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Abstract—The paper concerns the problem of fitting mathematical models of cell signaling pathways. Such models frequently take the

form of sets of nonlinear ordinary differential equations. While the model is continuous in time, the performance index used in the fitting

procedure involves measurements taken at discrete time moments. Adjoint sensitivity analysis is a tool which can be used for finding

the gradient of a performance index in the space of parameters of the model. In the paper, a structural formulation of adjoint sensitivity

analysis called the Generalized Backpropagation Through Time (GBPTT) is used. The method is especially suited for hybrid,

continuous-discrete time systems. As an example, we use the mathematical model of the NF-�B regulatory module, which plays a

major role in the innate immune response in animals.

Index Terms—Biology and genetics, modeling, ordinary differential equations, parameter learning.
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1 INTRODUCTION

CELL signaling pathways are cascades and feedback
loops of biochemical reactions which make possible

transduction of signals within and between biological cells.
There are many approaches to modeling interactions in cell
and cell population on the molecular level [6], [13], [22]. They
differ in precision and generality. The most accurate
approach to modeling of the dynamics of cell signaling
pathways takes into account the stochasticity that is im-
portant on the molecular level. Ordinary differential equa-
tions (ODEs) provide a deterministic description of cell
signaling pathways [14], [17], [25]. Assuming a high rate of
spatial diffusion processes involved, the description in the
terms of ODEs is valid for a single cell. It is also frequently
used to describe the averaged dynamics of cell population [1].
The system of ODEs involves concentrations of protein,
protein complexes, and messenger RNAs (mRNAs) as time
variables.

To compare different models and to test their ability to
model processes for which experimental data are available,
an efficient method of parameter estimation is needed.
Unfortunately, while the model is continuous in time, all
available measurement techniques, such as Western blot
expression analysis, electrophoretic mobility shift assays, or

gene expression microarrays, provide measurements at
discrete time moments only. Moreover, these time moments
frequently are nonuniformly distributed and may be
different for different signals measured.

Estimation of parameters of continuous-time models
based on discrete-time measurements may be accomplished
in various ways. The simplest approach involves estimation
of time derivatives of the model’s variables at the measure-
ments’ times. The system of ODEs is then reduced to a set of
nonlinear algebraic conditions, which are best approxi-
mated using regression. Such an approach may be used
when the observational noise is small and the measure-
ments give enough information about the dynamic vari-
ables. Unfortunately, in the case of the problem addressed
in this paper, the observed measurements are very noisy
and, moreover, not all variables are directly observed.

The initial value approach [20] may be considered more
appropriate because it takes into account the dynamic
nature of the problem. The approach involves minimization
of a quadratic performance index involving differences
between the measurements and the model’s outputs with
respect to the model’s parameters and the initial values of
the variables. Under the assumption that the measurement
errors have a Gaussian distribution, this approach is
equivalent to the maximum likelihood estimation. Recently,
the initial value approach has been successfully used for
identification of the JAK-STAT signaling pathway [24]. The
initial value approach is an iterative optimization procedure
where the information about the gradient of the objective
function may be calculated via the sensitivity analysis. In
this case, several sensitivity models (or one model simu-
lated several times) have to be used in order to find all of
the components of the gradient.

In the paper [24], still another method, the multiple
shooting method proposed in [27] and developed by Bock
[2], [3], was suggested for systems where local minima or
chaotic behavior occurs.
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Adjoint sensitivity analysis is a technique frequently used
in practical optimization problems such as identification or
optimal control design. It is based on efficient calculation of
the gradient of a performance index and reduces the
computational cost compared to straight (tangent linear-
ized) sensitivity analysis because it gives the whole gradient
in a single computation run. Adjoint systems are defined in
the literature as either continuous or discrete in time and
cannot be directly applied to solve the problem of
parameter fitting presented above because of its hybrid,
continuous-discrete nature.

Recently, we have developed a formulation of adjoint
sensitivity analysis, the Generalized Backpropagation
Through Time (GBPTT), which is suitable for solving
hybrid problems. Our method, first published in [8], is an
extension of Backpropagation Through Time (BPTT) [29],
known in neural network theory. BPTT is an offline method
used for learning in recurrent dynamic neural networks. It
involves the “unfolding” in time of the currently trained
recurrent neural network. As a result, a static neural
network is obtained and the standard Backpropagation
(BP) algorithm can be used. Such an approach is easy to
apply to recurrent neural networks with simple structure.
In the case of more complicated discrete-time dynamic
systems, the subset of which is neural networks, unfolding
in time is not easy and, in the case of continuous-time
systems, it is not possible at all. The GBPTT method does
not have these disadvantages. It does not require unfolding
in time and it can be used for both discrete and continuous-
time dynamic systems. In [10], the preliminary results of the
application of adjoint sensitivity analysis to signaling
pathways based on model-based “synthetic data” were
presented.

