are equivalent:
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1. T is uniquely ergodic.

2. For every f continuous on X, the sequence
(

1
n

∑n−1
i=0 f(T i(x))

)

n≥1
uniformly converges to

a constant κ(f).
3. Every x ∈ X is typical for the dynamical system

(X, A, µ, T ).

Moreover, given ε > 0 the estimate
∥

∥

∥

∥

∥

1

n

n−1
∑

i=0

f ◦ T i − κ(f)

∥

∥

∥

∥

∥

= sup
x∈X

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

f(T i(x)) − κ(f)

∣

∣

∣

∣

∣

≤ 2‖g‖
n

+ ε (1)

holds for every n ∈ N, where

κ(f) =

∫

X
fdµ (2)

and g is a continuous function in X such that

‖f − κ(f) − (g ◦ T − g)‖ < ε (3)

Observe that the parameters n and ε appearing in
(1) can be chosen independently.

Suppose T is an automorphism of the Lebesgue
space (X, A, µ). We shall consider sequences of
finite partitions (Pn)n≥1 of the space X and se-
quences of automorphisms (Tn)n≥1 such that Tn

preserves the partition Pn = {P (n)
i : 1 ≤ i ≤ qn},

i.e. Tn sends every element of Pn into an element
of the same partition. By A(Pn) we denote the σ-
algebra of subsets of X generated (mod0) by the

elements of Pn, i.e. A(Pn) is generated by P
(n)
i ∪N,

1 ≤ i ≤ qn, for any N ⊂ X with µ(N) = 0. The
notation Pn → E when n → ∞, where E is the par-
tition of X into separate points, means that for each
A ∈ A there is a sequence of sets An ∈ A(Pn) such
that µ(An∆A) → 0 when n → ∞. Since the number
of elements of the partition Pn is finite, the trajec-

tory of each P
(n)
i under Tn is finite, i.e. for some

ri ∈ N, 1 ≤ i ≤ qn, we will have T ri

n P
(n)
i = P

(n)
i .

One important example of partition-preserving
maps are the interval exchange transformations.
Without loss of generality, we say that a map
T : [0, 1] → [0, 1] is an interval exchange trans-

formation if it is injective and there exist numbers
0 = t0 < t1 < · · · < tm = 1 and ai ∈ R, 1 ≤ i ≤ m,

such that for every i and every ti−1 < x < ti we
have

T (x) = σix + ai

where σi = +1 or −1. Obviously T preserves
Lebesgue measure. If σi = +1 for every i we say
that the interval exchange transformation preserves
orientation.

Partition preserving transformations can be
used to approximate measure preserving automor-
phisms [Cornfeld et al., 1982].

Definition 2.3. Suppose f(n) ↓ 0.

1. Let T be an automorphism of the Lebesgue space
(X, A, µ), Pn → E a sequence of partitions
of X and Tn a sequence of automorphisms of
(X, A, µ) preserving Pn. Then, (Tn, Pn) is said
to be a periodic approximation of the first type

of T with speed f(n) if

qn
∑

i=1

µ(TP
(n)
i ∆TnP

(n)
i ) < f(qn) ,

n = 1, 2, . . .
2. If for the sequences (Pn), (Tn), where Tn is a pe-

riodic automorphism of order pn, we have the
inequality

qn
∑

i=1

µ(TP
(n)
i ∆TnP

(n)
i ) < f(pn) ,

n = 1, 2, . . . , and the linear operators UTn
:

L2(X, A, µ) → L2(X, A, µ) defined by

UTn
(f) := f ◦ Tn

converge to UT : f 7→ f ◦ T in the strong topol-
ogy of operators in L2(X, A, µ), then (Tn, Pn) is
said to be a periodic approximation of the second

type of T with speed f(n).
3. If (Tn, Pn) is a periodic approximation of the

first type of T and Tn cyclically permutes the el-
ements of Pn, then (Tn, Pn) is said to be a cyclic

approximation of T with speed f(n).

If nothing else is stated, periodic approxima-
tions are meant to be of the first kind. It follows
from Theorem 2.1 (known as the Rohlin–Halmos
Lemma) that any automorphism can be approxi-
mated by periodic ones. Clearly, the faster the au-
tomorphism T is approximated by periodic ones,
the worse are its statistical properties, v.g. ergodic-
ity and mixing. In fact, the following result can be
proved [Cornfeld et al., 1982]:
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Theorem 2.4

(1) If the automorphism T possesses an approxi-

mation of the first type by a periodic transitive

transformation with speed θ/n and θ < 4, then

T is ergodic.

(2) If the automorphism T possesses an approxi-

mation of the second type with speed θ/n and

θ < 2, then T is not mixing.

