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1. Introduction

We study the existence of travelling waves solutions of the parabolic system of equations

∂Fi(Ti)
∂t

=
∂

∂x

(
ai(Ti)

∂Ti

∂x

)
+ fi(T ), i = 1, ..., n (1.1)

arising in various applications. Here T = (T1, ..., Tn). A travelling wave solution is a solution of
the form T (x, t) = u(x− qt), where q, the wave velocity is an unknown constant, and the function
u(x) satisfies the system of equations

(ai(ui)u′i)
′ − q(Fi(ui))′ + fi(u) = 0, i = 1, ..., n, (1.2)

where prime denotes the derivative with respect to ξ := x− qt. Taking into account other possible
applications, we will study the following more general system of equations

ai(ui, u
′
i)u

′′
i − qci(ui, u

′
i)u

′
i + Mi(u, u′i)u

′
i + fi(u) = 0, i = 1, ..., n. (1.3)
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We assume that f(u+) = f(u−) = 0 for some constant vectors u+ and u− and we look for solutions
having limits at infinity,

lim
ξ→±∞

u(ξ) = u±. (1.4)

The constant q in (1.3) should be found together with the function u(ξ) satisfying (1.3), (1.4).
We consider the class of systems satisfying the following conditions:

∂fi

∂uj
≥ 0,

∂Mi

∂uj
≥ 0, i 6= j. (1.5)

These are so-called monotone systems for which comparison theorems are applicable. Existence of
travelling waves for monotone systems was studied for various particular cases of the system (1.3)
(see [20], [21] and references therein). The authors of [15] considered the case where ai ≡ ci ≡ const,
Mi ≡ 0, and in [4] ai and ci were constant but Mi was a function of u and u′i.

There are different methods to study existence of waves for monotone systems. In [15] the
Leray-Schauder method is used. It is based on the application of the topological degree defined for
elliptic operators in unbounded domains [17], [18], [19]. In [11], [1] or [8] the Conley index theory
is applied. In this work we use the implicit function theorem and the continuation method. We
consider an appropriate system depending on a real parameter λ ∈ [0, 1] in such a way that for
λ = 1 it coincides with system (1.3) and for λ = 0 it becomes a system, for which the considered
heteroclinic orbits exist. Here we use the results of [15]. First, we prove that for all the possible
strictly monotone heteroclinic solutions both | u′ |C1 and | q | are bounded from above by constants
independent of λ ∈ [0, 1]. Starting from the unique strictly monotone heteroclinic solution for
λ = 0, by means of the implicit function theorem, we can show that the unique heteroclinic solution
exists also for all λ > 0 sufficiently small. Having shown that heteroclinic solutions uλ are strictly
monotone for λ ∈ [0, λ1], λ1 sufficiently close to 0, we can repeat the procedure. The monotonicity
property enables us to take advantage of a priori estimates and allows us to demonstrate that
the linearization of the mapping generated by the left-hand sides of the equations is boundedly
invertible. It allows us to extend the interval of existence of heteroclinic pairs. It is necessary to
emphasize that in this procedure the monotonicity conditions are crucial. As the heteroclinic pair
of the starting system (λ = 0) is unique, then we obtain the uniqueness of solutions at every stage
of continuation.

The contents of the paper are as follows. In Section 2 we specify the assumptions on the
system. In the following section we study properties of linearized operators and in Section 4 we
prove existence of waves. In Section 5 we consider possible generalizations of the results and in
Section 6 we consider a particular case where the proof is self contained. In Section 7 we show that
this method can be applied to prove the existence of travelling wave solutions in a multitemperature
model of laser sustained plasma. These waves connect two states of the gas: the cold unionized and
a hot ionized one. In the last section we consider systems of ODEs perturbed by terms with delays.
If these terms are sufficiently small, the heteroclinic solutions persist after the perturbation, if they
exist for the unperturbed system.
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2. Basic assumptions

We consider the problem (1.3), (1.4) assuming that conditions (1.5) are satisfied. To simplify
the presentation we suppose that the first inequality in (1.5) is strict (see [16]).

We study heteroclinic solutions, which are strictly monotone functions of ξ, i.e. such that
u′i(ξ) > 0 for all ξ ∈ IR1. Thus u+ > u−, where the inequality between the vectors is understood
componentwise. Without loss of generality we can assume that u+ = 0, u− = 1. Here 0 and 1 are
vectors with all their components equal 0 and 1, respectively.