The data employed in the present paper are biological
measurements obtained using blotting techniques. Blot
images (one image per time point per biochemical species)
can be considered gray-scale densities which need to be
integrated to produce concentrations of respective biochem-
ical species. Because of the nonlinearity of the gray scale
and other factors, conversion to concentrations is inaccu-
rate. Overcoming this difficulty, e.g., by careful calibration,
is outside the scope of this paper. Also, in most cases,
concentration levels may be compared within a single blot
series, but cannot be compared to concentrations estimated
based on other blots. This latter difficulty we successfully
address in this paper by assuming the existence of
unknown multipliers (one multiplier per blot series) and
estimating them within the framework of the GBPTT
methodology.

The proposed approach is employed to fitting the model
of the signaling pathway of NF-�B recently proposed in [17]
to the data published in [14] and [16].

The paper is organized as follows: In Section 2, the
mathematical model of the NF-�B regulatory module, an
important example of a model of cell signaling pathway, is
briefly presented. Then, in Section 3, we describe the data
that, after quantification, have been used to fit the model. In
Section 4, we formally state the problem of fitting of the
continuous-time model to discrete-time measurements and
the problem of finding the gradient of the performance

index. Section 5 describes the GBPTT method, which is used
in Section 6 to solve the problem of finding the gradient of
the performance index. Sections 7 and 8 present numerical
results of fitting parameters of the NF-�B regulatory
module and results of model validation.

2 NF-�B REGULATORY MODULE

Transcription factor NF-�B promotes expression of about
100 genes that play important roles in within and between-
cell signaling. It is involved in cellular stress responses, cell
growth, survival, and apoptosis. The model presented in
this section was proposed by Lipniacki et al. [17]. Readers
interested in biological and mathematical details are
referred to this paper and [14], [16].

The mathematical model of the NF-�B regulatory module
includes 15 first-order nonlinear differential equations:

_x1 ¼ kprod � kdegx1 � k1ux1; ð1Þ

_x2 ¼ k1ux1 � k3x2 � k2ux2x8 � kdegx2 � a2x2x10 þ t1x4

� a3x2x13 þ t2x5;
ð2Þ

_x3 ¼ k3x3 þ k2ux2x8; ð3Þ

_x4 ¼ a2x2x10 � t1x4; ð4Þ

_x5 ¼ a3x2x13 � t2x5; ð5Þ

_x6 ¼ c6ax13 � a1x6x10 þ t2x5 � i1x6; ð6Þ

_x7 ¼ i1kvx6 � a1x7x11; ð7Þ

_x8 ¼ c4x9 � c5x8; ð8Þ

_x9 ¼ c2 þ c1x7 � c3x9; ð9Þ

_x10 ¼ �a2x2x10 � a1x6x10 þ c4ax12 � c5ax10 � i1ax10 þ e1ax11;

ð10Þ

_x11 ¼ �a1x7x11 þ i1akvx10 � e1akvx11; ð11Þ

_x12 ¼ c2a þ c1ax7 � c3ax12; ð12Þ

_x13 ¼ a1x6x10 � c6ax13 � a3x2x13 þ e2ax14; ð13Þ

_x14 ¼ a1x7x11 � e2akvx14; ð14Þ

_x15 ¼ c2c þ c1cx7 � c3cx15: ð15Þ

In the model, state variables xi, i ¼ 1; 2; . . . ; 15, are
concentrations of proteins, complexes of proteins, or their
transcripts:

. x1—IKK kinase in the neutral state,

. x2—IKK kinase in the active state,

. x3—IKK kinase in the inactive state,

. x4—complexes of proteins ðIKKajI�B�Þ,
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. x5—complexes of proteins ðIKKajI�B�jNF�BÞ,

. x6—protein NF�B,

. x7—protein NF�B in the nucleus,

. x8—protein A20,

. x9—protein A20 transcript,

. x10—free I�B� protein,

. x11—free nuclear I�B� protein,

. x12—I�B� transcript,

. x13—cytoplasmic complexes of proteins
ðI�B�jNF�BÞ,

. x14—nuclear complexes of proteins ðI�B�jNF�BÞ,
and

. x15—control gene transcript.