3. Linear Cryptanalysis

We start this section by defining some basics of
block ciphers. Let Z2 = {0, 1} be the two-element
field provided with the binary sum (0⊕0 = 1⊕1 = 0,
0 ⊕ 1 = 1 ⊕ 0 = 1) and the product, and denote by

Z
n
2 = Z2 × · · · × Z2

= {ξ = (ξ1, . . . , ξn) : ξi = 0, 1 for 1 ≤ i ≤ n}

the set of n-bit blocks (or words). The set of k-bit
(secret) keys will be denoted by K.

Definition 3.1. An n-bit block cipher is a function
EK : Z

n
2 × K → Z

n
2 such that for each key K ∈ K,

E(P, K) is an invertible map (the encryption func-

tion for K) from Z
n
2 to Z

n
2 written EK(P ). The in-

verse mapping is the decryption function, denoted
DK(C).

EK : Z
n
2 → Z

n
2

P = (p1, . . . , pn) 7→ C = (c1, . . . , cn) .

Each P is called a plaintext and C = Ek(P ), the
corresponding ciphertext.

Among the most frequently used ciphers, the
Data Encryption Standard (DES) is the most well-
known block cipher. It is defined by the American
standard FIPS 46-2.

Linear cryptanalysis was first envisaged as a
known-plaintext attack to DES, although it is also
well fitted to mount an attack on other kinds
of block ciphers. A known-plaintext attack is one
where the adversary has a quantity of plaintext and
corresponding ciphertext.

The purpose of linear cryptanalysis is to find
the following “effective” linear expression (also
called linear approximation) of a given cipher
algorithm:

P [i1, i2, . . . , ia] ⊕ C[j1, j2, . . . , jb]

= K[k1, k2, . . . , kc] (4)

where P [i1] denotes the ith bit of P (and analo-
gously for C and K),

P [i1, i2, . . . , ia] := P [i1] ⊕ · · · ⊕ P [ia]

(and analogously for C and K), i1, . . . , jb and
k1, . . . , kc denote fixed bit locations and Eq. (4)
holds with probability p 6= 1/2 for randomly given
plaintext P and the corresponding ciphertext C.
The magnitude of |p − 1/2| represents the effec-

tiveness of Eq. (4). The actual value of p can be
determined by a detailed analysis of the encrypting
algorithm for all (eventually, “almost” all) key num-
bers. In doing this, one typically derives relations of
the form (4) for one or several rounds (taking into
account that the output of a round is the input of
the next one) and then applies the following lemma:

Lemma 3.2 (Piling-up Lemma). Let Xi (1≤ i≤n)
be independent random variables whose values are 0

with probability pi or 1 with probability 1−pi. Then

the probability that X1 ⊕ X2 ⊕ · · · ⊕ Xn = 0 is

1

2
+ 2n−1

n
∏

i=1

(

pi −
1

2

)

.

Once one succeeds in reaching an effective lin-
ear expression, it is possible to determine one key
bit K[k1, k2, . . . , kc] by the following two-step al-
gorithm based on the maximum likelihood method
[Matsui, 1993]:

Algorithm. Let N be the number of plaintexts.

1. (Step 1) Determine the number N0 of plaintexts

such that the left side of Eq. (4) is equal to zero.

2. (Step 2) If N0 > N/2, then guess

K[k1, k2, . . . , kc] =

{

0 when p > 1/2

1 when p < 1/2

If N0 < N/2, then guess

K[k1, k2, . . . , kc] =

{

1 when p > 1/2

0 when p < 1/2
.

The most effective linear expression (i.e. |p −
1/2| is maximal) is called the best expression

and the corresponding probability p, the best

probability.
The following lemma describes the success rate

of this method:

Lemma 3.3. Let N be the number of given random

plaintexts and p be the probability that Eq. (4) holds,
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and assume |p− 1/2| is sufficiently small. Then the

success rate of the foregoing Algorithm is
∫ ∞

−2
√

N |p−1/2|

1√
2π

e−x2/2dx . (5)

According to (5), the bigger |p − 1/2| is, the
smaller number N of plaintexts one needs to achieve
a given success rate. Numerical integration yields
the success rate of Algorithm 1:

N =
1

2
|p − 1/2|−2 |p − 1/2|−2 2|p − 1/2|−2

92.1% 97.7% 99.8%

4. Cryptanalytical Properties of the

Approximations of Dynamical

Systems

For simplicity we will discuss two-dimensional dy-
namical systems defined, without loss of generality,
in the unit interval [0, 1]×[0, 1] ≡ [0, 1]2 and estab-
lish the connection between them and the structure
of n-bit block ciphers. Higher dimensional dynami-
cal systems are treated analogously. For the reader’s
convenience, we keep (essentially) the notation of
Matsui [1996].