We consider in this work the bistable case where all eigenvalues of the matrices Df(0) and
Df(1) are in the left-half plane. We assume that the vector-function f(u) has a finite number of
zeros Ej = (ej

1, ..., e
j
n) ∈ (0, 1)n, j = 1, ...,K. Each matrix Df(Ej) has at least one eigenvalue in

the right-half plane.
We recall that due to the Perron-Frobenius theorem the principal eigenvalue of a matrix with

positive off-diagonal elements is real and simple, and the corresponding eigenvector is positive. We
will use below a generalization of this theorem for linear elliptic problems satisfying the monotonicity
condition [16], [20] (see Lemma 4).

The functions ai(ui, p), ci(ui, p),Mi(u, p), and f(u) are supposed to be continuous together with
their second derivatives. We do not assume that they are bounded as functions of p. We assume
that

ai(ui, p) ≥ a0 > 0, ci(ui, p) ≥ c0 > 0, i = 1, ..., n

for some constants a0 and c0 and for all ui ∈ [0, 1], p ≥ 0.
We impose additional assumptions used to obtain a priori estimates of solutions (see Lemmas

1 and 2, Section 3). We asume that there exists a positive constant b such that

ci(u, p)
ci(v, r)

≤ b, ∀u, v ∈ [0, 1], 0 ≤ p ≤ r, i = 1, ..., n. (2.1)

Moreover we assume that the derivatives ∂ai(ui, p)//∂p are either nonnegative for all ui, p, and i,
or nonpositive, and that there exist continuous nonnegative functions βi(p), and k(p) defined for
p ≥ 0, and a positive function χi(p), such that for any ui ∈ [0, 1]∫ p

0
ai(ui, s)sds ≥ χi(p),

and
pβi(p)
χi(p)

→ 0, p →∞, |Mi(u, p)| ≤ k(|u|)(1 + βi(p)). (2.2)

These conditions are satisfied if ai, ci,Mi are bounded as functions of p.
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3. Properties of the linearized operator

Let us consider a family of systems depending on the parameter λ ∈ [0, 1]:

Mi(λ, q, u) = 0, (3.1)

i = 1, . . . , n, where

Mi(λ, q, u) = aλi(ui, u
′
i)u

′′
i − (1− λ)qu′i + λ[−qci(ui, u

′
i)u

′
i + Mi(u, u′i)u

′
i] + fi(u), (3.2)

and

aλi(ui, u
′
i) = λai(ui, u

′
i) + (1− λ). (3.3)

We will be interested in heteroclinic solutions u(ξ) to system (1.3) joining the constant states
0 and 1.

DEFINITION 1. A pair (qλ, uλ) ∈ IR1 × C2(IR1, IRn) is called a heteroclinic pair for system
(3.1), if uλ(ξ) satisfies system (3.1) for q = qλ, uλ(ξ) → 0 as ξ → −∞, uλ(ξ) → 1 as ξ → ∞ and
u′λ(ξ) → 0 as ξ → ±∞. It is called strictly monotone, if u′λ(ξ) > 0 for all ξ ∈ IR1.

For all the possible strictly monotone heteroclinic pairs of system (3.1) independently of λ ∈
[0, 1] ’a priori’ estimates of the C1-norm and the absolute value of the parameter q hold.

LEMMA 1. If (qλ, uλ), λ ∈ [0, 1], is a strictly monotone heteroclinic pair for system (3.1) then
there exists a finite constant m such that |u′λ|C0(IR1) < m. This constant is independent of λ, qλ

and uλ.

PROOF. The proof of a more general lemma may be found in [8]. 2

The next lemma states the boundedness of the parameter q.

LEMMA 2. If λ ∈ [0, 1] and (qλ, uλ) is a strictly monotone heteroclinic pair satisfying system
(3.1), then |qλ| < Q, where Q independent of λ and uλ.

PROOF. The proof (modulo slight modifications) is contained in [4] (Lemma 3.4) or in [8]. 2

The boundedness of qλ allows us to estimate the exponential behaviour of monotone solutions near
the singular points (uλ, u′λ) = (0,0) and (1,0).