The input signal u is a Boolean variable 1 or 0 and is
equal to 1 when the signaling pathway is stimulated by an
extracellular signal, tumor necrosis factor (TNF), or inter-
leukin-1 (IL-1). State variables and the input signal are time-
dependent, which is not indicated in the model to simplify
the notation. The remaining quantities in the model (1)-(15)
are parameters. In [17], a part of these parameters have been
assumed as known, whereas 10 parameters have been
heuristically fitted based on the data from [14] and [16].

3 DATA

Concentrations of different proteins and their complexes can
be measured using different techniques, such as blotting
techniques (Western Blot, Northern Blot, etc.) or electro-
phoretic mobility shift assay (EMSA). These techniques are
different, but, in most cases, the outcome of the measuring
process is images. An example of such an image is presented
in Fig. 1a. This picture was presented in reference [14] and
represents concentrations of nuclear NF-�B at 20 different
time moments before and during persistent TNF stimulation.
This particular data has been assayed using EMSA technique.
In most cases, times of observations are not uniformly
distributed over the experiment period. Frequently, they
are denser at the beginning of the experiment. In this
particular experiment, measurement times were chosen at:
0, 2, 5, 10, 15, 30, and 45 minutes and 1, 1.25, 1.5, 1.75, 2, 2.5, 3,
3.5, 4, 4.5, 5, 5.5, and 6 hours. Moreover, different signals, such
as molar concentrations of proteins or mRNA levels, can be
measured at different time moments.

Since all measuring techniques used to generate our data
are only semiquantitative, it means that, without deriving a
standardizing curve, one can compare protein or mRNA
levels only within one blot. Hence, quantification may be
performed only for different blots separately. The result of
such quantification, performed on the blot in Fig. 1a, is
presented in Fig. 1b. Because the scale is unknown, the values
are normalized so that the maximum value is equal to 1.

In this paper, we use data, images from blots, and other
assays from two experiments published in reference [14]
and two experiments published in reference [16]. In all four
cases, experiments have been performed on mouse fibro-
blasts. The first two experiments, from [14], have been
performed for two different stimulations with TNF,
persistent, and one-hour pulse. The other two experiments,
from [16], have been performed for wild type cells and for
A20 deficient cells, both under persistent IL-1 stimulation.

These images are presented in Section 7 (Figs. 7 and 8),

where they are compared to signals obtained using our

fitting procedure.

4 PROBLEM FORMULATION

Let us assume that I variables are measured at discrete-time

moments. The variable numbered i is measured at Ni time

moments, ti;1; ti;2; . . . ; ti;Ni
. �i is the set of these time

moments,

�i ¼ fti;1; ti;2; . . . ; ti;Ni
g: ð16Þ

The ith measured signal takes, at time ti;n, the real value

yexp;iðti;nÞ. Let us denote by vexp;iðti;nÞ the result of

quantification (based on a single spot in the blot image) of

this value. This result is a function of yexp;iðti;nÞ:

vexp;iðti;nÞ ¼ vexp;i yexp;iðti;nÞ
� �

: ð17Þ

In general, this function is nonlinear, involving, for

example, saturation, dead zone, nonlinearities of blotting

analysis, etc. However, in this paper, we assume that these

nonlinearities may be neglected and the function (17) is

linear,

vexp;iðti;nÞ ¼ wexp;i � yexp;iðti;nÞ; ð18Þ

where wexp;i is a multiplier to be estimated.
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Fig. 1. Concentrations of nuclear NF-�B before and during persistent

TNF stimulation: (a) the image from EMSA [14] and (b) the result of

quantification based on the image. TNF stimulation starts at 1 hour.