Given any pair of binary sequences ΓP =
(π1, . . . , πn) 6= 0, ΓC = (γ1, . . . , γn) 6= 0 and a map
Sn : Z

n
2 → Z

n
2 , define fΓP ,ΓC

: Z
n
2 → Z2 as

ξ = (ξ1, . . . , ξn) 7→ 1 ⊕ ξ ◦ ΓP ⊕ Sn(ξ) ◦ ΓC

where α◦β denotes the parity (0 or 1) of the bitwise
product of α and β, i.e.

ξ ◦ ΓP := ξ1π1 ⊕ · · · ⊕ ξnπn ∈ {0, 1}
and, analogously,

Sn(ξ) ◦ ΓC = S(ξ)1γ1 ⊕ · · · ⊕ S(ξ)nγn ∈ {0, 1}
Observe that the products ξ ◦ ΓP and Sn(ξ) ◦ ΓC

“pick up” those bits of ξ and Sn(ξ) which positions
are given by the entries 1 in ΓP and ΓC , respectively.
Indeed, if

πi =

{

1 for i = i1, i2, . . . , ia
0 otherwise

and

γj =

{

1 for j = j1, j2, . . . , jb

0 otherwise

then, for all ξ = (ξ1, . . . , ξn) ∈ Z
n
2 ,

ξ ◦ ΓP = ξi1 ⊕ · · · ⊕ ξia ,

Sn(ξ) ◦ ΓC = Sn(ξ)j1 ⊕ · · · ⊕ Sn(ξ)jb

and

fΓP ,ΓC
(ξ)

= 1 ⊕ ξi1 ⊕ · · · ⊕ ξia ⊕ Sn(ξ)j1 ⊕ · · · ⊕ Sn(ξ)jb

Sometimes one says that the bits of ξ and Sn(ξ) are
masked by ΓP and ΓC , respectively.

Let S : [0, 1]2 → [0, 1]2 be a map and Pn =
{P (ξ) : ξ ∈ Z

n
2} a partition of [0, 1]2. Then, given

x ∈ [0, 1]2, we have x ∈ P (ξ) for some ξ ∈ Z
n
2 and

S(x) ∈ P (η) for some η ∈ Z
n
2 . This being the case,

set

x ◦ ΓP := ξ ◦ ΓP , S(x) ◦ ΓC := η ◦ ΓC (6)

As a matter of fact, the function fΓP ,ΓC
: Z

n
2 → Z2

induces a map fΓP ,ΓC
: [0, 1]2 → Z2 in the obvious

way:

fΓP ,ΓC
(x)

= 1 ⊕ ξ ◦ ΓP ⊕ η ◦ ΓC

= 1 ⊕ ξ1π1 ⊕ · · · ⊕ ξnπn ⊕ η1γ1 ⊕ · · · ⊕ ηnγn

(7)

Lemma 4.1. Let Γ = (γ1, . . . , γn) ∈ Z
n
2 , Γ 6= 0,

and define

AΓ = {x ∈ [0, 1]2 : x ◦ Γ = 0}

BΓ = {x ∈ [0, 1]2 : x ◦ Γ = 1} = [0, 1]2 ∼ AΓ

Then, P (ξ) ⊂ AΓ or P (ξ) ⊂ BΓ for any ξ ∈ Z
n
2 and

#{P (ξ) ⊂ AΓ} = #{P (ξ) ⊂ BΓ} .

Proof. For any x ∈ P (ξ), x ◦ Γ = ξ ◦ Γ = 0 or 1
and, therefore, P (ξ) ⊂ AΓ or P (ξ) ⊂ BΓ, respec-
tively. On the other hand, suppose γi0 = 1 (remem-
ber that Γ = (γ1, . . . , γn) 6= 0) and call, as usual,
ek = (0, . . . , 1, . . . , 0) the kth unit vector of Z

n
2 .

Then

P (ξ) ⊂ AΓ ⇒ P (ξ ⊕ ei0) ⊂ BΓ

and

P (ξ) ⊂ BΓ ⇒ P (ξ ⊕ ei0) ⊂ AΓ

where here

ξ ⊕ ei0 = (ξ1, . . . , ξn) ⊕ (0, . . . , 1, . . . , 0)

= (ξ1, . . . , ξi0 ⊕ 1, . . . , ξn)

Since ei0 ⊕ ei0 =0, it follows that the pairing P (ξ) ↔
P (ξ ⊕ ei0) is well defined, with each element being
in a different set of the partition AΓ ∪BΓ = [0, 1]2.

�
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For notational convenience, we use eventually
the labeling

Pn = {Pk : 1 ≤ k ≤ 2n}

instead of Pn = {P (ξ) : ξ ∈ Z
n
2}. Choose, for exam-

ple, k = ξ1 · 2n + · · · + ξn−1 · 2 + ξn.

Corollary 4.2. Let S : [0, 1]2 → [0, 1]2 be a µ-

preserving ergodic map and Pn = {Pk : 1 ≤ k ≤
2n}, a partition of [0, 1]2. If µ(Pk) = 1/2n for all k,
then

µ(fΓP ,ΓC
) :=

∫

[0,1]2
fΓP ,ΓC

(x)dµ(x) =
1

2
(8)

for every ΓP , ΓC ∈ Z
n
2 .