LEMMA 3. (see [16] Lemma 2.9 p. 164) There exist a number ε̃ > 0, such that for all strictly
monotone heteroclinic solutions uλ of the problem (3.1) with λ ∈ [0, 1] and q ∈ [−Q,Q] the following
estimates hold:

| uλ(ξ) |≤ K0ε̃ exp[γ(ξ − ξ0)], | u′λ(ξ) |≤ K0ε̃ exp[γ(ξ − ξ0)],
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for all ξ ≤ ξ0 and ξ0 such that | uλ(ξ0) |≤ ε̃, and

| uλ(ξ)− 1 |≤ K1ε̃ exp[−ϑ(ξ − ξ0)], | u′λ(ξ) |≤ K1ε̃ exp[−ϑ(ξ − ξ0)],

for all ξ ≥ ξ0 and ξ0 such that | uλ(ξ0)− 1 |≤ ε̃. Moreover, the constants K0, K1, γ > 0 and ϑ > 0
are independent of the solution uλ.

PROOF. The system (3.1) can be written as a first order system. For q ∈ [−Q,Q] all the
eigenvalues of the linearized matrix for such a system at the points (u, u′) = (0,0) and (1,0) have
their real parts not equal to zero (see Theorem 3.3 in [5]). Now, the proof of Lemma 3 follows from
the Hartman-Grobman theorem. 2

REMARK 3. Obviously the same estimates hold for the second derivatives of u′′λ, i.e. for some
K2 and all λ ∈ [0, 1],

| u′′λ(ξ) |≤ K2ε̃ exp[γ(ξ − ξ0)],

for all ξ ≤ ξ0 and ξ0 such that | uλ(ξ0) |≤ ε̃, and

| u′′λ(ξ) |≤ K2ε̃ exp[−ϑ(ξ − ξ0)]

for all ξ ≥ ξ0 and ξ0 such that | uλ(ξ0)− 1 |≤ ε̃. 2

DEFINITION 2. Let B2 denote the Banach space of functions u : IR1 → IRn of C2(IR1) class
equipped with the norm

‖u‖2 = max
i

sup
ξ

(
2∑

k=0

| u(k)
i (ξ) |),

with u satisfying the following conditions:

1o. the limits limξ→∞ u(ξ) and limξ→−∞ u(ξ) exist.

2o. u′(ξ), u′′(ξ) → 0 as | ξ |→ ∞.

Let B20 denote the subspace of B2 consisting of functions u such that

u1(0) =
1
2
e1∗(u1(−∞) + u1(∞)),

where e1∗ = minJ∈{1,...,K} eJ
1 .

Let B0 denote the Banach space of functions u : IR1 → IRn of C0(IR1) class such that the limits
limξ→∞ u(ξ) and limξ→−∞ u(ξ) exist, equipped with the norm

‖u‖0 = max
i

sup
ξ

(| ui(ξ) |).

2
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Let

M(λ, q, u) = (M1, . . . ,Mn), (3.4)

where Mi is defined in (3.2). The operator M acts from the space IR1× IR1×B20 to the space B0.
It is Fréchet differentiable. (In particular its Fréchet derivative with respect to (q, u) is continuous
with respect to (λ, q, u).) It is easy to check that the Fréchet derivative with respect to (q, u) at
the point (λ, q, u) is the following operator

DM(λ, q, u) [δq, δu] = DuM(λ, q, u)δu +M,q(λ, q, u)δq,

with

DuM(λ, q, u)δu = A(λ, u, u′)(ξ)(δu)′′ + C(λ, q, u, u′, u′′)(ξ)(δu)′ + B(λ, q, u, u′, u′′)(ξ)δu,

where

A = diag(aλ1(u1, u
′
1), . . . , aλn(un, u′n))(ξ),

Cij = {aλi(ui, u
′
i)u

′′
i − (1− λ)qu′i + λ[−qci(ui, u

′
i)u

′
i + Mi(u, u′i)u

′
i]},u′

j
(ξ),

Bij = {aλi(ui, u
′
i)u

′′
i − λqci(ui, u

′
i)u

′
i + λMi(u, u′i)u

′
i + fi(u)},uj (ξ)

and

δu = (δu1, . . . , δun)T .