We have
PI

i¼1 Ni scalar measurements.
The output of the model includes I continuous-time

signals, yiðtÞ, i ¼ 1; 2; . . . ; I. Quantities

viðti;nÞ ¼ wi � yiðti;nÞ ð19Þ

are compared to measurements (17). Multiplier wi is an

estimate of wexp;i.
Now, we introduce the quadratic performance index to

be minimized,

J ¼ 1

2

XI
i¼1

XNi

n¼1

qi e
2
i ðti;nÞ; ð20Þ

where eiðti;nÞ is the error of fitting,

eiðti;nÞ ¼ viðti;nÞ � vexp;iðti;nÞ; ð21Þ

and qi, i ¼ 1; 2; . . . ; I, are positive constants to be specified.
Let � denote the set of all measurement times,

� ¼
[I
i¼1

�i ¼ ft1; t2; . . . ; tNg: ð22Þ

In practice, the cardinality of this set is less than the sum of

the cardinalities of sets �i, i ¼ 1; 2; . . . ; I, because some of

these times coincide for different measurements.
The performance index (20) may be expressed in the

vector form

J ¼ 1

2

XN
n¼1

eT ðtnÞQeðtnÞ; ð23Þ

where Q is a diagonal matrix Q ¼ diagðq1; q2; . . . ; qIÞ and

vector eðtnÞ is defined as follows:

eiðtnÞ ¼
eiðti;nÞ if tn 2 �i
0 otherwise:

�
ð24Þ

Let w be a vector of unknown multipliers appearing in

(19) and let p be the vector of all parameters of the model

(1)-(15) that are to be fitted. The problem which is solved in

this paper may be formally stated as follows:

Problem 1. Find optimal vectors p and w minimizing the

performance index (23) under constraints w � 0, p � 0.

To solve the problem using a gradient descent approach,

it is necessary to find the gradients of the performance

index. Hence, the following problem has to be solved:

Problem 2. Find gradients of the performance index (23),

rpJ; rwJ: ð25Þ

The approach presented in this paper is schematically

depicted in Fig. 2. We are about to formulate a gradient-

based fitting algorithm, the primary objective of which is to

solve Problem 2.

Fitting is complicated for several reasons. First, the

problem has a dual nature—the model and the modeled

system are continuous-time, whereas the performance

index is discrete-time and takes the form of the sum (23).

Second, times of measurements may be nonuniformly

distributed and may be different for different outputs.

Third, because it is difficult to compare different blot-series,

it is necessary to find additional multipliers. In addition,

data were generated from several experiments performed in

the presence of different stimulations in different labora-

tories. In the next section, we will present the methodology

which allows approaching the problem stated above.

5 METHOD: GENERALIZED BACKPROPAGATION

THROUGH TIME FOR CONTINUOUS-DISCRETE

SYSTEMS

At the beginning of this section, the basic idea of GBPTT

will be explained using discrete-time nonlinear dynamic

systems as an introductory example. Then, it will be

extended to continuous-discrete systems.
Let us consider a discrete-time system

xðtnþ1Þ ¼ fðxðtnÞ; uðtnÞÞ
yðtnÞ ¼ gðxðtnÞ; uðtnÞÞ;

�
n ¼ 0; 1; . . . ; N; ð26Þ

where x, u, and y are vectors of the state, input, and output of

the system, respectively. Vector functions f and g are

differentiable and generally nonlinear. System (26) updates

its state and output at time moments t0; t1; . . . ; tN . We do not

assume that times t0; t1; . . . ; tN are uniformly distributed.
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Fig. 2. The data flowchart and the proposed gradient-descent approach to parameter fitting.



Let us introduce the input-output sensitivity function:

S
yiðtnÞ
ujðtmÞ ¼

def @yiðtnÞ
@ujðtmÞ

: ð27Þ

Such a function describes the sensitivity of the
ith component of the output signal y at time tn with respect
to the jth component of the input signal u at a previous time
tm. The input-output sensitivity function defined for vectors
u and y is the Jacobi matrix

S
yðtnÞ
uðtmÞ ¼

df

@y1ðtnÞ
@u1ðtmÞ . . . @y1ðtnÞ

@urðtmÞ

..

. . .
. ..

.

@ymðtnÞ
@u1ðtmÞ � � �

@ymðtnÞ
@urðtmÞ

2
664

3
775: ð28Þ

The input-output sensitivity function has a universal
character. One can show that a range of identification and
optimal control problems for nonlinear dynamical systems
can be reduced to the problem of finding such a function.
Indeed, in practical problems, the performance index can be
expressed as a value of an additional output signal of the
system at a specified time. On the other hand, constant
parameters to be optimized can be viewed as values, at a
specified time, of additional input signals of the system. For
example, in [8], the problems of optimal control in open and
closed loop structures have been reduced to the problem of
finding input-output sensitivity function. Moreover, the
input-output sensitivity function allows finding the gradi-
ent of the performance index in the space of signals (control
signals or time varying parameters). Once the value or

values of the input-output sensitivity function are found,
any gradient descent method can be utilized to optimize the
performance index.