Proof. From the definitions (6) and (7) one has

Si(x) ◦ ΓP ∈ AΓP
& Si+1(x) ◦ ΓC ∈ AΓC

⇒fΓP ,ΓC
(Si(x)) = 0

Si(x) ◦ ΓP ∈ AΓP
& Si+1(x) ◦ ΓC ∈ BΓC

⇒fΓP ,ΓC
(Si(x)) = 1

Si(x) ◦ ΓP ∈ BΓP
& Si+1(x) ◦ ΓC ∈ AΓC

⇒fΓP ,ΓC
(Si(x)) = 1

Si(x) ◦ ΓP ∈ BΓP
& Si+1(x) ◦ ΓC ∈ BΓC

⇒fΓP ,ΓC
(Si(x)) = 0

for i = 0, 1, . . . .
On the other hand, owing to Lemma 4.1 and to

the hypothesis µ(Pk) = 1/2n for 1 ≤ k ≤ 2n,

[0, 1]2 = AΓP
∪ BΓP

= AΓC
∪ BΓC

with µ(AΓP
) = µ(BΓP

) = µ(AΓC
) = µ(BΓC

) = 1/2
for all ΓP ,ΓC ∈ Z

n
2 . Since S preserves the measure

µ of [0, 1]2 and is ergodic, the orbit of x under the
action of S is uniformly dense in [0, 1]2, for almost
every x ∈ [0, 1]2. It follows

lim
N→∞

1

N

N−1
∑

ν=0

fΓP ,ΓC
(Sν(x)) =

1

2

Apply now the ergodic theorem. �

From the mathematical point of view, any bi-
jection of n-bit numbers, Sn : Z

n
2 → Z

n
2 , can be

considered an n-bit block cipher. Set as before

N0 = #{ξ ∈ Z
n
2 : ξ ◦ ΓP ⊕ Sn(ξ) ◦ ΓC = 0}

= #{ξ ∈ Z
n
2 : fΓP ,ΓC

(ξ) = 1}

where ΓP , ΓC ∈ Z
n
2 , and define

LP Sn(ΓP , ΓC) :=

(

2
N0

2n
− 1

)2

(9)

By definition, 0 ≤ LP Sn(ΓP , ΓC) ≤ 1.
Let p be the probability for the linear

approximation

ξ ◦ ΓP ⊕ Sn(ξ) ◦ ΓC = K ◦ ΓK

to hold. Then,

(i) if K ◦ ΓK = 0,
(

p − 1

2

)2

=

(

N0

2n
− 1

2

)2

=
1

4
LP Sn(ΓP , ΓC)

(ii) if K ◦ ΓK = 1,
(

p − 1

2

)2

=

(

2n − N0

2n
− 1

2

)2

=

(

1

2
− N0

2n

)2

=
1

4
LP Sn(ΓP , ΓC)

In any of both cases,
∣

∣

∣

∣

p − 1

2

∣

∣

∣

∣

=
1

2

√

LP Sn(ΓP , ΓC)

or

LP Sn(ΓP , ΓC) = 4

(

p − 1

2

)2

Furthermore, it can be proved [Matsui, 1996] that
∑

ΓP∈Z
n
2

LP Sn(ΓP , ΓC) = 1 ∀ΓC ∈ Z
n
2

The natural quantity measuring the immunity

of the cipher Sn to linear cryptanalysis is [Matsui,
1996]

LP Sn

max := max
ΓP ,ΓC 6=0

LP Sn(ΓP , ΓC)

the immunity being higher the smaller LP Sn

max is.
One also speaks of resistance against linear crypt-
analysis with the same meaning.

Thus, immunity of Sn to linear cryptanalysis
means that LP Sn(ΓP , ΓC) should be uniformly dis-
tributed in ΓP (resp. ΓC) for fixed ΓC (resp. ΓP ) so
that

LP Sn(ΓP , ΓC) ' 1

2n
∀ΓP , ΓC ∈ Z

n
2
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We show below that the permutations obtained by
means of periodic approximations of appropriate
dynamical systems have this property.