Consider the linear operator:

Lu = A(ξ)u′′ + C(ξ)u′ + B(ξ)u, (3.5)

where A(ξ),B(ξ),C(ξ) are matrices of C1 class, A(ξ) and C(ξ) are diagonal matrices, A(ξ) has
positive diagonal elements and B(ξ) has positive off-diagonal elements. Assume that the matrices
A(ξ), B(ξ), C(ξ) have limits as ξ → ±∞ and that the matrices B± = limξ→±∞B(ξ) have negative
principal eigenvalues.

The following result, which can be found in [16], will be of basic importance below.

LEMMA 4. (Proposition 1.3 p. 155 in [16]) Let us assume that a positive solution w(ξ) exists
for the equation

Lu = 0, (3.6)

such that limξ→±∞w(ξ) = 0. Then the following is true:

1) The equation
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Lu = λu, u(±∞) = 0 (3.7)

has no solutions different from 0 for Reλ ≥ 0, λ 6= 0.

2) Every solution of Eq. (3.7) has for λ = 0 the form u(ξ) = kw(ξ), k ∈ IR1.

3) The adjoint equation

L∗v = 0, v(±∞) = 0 (3.8)

has a positive solution. This solution is unique to within a constant factor.

Our starting point will be system (3.1) for λ = 0. According to the results in [16], this system
has a heteroclinic solution pair (q0, u0(ξ)) with u0 ∈ B20 and u′0(ξ) > 0 for all ξ ∈ IR1, joining the
points 0 and 1. According to Lemma 4 there is a unique (up to a multiplicative constant) solution
to the linearized system DuM(0, q0, u0)δu = 0, namely δu = u′0(ξ). In Lemma 5 we prove that the
linearized operator DM(0, q0, u0) is boundedly invertible, i.e. the equation

DM(0, q0, u0) [δq, δu] = h,

has a unique solution in the space B20 × IR1.
According to the implicit function theorem (see e.g. [3]) there exists λ∗ > 0 such that for all

λ ∈ [0, λ∗] there exists a heteroclinic pair for system (3.1). If λ∗ < 1 but DM(λ∗, uλ∗ , qλ∗) [δq, δu]
is boundedly invertible, then we can prolong the interval of existence of heteroclinics to [0, λ∗1],
λ∗1 > λ∗. If this procedure can be repeated, then after a finite number of steps we are able to
extend the existence interval to the whole of [0, 1].

LEMMA 5. Suppose that for λ ∈ [0, λb], λb ∈ (0, 1], there exists a heteroclinic pair (qλ, uλ)
satisfying the system (3.1), such that uλ is strictly monotonic in all of its components.

Then the linearized system

DM(λ, qλ, uλ)[δq, δu] = h, (3.9)

has for all h ∈ B0 a unique (up to a multiplication constant) solution in the space B20 × IR1. The
norm of [DM(λ, q, uλ)]−1 is bounded uniformly by a constant independent of λ ∈ [0, λb].

Before the proof of this lemma, let us note the following obvious fact.

LEMMA 6. Suppose that (qλ, uλ(ξ)), λ ∈ [0, λb], λb ∈ [0, 1], is a family of strictly monotone
heteroclinic pairs (joining the points 0 and 1). Then:

1. For all natural l ≥ 1 there exists εl > 0, such that u′λ(ξ) > εl for all ξ ∈ [−l, l] and all
λ ∈ [0, λb].

2. For any ε > 0 there exists Zε > 0 such that | uλ(ξ) |< ε for all ξ < −Zε and | 1− uλ(ξ) |< ε
for all ξ > Zε for all λ ∈ [0, λb].
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PROOF. Suppose that point 1. of the lemma is not true. Then there would exist l ≥ 1,
sequences {λk}∞k=1, {εk}∞k=1, εk > 0, limk→∞ εk = 0, and an index j ∈ {1, . . . , n}, such that
u′λkj(ξk) ≤ εk for some ξk ∈ [−l, l]. Obviously, we may choose a convergent subsequence {λmk

}∞k=1

of the sequence {λk}∞k=1 such that λmk
→ λ∗ and ξmk

→ ξ0 ∈ [−l, l]. But this would mean that
lim u′λ∗(ξ0) = 0 contrary to the conditions of the lemma. Now, suppose that point 2. of the lemma
is not true for some ε > 0 as ξ →∞ and there exists a sequence {λk}∞k=1 and an index j ∈ {1, . . . , n}
such that uλkj(ξ) < 1 − ε for all ξ < k. We may choose a convergent subsequence {λmk