The GBPTT method assumes that the system analyzed is
given in a graphical form. Any system (26) can be
represented as a flowchart composed of elements listed in
the first column of Table 1, i.e., the linear discrete-time
dynamical element, the linear static element, the nonlinear
static element, the summing junction, and the branching
node. Other elements in the first column of Table 1 will be
discussed later. Construction of the sensitivity model and of
the so-called modified adjoint system [15] is mnemonic and
depends on replacing all elements by corresponding
elements depicted in the second and the third columns,
respectively. In addition, in the modified adjoint system, the
directions of all signals are reversed. The modified adjoint
system differs from the “standard” adjoint system in that
the time is reversed, which is suitable for simulation
because the obtained system is causal. From now on, we
will omit the word “modified.”

In order to obtain the value of the input-output
sensitivity function (27), the jth input of the sensitivity
model has to be stimulated by a Kronecker pulse at time
moment tm. Then, the required value of the input-output
sensitivity function (27) is equal to the ith output signal at
time moment tn. For many parameters to be optimized, the
sensitivity model has to be solved (simulated) many times
or many sensitivity models have to be simulated. To
decrease the computational effort, the adjoint system is
used. Now, due to the reversal of signal directions and the
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TABLE 1
Rules for Construction of the Sensitivity Model and of the Modified Adjoint System



reversal of time, the ith input signal is stimulated at time

T � tn by a Kronecker pulse. Then, the input-output

sensitivity function (27) will be equal to the jth output

signal at time moment T � tm.
Similarly, for continuous-time systems, the input-output

sensitivity function may be defined and rules for creation of

the sensitivity model and the adjoint system with instruc-

tions how to stimulate them can be specified.
The approach presented above has been extended to

hybrid, continuous-discrete systems [9]. In this paper, an

approach has been proposed and applied to continuous-

time neural networks based on discrete time measurements.
The continuous-discrete time system can be presented as

a flowchart composed of the elements of the entire first

column of Table 1. There are three additional elements not

mentioned above, the continuous-time linear dynamical

element, the ideal pulser, and the sampler. The ideal pulser

connects an output of a discrete-time subsystem with an

input of a continuous-time subsystem. The sampler does

the same, but in the opposite direction. In the adjoint system

(see the third column of Table 1), all pulsers are to be

replaced by samplers and all samplers by pulsers. The rules

for generating the desired input-output sensitivity model

remain the same as in the case of discrete-time systems.
The formal derivation of the GBPTT method for contin-

uous-discrete time systems was presented in [11]. Moreover,

the sketch of the proof of the method correctness can be found

as supplemental material which can be found on the

Computer Society Digital Library at http://computer.org/

tcbb/archives.htm.

6 SOLUTION OF THE PROBLEM

The model (1)-(15) with unknown multipliers describing the
quantification of the data can be presented in the form of a
flowchart shown in Fig. 3.

Vector function f represents the right sides of (1)-(15).
Vectors xðtÞ and _xðtÞ consist of state variables x1; . . . ; x15

and their derivatives, respectively. Input signal uðtÞ is one-
dimensional and it represents stimulation by TNF or IL-1.
Vector p consists of all 10 fitted parameters

p ¼ ½ k1 k2 k3 i1 e2a i1a kprod kdeg c5 c4a �T : ð29Þ

Matrix W is diagonal W ¼ diagðw1; w2; . . . ; wIÞ and the
problem of finding the gradient rwJ is reduced to the
problem of finding the gradient of the performance index
with respect to the matrix W : rWJ . Matrix C describes how
the observed I outputs depend on state variables, so the
dimension of C is I � 15. In most cases, output variables are
simply a subset of state variables.

Now, in order to calculate gradients (25), we replace the
original problem by the problem of finding input-output
sensitivity functions. To accomplish this, let us extend the
flowchart from Fig. 3. The result is presented in Fig. 4.