A permutation Sn : Z
n
2 → Z

n
2 is called cyclic

if the orbit of ξ ∈ Z
n
2 , {ξ, Sξ, S2ξ, . . . , S2n−1ξ}, is

Z
n
2 for all ξ. If Sn is a cyclic permutation on Z

n
2 ,

formula (9) can be written as

LP Sn(ΓP , ΓC)=4

(

1

2n

2n−1
∑

i=0

fΓP ,ΓC
(Si

n(ξ))− 1

2

)2

(10)

where, according to (7),

fΓP ,ΓC
(Si

n(ξ)) = 1⊕Si
n(ξ) ◦ΓP ⊕Si+1

n (ξ) ◦ΓC ∈ Z2

Given a transitive map S : [0, 1]2 → [0, 1]2, set

LP S(ΓP , ΓC) = 4

(

1

2n

2n−1
∑

i=0

fΓP ,ΓC
(Si(x)) − 1

2

)2

where fΓP ,ΓC
: [0, 1]2 → Z2 is the map induced by

fΓP ,ΓC
as in (7) via a partition Pn = {P (ξ) : ξ ∈

Z
n
2}. In particular, if (Sn, Pn) is a cyclic approxi-

mation of S, then

LP Sn(ΓP , ΓC)=4

(

1

2n

2n−1
∑

i=0

fΓP ,ΓC
(Si

n(x))− 1

2

)2

(11)

Suppose Sn sends P (ξ) to P (η) and define the per-
mutation Sn : Z

n
2 → Z

n
2 by η = Sn(ξ). Observe that,

although we use the same letter for the periodic
approximation and the corresponding permutation,
there is no confusion since the first is defined on
points or intervals of [0, 1]2, whereas the latter only
makes sense on n-bit blocks. Hence, if S i

n(x) ∈ P (ξ)
and Si+1

n (x) ∈ P (η), then

fΓP ,ΓC
(Si

n(x)) = 1 ⊕ ξ ◦ ΓP ⊕ η ◦ ΓC

= fΓP ,ΓC
(Si

n(ξ))

0 ≤ i ≤ 2n − 1, which shows that (10) and (11) are
actually the same.

The expression (11) relates a cryptanalytical
quantity (a measure of immunity to linear crypt-
analysis) to a dynamical quantity (average off ΓP ,ΓC

along orbits), allowing to study the first one with
the help of the second.

Lemma 4.3. Let fΓP ,ΓC
: [0, 1]2 → {0, 1} be as in

(7) S : [0, 1]2 → [0, 1]2 an automorphism with in-

variant measure µ and g : [0, 1]2 → R a continuous

map such that

‖fΓP ,ΓC
− κ − (g ◦ S − g)‖ <

ε

4
(12)

where κ ∈ R, ε > 0 and ‖ · ‖ denotes the supremum

norm in C([0, 1]2), the space of the continuous func-

tions defined in [0, 1]2. Then g can be chosen such

that

Kε := ‖g‖ > 1 − ε .

Proof. First of all notice that the condition (12),
which says that fΓP ,ΓC

− κ is “almost” a cocycle,
does not fix ‖g‖. Indeed, if g fulfills (12), so does
gα := g + α for every α ∈ R since gα ◦ S − gα =
g ◦ S − g. This being the case, α can be chosen in
such a way that ‖gα‖ is minimal, namely

gα(x) = g(x) − g(x∗) + g(x∗)
2

=
2g(x) − g(x∗) − g(x∗)

2

where x∗, x∗ ∈ [0, 1]2 are points where g reaches its
maximum and minimum, respectively. Then

‖gα‖ = gα(x∗) = −gα(x∗)

=
g(x∗) − g(x∗)

2
(13)

Therefore, we may suppose in the following with-
out loss of generality that g is “centered” so that it
fulfills (13).

For all x ∈ XΓP ,ΓC
:= {x ∈ [0, 1]2 :

fΓP ,ΓC
(x) = 0} one has the bound

| − κ − g(S(x)) + g(x)| <
ε

4

and, for all y ∈ YΓP ,ΓC
:= {y ∈ [0, 1]2 : fΓP ,ΓC

(y) =

1} = [0, 1]2 ∼ XΓP ,ΓC
, the bound

|1 − κ − g(S(y)) + g(y)| <
ε

4

hence

ε

2
> |κ + g(S(x)) − g(x)|

+ |1 − κ − g(S(y)) + g(y)|

≥ |1 + g(S(x)) − g(S(y)) + g(y) − g(x)|

≥ |1 + g(S(x)) − g(S(y))| − |g(x) − g(y)| (14)
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Choose x ∈ XΓP ,ΓC
and y ∈ YΓP ,ΓC

such that
|g(x) − g(y)| < ε. Then

|1 + g(S(x)) − g(S(y))| <
3ε

2

so that

1 − 3ε

2
< g(S(y)) − g(S(x)) < 1 +

3ε

2
(15)

Consider now the images S(XΓP ,ΓC
) and

S(YΓP ,ΓC
). Because of ergodicity these sets have

nonempty intersections with XΓP ,ΓC
and YΓP ,ΓC

.
This means that there exists a point z such that
every neighborhood U of z has a nonempty in-
tersection with XΓP ,ΓC