}∞k=1 of
the sequence {λk}∞k=1. If λmk

→ λ∗, then uλ∗j(ξ) < 1 − ε for all ξ ∈ IR1. This is a contradiction
with the fact that limξ→∞ uλ∗j(ξ) = 1. Thus uλj(ξ) > 1 − ε for all ξ > Zε+, where Zε+ > 0 is
independent of λ. In the same way we may prove that there exists a number Zε− > 0 such that
uλj(ξ) < ε for all ξ < −Zε− and all λ ∈ [0, λb]. Taking Zε = max{Zε−, Zε+} proves the lemma. 2

The monotonicity property of the heteroclinic solutions to system (3.1) obtained by means of
the implicit function theorem will be proved in Section 4.

PROOF OF LEMMA 5. First, we recall the basic facts from the theory of exponential di-
chotomy, which will be used below. We will use the results from [12] and [2].

The system

x′ = S(ξ)x (3.10)

where ξ ∈ IR1, x ∈ C1(IR1, IR2n) and S(ξ) is 2n×2n matrix, is said to have an exponential dichotomy
on the half-line IR1

+, if there exist a projection operator P̃ : IR2n → IR2n, a multiplicative constant
L̃ ≥ 1 and an exponent constant β > 0 such that for s, t ∈ [0,∞)

| X(t)P̃X−1(s) |≤ L̃e−β(t−s)

for s ≤ t, whereas

| X(t)(I − P̃ )X−1(s) |≤ L̃e−β(s−t)

for s ≥ t. Likewise, system (3.10) is said to have an exponential dichotomy on the half-line IR1
−, if

there exist a projection Q̃, a multiplicative constant L̃ ≥ 1 and an exponent constant β > 0 such
that for s, t ∈ (−∞, 0]

| X(t)Q̃X−1(s) |≤ L̃e−β(t−s)

for s ≤ t, whereas

| X(t)(I − Q̃)X−1(s) |≤ L̃e−β(s−t)

for s ≥ t. Here | | denotes a norm in the space of 2n× 2n matrices, X(ξ) is a fundamental matrix
solution satisfying X(0) = I. For simplicity, we have taken the same constants for both of the
half-lines.

System (3.9) is equivalent to the first order system

x′ = A(ξ)x + h̃(ξ), (3.11)
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where x = [δu1, . . . , δun, δu′1, . . . , δu
′
n]T ,

A(ξ) =

(
0 I

B̃(ξ) C̃(ξ)

)
, (3.12)

with 0 and I being the n × n zero and unit matrix respectively, B̃(ξ) = A−1(ξ)B(ξ), C̃(ξ) =
A−1(ξ)C(ξ), h̃k(ξ) ≡ 0 for k = 0, . . . , n, and

h̃k(ξ) = hk−n(ξ) + [(1− λ) + λck−n(uλ(k−n)(ξ), u
′
λ(k−n)(ξ))]u

′
λ(k−n)(ξ)δq

for k = n + 1, . . . , 2n. If the matrix A(ξ) was replaced by A(∞) or A(−∞) then the homogeneous
system would have the property of exponential dichotomy (see [2] p. 10) on both of the sets IR1

+

and IR1
− (as, due to Theorem 3.3 in [5], all the eigenvalues of both A(−∞) and A(∞) have nonzero

real parts). It is clear that the constants L̃ and β may be chosen independent of λ ∈ [0, λb].
The projection operators may depend on λ, though, for simplicity, we will not denote it explicitly.
Using the results of [2], one may prove that the property of exponential dichotomy takes place
also for the full matrix A(ξ) for both of the sets IR1

+ and IR1
−. Thus, let ε̃ be the same as in

Lemma 3 and Remark 3, 0 ≤ ε ≤ ε̃, and Zε such that | uλ(ξ) |< ε for ξ < −Zε, | 1 − uλ(ξ) |< ε
for ξ > Zε. All the possible values of heteroclinic parameters qλ are bounded in their absolute
value by Lemma 3. If ε → 0, then | fi(uλ(ξ)) |→ 0, i ∈ {1, . . . , n}, for all | ξ |> Zε hence using
classical a priori estimates for second order elliptic equations on compact sets we conclude that also
| u′λ(ξ) |→ 0 for all | ξ |> Zε. (On any interval [k, k + 1] with k integer, we consider the Dirichlet
problem with the right hand sides equal to fi(uλ(ξ)).) Consequently, for ε > 0 sufficiently small,
max{supξ>Zε

| A(ξ)−A(∞) |, supξ<−Zε
| A(ξ)−A(−∞) |} < β(4L̃2)−1. Let us fix ε satisfying the

above conditions and denote Zε by Z. According to the results in [2] (see p. 13 and Proposition 1 in
Chapter 6) system (3.11) satisfies the conditions of exponential dichotomy on both of the half-lines
IR1
− and IR1