The vector of parameters p is now a constant “signal”
generated by channeling an additional discrete-time signal
~pðtnÞ ¼ p � �kðtÞ through an ideal pulser and an integrator.
Symbol �kðtÞ represents the Kronecker pulse at t ¼ 0 and,
so, the signal ~pðtnÞ is nonzero only at this time moment. The
same is true for the ideal pulser, which generates, at the
same time, a single Dirac pulse. Constant matrix W is
generated in a similar way. The discrete-time part of the
system functions at time moments t1; t2; . . . ; tN . Additional
signal ~WðtnÞ ¼W � �kðt� t1Þ is different from 0 only at time
moment t1. This signal passes through a summation
operator represented in the flowchart by the discrete
transfer function z=ðz� 1Þ.

The output signal ~JðtnÞ is generated in such a way that,
at the final discrete time moment, it is equal to the
performance index,

~JðtNÞ ¼ J: ð30Þ

Because of these changes, the problem of finding
gradients (25) is now equivalent to the problem of finding
the following input-output sensitivity functions:
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compared to measurements.

Fig. 4. Extended flowchart of the system.



S
~JðtN Þ
~pð0Þ ¼ ½rpJ�T ; S

~JðtN Þ
~Wðt1Þ
¼ ½rWJ �T : ð31Þ

Applying the rules of Table 1 to the flowchart, one

obtains a sensitivity model, which is presented in Fig. 5. The

multiplication block vðtnÞ ¼W � yðtnÞ in the model in Fig. 4

is a special case of the nonlinear static element (Table 1)

with two inputs and one output. The variation of the output

equals �vðtnÞ ¼W � �yðtnÞ þ �W � yðtnÞ, which corresponds

to the part of the sensitivity model. The modified adjoint

system is presented in Fig. 6.
Both systems were built under the assumption that

matrices W and Q were diagonal and, therefore, it was not

necessary to transpose them.
The modified adjoint system of Fig. 6 is used to obtain

the input-output sensitivity functions (31). The discrete-

time part of the modified adjoint system is updated at time

moments T � tN ; T � tN�1; . . . ; T � t1. This system, stimu-

lated by a Kronecker pulse at time moment T � t
N

,

produces discrete-time output signals �ðtnÞ and �ðtnÞ. At

the final time moment, they are equal to the required input-

output sensitivity functions (31):

�T ðT Þ ¼ S ~JðtN Þ
~pð0Þ ; �T ðT � t1Þ ¼ S

~JðtN Þ
~Wðt1Þ

: ð32Þ

The adjoint system can be considered a continuous-time

system stimulated by a series of Dirac pulses generated by

the ideal pulser,

XN
n¼1

WQeðT � tnÞ�ðT � tnÞ: ð33Þ

It is impossible to simulate ideal Dirac pulses. This
difficulty may be overcome by simulating the continuous-
time part of the adjoint system with jumps of state in
discrete time moments. Another approach used by us
consists of replacing ideal Dirac pulses by short-duration
quasi-ideal pulses. This approximation of the ideal pulse
gives satisfactory results.

The next section describes the results of application of
the proposed technique of gradient calculation.

7 NUMERICAL RESULTS

The GBPTT method and the resulting modified adjoint
system have been used to fit parameters (29) of the
model (1)-(15) to data described in Section 2. The data
consist of results of four different experiments. This makes
calculation of the gradient of the performance index,
defined as a sum of four separate performance indexes
(23), more difficult. In these experiments, different input
signals have been applied (persistent and 1-hour pulses)
[14] and measurements were taken with and without
knocking-out the protein A-20 [16]. This latter effect can
be modeled by an additional input signal of the model.

The gradient-based fitting procedure has been imple-
mented in Matlab. The systems (original and adjoint) have
been modeled in Simulink and expressions for nonstation-
ary multidimensional functions fTx ðT � tÞ and fTp ðT � tÞ,
appearing in the adjoint system, have been automatically
derived using Matlab Symbolic Toolbox. To minimize the
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Fig. 5. Sensitivity model.