, YΓP ,ΓC
, S(XΓP ,ΓC

) and
S(YΓP ,ΓC

). In S−1(U) there are points x ∈ XΓP ,ΓC
,

y ∈ YΓP ,ΓC
such that |g(x) − g(y)| < ε and S(x) ∈

XΓP ,ΓC
, S(y) ∈ YΓP ,ΓC

. Hence, applying the in-
equality (14) with S(x) and S(y) instead of x and
y, respectively, one obtains

ε

2
> |1 + g(S(y)) − g(S(x))| − |g(S2(y))− g(S2(x))|

Thus

|g(S2(y)) − g(S2(x))|

≥ |1 + g(S(y)) − g(S(x))| − ε

2

> 2 − 3ε

2
− ε

2

= 2 − 2ε

where (15) was used. Finally,

‖g‖ =
g(x∗) − g(x∗)

2

≥ g(S2(y)) − g(S2(x))

2
> 1 − ε �

Observe that ‖g‖ does not depend on ΓP , ΓC ,
but only on ε.

Lemma 4.4. Let S : [0, 1]2 → [0, 1]2 be a uniquely

ergodic automorphism with invariant measure µ
such that

µ(fΓP ,ΓC
) =

∫

[0,1]2
fΓP ,ΓC

(x)dµ(x) =
1

2

and suppose (Sn, Pn), Pn = {Pk : 1 ≤ k ≤ 2n},
is a cyclic approximation of S. Then the following

estimate holds for every ε > 0:
∣

∣

∣

∣

∣

1

2n

2n−1
∑

i=0

(fΓP ,ΓC
(Si

n(x)) +fΓP ,ΓC
(Si(x))) − 1

∣

∣

∣

∣

∣

≤ 1

2
(LP Sn(ΓP , ΓC))1/2 + ε +

2Kε

2n

where Kε > 1 − ε.

Corollary 4.2 guarantees that if Pn is uniform

in the sense that µ(Pk) = 1/2n for all k, then the
hypothesis µ(fΓP ,ΓC

) = 1/2 is fulfilled.

Proof. We have
∣

∣

∣

∣

∣

1

2n

2n−1
∑

i=0

(fΓP ,ΓC
(Si

n(x)) +fΓP ,ΓC
(Si(x))) − 1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

2n

2n−1
∑

i=0

fΓP ,ΓC
(Si

n(x)) − 1

2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

2n

2n−1
∑

i=0

fΓP ,ΓC
(Si(x)) − 1

2

∣

∣

∣

∣

∣

=
1

2
(LP Sn(ΓP , ΓC))1/2

+

∣

∣

∣

∣

∣

1

2n

2n−1
∑

i=0

fΓP ,ΓC
(Si(x)) − 1

2

∣

∣

∣

∣

∣

after using (11). The estimate
∣

∣

∣

∣

∣

1

2n

2n−1
∑

i=0

fΓP ,ΓC
(Si(x)) − 1

2

∣

∣

∣

∣

∣

< ε +
2Kε

2n

follows from (1)–(3) applied to S, together with
Lemma 4.3 with κ = µ(fΓP ,ΓC

). Observe that, al-

though fΓP ,ΓC
is not continuous, it can be approx-

imated arbitrarily well in the supremum norm by
continuous functions (Urysohn’s Lemma) so that
(1) still holds. �

Observe for later reference that

LP S(ΓP , ΓC) = 4

(

1

2n

2n−1
∑

i=0

fΓP ,ΓC
◦ Si(x) − 1

2

)2

≤ 4

∥

∥

∥

∥

∥

1

2n

2n−1
∑

i=0

fΓP ,ΓC
◦ Si − 1

2

∥

∥

∥

∥

∥

2

≤ 4

(

ε +
2Kε

2n

)2

(16)
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Theorem 4.5. Let S : [0, 1]2 → [0, 1]2 be a

uniquely ergodic automorphism with invariant mea-

sure µ such that µ(fΓP ,ΓC
) = 1/2. Furthermore,

suppose (Sn, Pn), Pn = {Pk : 1 ≤ k ≤ 2n}, is

a cyclic approximation of S with speed θ/2n (0 <
θ < 4) such that

max
1≤i≤2n−1

2n

∑

k=1

µ(S−iPk∆S−i
n Pk) <

θ

2n
(17)

Then

LP Sn(ΓP , ΓC) ≈ 1

2n
+

8

23n/2
± 4θ

23n/2

where “≈” means “up to higher order” in n.

The condition (17) amounts to (S−i
n , Pn) being

a periodic approximation of S−i for 1 ≤ i ≤ 2n − 1.