Fig. 6. Modified adjoint system.



performance index (23), the conjugate gradient algorithm
has been applied and 1,000 iterations have been performed.
Each iteration includes a simulation of the original system
followed by saving the trajectories needed for the adjoint
system, and a simulation of the adjoint system followed by
updating optimized vectors of parameters and multipliers.
Before each iteration, initial conditions for the original
system with updated parameters have to be found. These
initial conditions are provided by steady state solutions of
the system with no excitation. Ideally, they might be found

by solving a set of nonlinear algebraic equations describing

the steady state. Unfortunately, this problem is numerically

ill-conditioned. Therefore, we simulated the model without

excitation until the steady state has been reached. Because

the measurements (obtained from quantification of the

blots) were normalized, the weights qi in (20) have been

chosen equal to 1. The procedure started with parameters

fitted in [17] and varied by a factor 1.5 up and down.
Results are presented in Figs. 7 and 8. Each plot presents

signals obtained using the model yiðtÞwith fitted parameters
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Fig. 7. Results of the fitting procedure. Each plot depicts the output signal of the model with fitted parameters (solid line) and rescaled measurements

(dots). Corresponding blot images are also presented. (a), (b) Experiment 1 from [14], persistent TNF stimulation. (c) Experiment 2 from [14], 1-hour

TNF stimulation. (d), (e), (f) Experiment 3 from [16] wild type cells, persistent TNF stimulation.



(solid line). In addition, black dots depict quantified data
obtained from corresponding blots. Values of quantified
data have been divided by fitted multipliers to present
them in the same scale as outputs of the model. The
corresponding blot image is attached at the bottom of each
plot. One can observe the mismatch between the data and
the signals of the model. This is caused by observational
noise. If a model with more parameters were employed,

the mismatch would be reduced, which would result in

lower values of the performance index. However, this

might lead to overparameterization, i.e., the situation in

which the model fits the identification data extremely well

but fits any other data rater poorly. The next section

includes validation of the model, which allows determin-

ing if overparameterization occurred.
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Fig. 8. Results of the fitting procedure (continued). (a), (b) Experiment 3 from [16], wild type cells, persistent TNF stimulation. (c), (d), (e),

(f) Experiment 4 from [16], A20 deficient cells, persistent TNF stimulation.



The values of 10 fitted parameters are collected in
Table 2. In the same table, heuristically fitted values from
[17] are presented. One can observe differences of up to one
order of magnitude between values of parameters that
differ. Surprisingly, these differences do not cause large
differences in model behavior and the performance index.
To obtain the performance index (23) for parameters fitted
heuristically, we performed optimization with respect to
multipliers under fixed parameters of the model. The result
was 2.96, while our numerical fit of course gave a better
value of 2.02.

The preliminary conclusion is that there is a large set in
the parameter space resulting in similar behavior of the
model and similar value of the performance index. This
phenomenon may be related to the identifiability of our
model and it will be also discussed in the next section of the
paper. It might be possible that not all parameters can be
estimated from the data or only some functions of
parameters can be estimated [18], [26]. Unfortunately, the
system of differential equations analyzed in this paper is
highly complicated and the so-called similarity transforma-
tion cannot be performed easily. We checked the possibility
of the simplest type of nonidentifiability in which one or
part of the parameters does not influence the performance
index and we observed that the performance index varies
with variations of all parameters. The identifiability related
properties may be also inferred ex post based on the
eigenvalue analysis of the covariance matrix of the para-
meter estimates. The covariance matrix may be calculated
as the inverse Hesse matrix of the performance index.

8 MODEL VALIDATION

Because we did not have access to any additional experi-
mental data, we performed the so-called cross validation
approach frequently used in statistics and machine learn-
ing. The data analyzed in this paper was produced in four
independent experiments described in Section 3. We
performed four iterations of cross validation. In each
iteration, the results of one experiment have been removed
from the data set and the remaining three experiments were
used to develop the model. Then, observations from the

removed experiment were compared to the output of the
model under the same stimulation. Results of the procedure
described above are presented in Figs. 9 and 10. Solid lines
represent outputs of the model developed based on all data,
while dashed lines present predictions of signals not taken
into account in model developing. There is no major
discrepancy between models developed based on complete
versus incomplete data. Sometimes the scale of signals is
different, see, for example, Fig. 9d, but the profiles of all
signals are conserved. The validation results look very
accurate, especially with Experiment 4 data removed. The
model obtained based on Experiments 1, 2, and 3 (wild
types) was able to predict the behavior of the cell
population with A20 knock-out. See Fig. 10c, Fig. 10d,
Fig. 10e, and Fig. 10f.

We also examined values of fitted parameters obtained
in different cross-validation steps. Results are presented in
Fig. 11. The values of parameters differ considerably, some
of them by about 100 times. This result is similar to that
obtained in the previous section. Different estimates of
parameters may yield very similar outputs of the model,
even these nonobservable. We also check the influence of
the initial parameter values and the influence of additional
observational noise. Again, the fitting results (parameters)
were sensitive to these factors, while the signals generated
by the models (both observed and nonobserved signals)
were less sensitive.