Proof. From

1

4
|LP Sn(ΓP , ΓC) − LP S(ΓP , ΓC)|

=

∣

∣

∣

∣

∣

∣

(

1

2n

2n−1
∑

i=0

fΓP ,ΓC
(Si

n(x)) − 1

2

)2

−
(

1

2n

2n−1
∑

i=0

fΓP ,ΓC
(Si(x)) − 1

2

)2
∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2n

2n−1
∑

i=0

(fΓP ,ΓC
(Si

n(x)) +fΓP ,ΓC
(Si(x)))−1

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

1

2n

2n−1
∑

i=0

(fΓP ,ΓC
(Si

n(x)) −fΓP ,ΓC
(Si(x)))

∣

∣

∣

∣

∣

one derives

|LP Sn(ΓP , ΓC) − LP S(ΓP , ΓC)|

≤ 4M

2n

2n−1
∑

i=0

|fΓP ,ΓC
(Si

n(x)) −fΓP ,ΓC
(Si(x))| (18)

where, according to Lemma 4.4,

M :=

∣

∣

∣

∣

1

2n

2n−1
∑

i=0

(fΓP ,ΓC
(Si

n(x)) +fΓP ,ΓC
(Si(x))) − 1

∣

∣

∣

∣

≤ 1

2
(LP Sn(ΓP , ΓC))1/2 + ε +

2Kε

2n

for arbitrary ε > 0, Kε > 1 − ε.
Let µ be the S-invariant measure on [0, 1]2 and

H := {x ∈ [0, 1]2 :fΓP ,ΓC
(x) = 1}

so that fΓP ,ΓC
= χH , the characteristic function of

H. On integrating (18) over [0, 1]2, we obtain

|LP Sn(ΓP , ΓC) − LP S(ΓP , ΓC)|

≤ 4M

2n

2n−1
∑

i=0

∫

[0,1]2
|χH(Si

n(x))−χH(Si(x))|dµ(x)

=
4M

2n

2n−1
∑

i=0

∫

[0,1]2
|χS−i

n H(x)−χS−iH(x)|dµ(x)

=
4M

2n

2n−1
∑

i=0

∫

[0,1]2
χS−i

n H∆S−iHdµ

=
4M

2n

2n−1
∑

i=0

µ(S−i
n H∆S−iH)

Now, by the assumption (17),

2n−1
∑

i=0

µ(S−i
n H∆S−iH)

=

2n−1
∑

i=0

2n

∑

k=1

µ(S−i
n (H ∩ Pk)∆S−i(H ∩ Pk))

≤
2n−1
∑

i=0

2n

∑

k=1

µ(S−i
n Pk∆S−iPk) < 2n θ

2n

= θ

Hence,

∣

∣

∣

∣

LP Sn(ΓP , ΓC) −
∫

LP S(ΓP , ΓC)dµ

∣

∣

∣

∣

≤ 4

2n

(

1

2
(LP Sn(ΓP , ΓC))1/2 + ε +

2Kε

2n

)

θ

=
2θ

2n
(LP Sn(ΓP , ΓC))1/2 +

4θε

2n
+

8θKε

22n
(19)

Set

t =
√

LP Sn(ΓP , ΓC)

1. Let us suppose first that LP Sn(ΓP , ΓC) ≥
∫

LP S(ΓP , ΓC)dµ. From (19) we get

t2 − 2
θ

2n
t − A ≤ 0
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where

A :=

∫

LP S(ΓP , ΓC)dµ +
4θ

2n
ε +

8θKε

22n

The roots of t2 − 2 θ
2n t − A = 0 are

α± =
θ

2n

(

1 ±
√

1 +
22nA

θ2

)

(20)

2. Let us suppose now that
∫

LP S(ΓP , ΓC)dµ ≥
LP Sn(ΓP , ΓC). From (19) we get

t2 + 2
θ

2n
t − B ≥ 0

where

B :=

∫

LP S(ΓP , ΓC)dµ − 4θ

2n
ε − 8θKε

22n

The roots of t2 + 2 θ
2n t − B = 0 are

β± = − θ

2n

(

1 ∓
√

1 +
22nB

θ2

)

(21)

Since t =
√

LP Sn(ΓP , ΓC) ≥ 0, (19) boils
down to the restriction

β+ ≤
√

LP Sn(ΓP , ΓC) ≤ α+

Choose now

ε =
1/2

2n/2

Then, using (16), we get

A ≤ 4

(

ε +
2Kε

2n

)2

+
4θ

2n
ε+

8θKε

22n
≈ 1

2n
+2

4Kε + θ

23n/2

and

B ≤ 4

(

ε +
2Kε

2n

)2

− 4θ

2n
ε− 8θKε

22n
≈ 1

2n
+2

4Kε − θ

23n/2

Substitution in (20) and (21) yields

α+ ≈ θ

2n

(

1 +
2n

θ

√
A

)

/
θ

2n

(

1 +
2n/2

θ

√

1 + 2
4Kε + θ

2n/2

)

≈ 1

2n/2
+ 2

2Kε + θ

2n

and, analogously,

β+ /
1

2n/2
+ 2

2Kε − θ

2n

respectively. Therefore,

LP Sn(ΓP , ΓC) ∈ [β2
+, α2

+] =: In (22)

where

α2
+ ≈

(

1

2n/2
+ 2

2Kε + θ

2n

)2

≈ 1

2n
+ 4

2Kε + θ

23n/2

and

β2
+ ≈

(

1

2n/2
+ 2

2Kε − θ

2n

)2

≈ 1

2n
+ 4

2Kε − θ

23n/2

(23)

The middle point of In is

t =
α2

+ + β2
+

2
≈ 1

2n
+

8Kε

23n/2

and the width of In is

∆ =
α2

+ − β2
+

2
≈ 4θ

23n/2
�

Corollary 4.6. If LP Sn(ΓP , ΓC) is asymptotically

uniformly distributed with respect to ΓP and ΓC ,
then the approximation speed of (Sn, Pn) to the er-

godic automorphism S is θ/2n with 2 ≤ θ < 4.

Proof. If LP Sn(ΓP , ΓC) is asymptotically uni-
formly distributed with respect to ΓP and ΓC , then
LP Sn(ΓP , ΓC) = 1/2n for all ΓP , ΓC ∈ Z

n
2 . From

1/2n ≥ β2
+ [see (22)] and (23) we obtain

θ ≥ 2Kε

Thus, from Lemma 4.3 it follows

θ ≥ 2
(

1 − ε

2

)

= 2 − ε

for all ε > 0. �

Remark 4.7. According to Theorem 2.4, if (Sn, Pn)
is a periodic approximation of S of the second
type with θ < 2, then S is not mixing. Therefore,
Corollary 4.6 suggests that to get by this method
a cryptosystem immune to linear cryptanalysis, er-
godicity and approximation of the first type might
not be enough, rather one should use a mixing auto-
morphism and approximations of the second type.
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5. Conclusions and Final Remarks

We presented in this paper a theoretical construc-
tion of n-bit block permutations based on approxi-
mations Sn of an ergodic map S which, under cer-
tain assumptions on the speed of approximation,
can be used as a cryptosystem immune to linear
cryptanalysis. We showed that the deviation for the
resulting ciphers from the most efficient linear ap-
proximations is of the order 1/23n/2, i.e.

∣

∣

∣

∣

LP Sn(ΓP , ΓC) − 1

2n

∣

∣

∣

∣

/
1

23n/2
∀ΓP , ΓC

where n is the length of the bitblocks. Moreover
our results indicate that one should approximate
mixing maps rather than only ergodic ones to en-
sure optimal cryptanalytical performance of Sn. We
described this new approach in the case of two-
dimensional maps defined in [0, 1]2 in order to show
its feasibility, but it can be easily generalized to
higher dimensional systems, which are even more
interesting for applications [Brown & Chua, 1996;
Fridrich, 1998].

In fact, let X be a subset of R
n endowed with

the Lebesgue measure λ (v.g. X = [0, 1]n or T
n,

the n-dimensional torus), let S : X → X be an
automorphism and suppose that Sn : X → X is
an approximation of S in the sense of Halmos–
Rohlin, i.e. there exists a partition Pn = {Pi : i =
1, . . . , 2n} of X such that Sn preserves Pn. Asso-
ciate to each Pi ∈ Pn an n-bit number so that Sn

can also be interpreted as a permutation of such n-
bit blocks. Thus, the situation is formally the same
as the one discussed in the previous section and,
hence, the techniques used above are also applica-
ble with the same conclusions.

Also notice that some of the mathematical tools
used above can be weakened. For example, the Lp-
ergodic theorem for uniquely ergodic maps can be
used instead of the C0-ergodic theorem.

In this paper our main concern was the im-
munity of the cryptosystem to linear cryptanalysis.
It seems that attacks using differential cryptanal-
ysis [Menezes et al., 1997], nonlinear cryptanalysis
[Knudsen & Robshaw, 1996] or any variant or com-
bination of them can be also formulated in the lan-
guage of dynamical systems and will be the subject
of further analysis.
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& Zugaj, A. [1999] “Application of discrete chaotic dy-
namical systems in cryptography–DCC method,” Int.

J. Bifurcation and Chaos 9, 1121–1135.
Matsui, M. [1993] “Linear cryptanalysis methods for

DES cipher,” in Eurocrypt’93 (Springer-Verlag).
Matsui, M. [1996] “New structure of block ciphers with

provable security against differential and linear crypt-
analysis,” in Fast Software Encryption, ed. Gollmann,
D. (Springer-Verlag, LNCS, 1039), pp. 205–218.

Menezes, A. J., van Oorschot, P. C. & Vanstone, S.
A. [1997] Handbook of Applied Cryptography (CRC
Press).

Millerioux, G. & Mira, C. [1997] “Noninvertible piece-
wise linear maps applied to chaos synchronization
and secure communications,” Int. J. Bifurcation and

Chaos 7, 1617–1634.



July 22, 2003 12:2 00777

1948 J. M. Amigó & J. Szczepański
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