9 CONCLUSIONS

Models of molecular signaling pathways in cells depend on a
large number of parameters, such as reaction rates and
degradation rates of proteins, rates of transcription and
translation, rates of transport, and other. Some of these
parameters, such as transcription rates, are known quite
accurately, while others are known up to the order of
magnitude. However, there is a group of parameters which
are not known and which might vary over a very wide range.
This group includes, for example, the parameters of active
degradation of proteins and mRNAs. The difficulty is
compounded by the fact that human genetic polymorphisms
may cause individual variability of some of these parameters.
Also, usually it is impossible to measure these parameters in
independent, specially designed experiments.

For these reasons, estimation of parameters of a model
can only be accomplished by fitting models of pathways
involving these parameters to available data. Frequently,
the number of independently measured variables is not
much greater than the number of coefficients. As an effect,
the estimates of parameters are not very reliable. Even if the
comparison of model prediction to data leads to a visually
acceptable fit, it remains unclear if the fit can be improved.
Therefore, it is important to develop procedures aimed at
optimization of the fit.

This paper considers an estimation procedure which
accomplishes this task. The procedure minimizes the mean
square error by using the equivalence between a dynamical
system and its reverse-time adjoint. The methodology,
Generalized Backpropagation Through Time, was devel-
oped in [8] and extended to continuous-discrete systems in
[9]. The method originally was developed for systems
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TABLE 2
Values of Fitted Parameters



defined by a flowchart and has been implemented in the
Matlab-Simulink environment. In the current application,
since mathematical models of cell signaling pathways
assume the form of systems of ODEs, the software allows
description of the model. The equations of the adjoint
model are created automatically by using Matlab’s Sym-
bolic-Toolbox. Then, the conjugate gradient algorithm is
applied. Using a standard PC (Pentium IV, 2.4 GHz), the
optimization process takes about 4 hours.

The GBPTT method is similar in spirit to other
approaches to system analysis proposed in a range of areas
such as signal flow graphs theory [23], [7], electrical circuits
[4], digital filters [5], [19], automatic differentiation [12],
and, finally, neural networks [21], [28]. The GBPTT method
is most similar to the approach proposed by Wan and
Beaufays [28], but it is more universal, first because not only
discrete-time neural networks can be trained. Second, the

GBPTT produces a causal adjoint system, generating the
gradient of the performance index, while the method
proposed in [28] gives a noncausal system containing
z operators. Moreover, using the GBPTT method, one finds
not only the gradient of a performance index in the space of
optimized parameters but also in the space of signals that
influence the system. The GBPTT method has been
extended to hybrid continuous-discrete systems. In [5], the
approach has been applied to learn about continuous-time
neural networks based on discrete time measurements.

In this paper, the method is applied to a biological
system for the first time. This system, the signaling pathway
of the NF�B transcription factor, was already modeled by
us [17], but parameter estimates were selected using a
heuristic iteration. The current application has resulted in
estimates which are improved in the sense of reducing the
mean square error. The performance index, which is

332 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

Fig. 9. Validation results. Each plot depicts output signals of the model based on complete data (solid line) versus those obtained by the model

developed with data from one experiment missing (dashed line). (a), (b) Experiment 1 from [14], persistent TNF stimulation. (c) Experiment 2 from

[14], one hour TNF stimulation. (d), (e), (f) Experiment 3 from [16] wild type cells, persistent TNF stimulation.



minimized, is defined as a weighted sum of discrete-time

differences between outputs of the model and the measure-

ments. Comparison between heuristic and least-squares

estimates reveals their similarity in the sense of minimiza-

tion of the performance index as well as in the sense of

estimated parameter values. The properties of solutions

obtained using the method proposed, for example, their

uniqueness and sensitivity to noise, are not very well

known and will be the subject of future research.
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Fig. 10. Validation results (continued). (a), (b) Experiment 3 from [16], wild type cells, persistent TNF stimulation. (c), (d), (e), (f) Experiment 4 from

[16], A20 deficient cells, persistent TNF stimulation.

Fig. 11. Values of 10 fitted parameters obtained in four iterations of

cross-validation compared to the numerical fit based on all data

available.
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