+ with the exponent constant replaced by α = (β−2Kδ) and the multiplicative constant
replaced by L = 5

2 L̃2Ñ2k, where k = exp(αZ) and

Ñ = max{exp(
∫ 0

−Z
| A(s) | ds, exp(

∫ Z

0
| A(s) | ds}.

Using Lemma 4.2 in [12] we conclude that the operator x → x′−A(ξ)x is Fredholm as acting from
the space C1(IR1, IR2n) to the space C0(IR1, IR2n)). Note, that if V is a bounded solution to the
adjoint of the system x′ = A(ξ)x, i.e. the system x′ = −AT (ξ)x, then V (ξ) = [j(ξ), v(ξ)], where
v(ξ) is a solution to the equation L∗v = 0. As uλ is strictly monotone, then from Lemma 4 we
infer that V is unique (up to a constant factor). According to Lemma 4.2 in [12] the necessary and
sufficient condition for the existence of a solution to system (3.11) from the space C1(IR1, IR2n)) is
the equality

∫∞
−∞

∑
i=1,...2n Vi(ξ)h̃i(ξ)dx = 0. Due to the form of h̃i this condition is equivalent to

the condition ∫ ∞

−∞

∑
i=1,...,n

vi(ξ)[−Mi,q(λ, qλ, uλ)(ξ)δq + hi(ξ)dx] = 0. (3.13)

According to Lemma 4 the solution v has all of its components positive. Moreover, all the compo-
nents of v must vanish exponentially, so, for a given h, both terms on the left hand side are finite.
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Consequently we have proved that δq is uniquely determined by (3.13) and is a bounded function
of h, i.e.

| δq |≤ Nq | h |C0(IR1),

where Nq is a constant independent of λ ∈ [0, λb].
Given the value of δq, the general solution to system (3.9) has for ξ ≥ 0 the form:

x(ξ) = cY (ξ) + X(ξ)PX−1(0)w+∫ ξ
0 X(ξ)PX−1(s)h̃(s)ds−

∫∞
ξ X(ξ)(I − P )X−1(s)h̃(s)ds

(3.14)

and for ξ ≤ 0 the form

x(ξ) = cY (ξ) + X(ξ)(I −Q)X−1(0)w+∫ ξ
−∞X(ξ)QX−1(s)h̃(s)ds−

∫ 0
ξ X(ξ)(I −Q)X−1(s)h̃(s)ds,

(3.15)

where X(ξ) is a fundamental matrix solution, w is a uniquely determined vector from IR2n such
that

[P − (I −Q)]w =
∫ 0

−∞
QX−1(s)h̃(s)ds +

∫ ∞

0
(I − P )X−1(s)h̃(s)ds,

which is orthogonal to all vectors η satisfying the equation

η∗[P − (I −Q)] = 0.

As u′λ(0) > 0, the constant c is uniquely determined by the vector w and the condition x1(0) =
1
2e1∗[x1(−∞) + x1(∞)]. It easy to show that this solution tends to finite limits as ξ → ±∞. Let us
consider the case ξ →∞. Let x+ ∈ IR2n be such that

A(∞)x+ + h̃(∞) = 0.

As h̃(∞) = h(∞) is well defined and A(∞) is nonsingular then x+ is well defined. The difference
ζ(ξ) = x(ξ)− x+ satisfies the vector equation

ζ ′ −A(ξ)ζ = (h̃(ξ)− h̃(∞)) + (A(ξ)−A(∞))x+.

The right hand side of this equation tends to 0 as ξ tends to ∞. Thus applying (3.14) and using
the property of exponential dichotomy we conclude that ζ(ξ) → 0 as ξ → ∞. The same proof
may be done for ξ → −∞. From the point of view of the second order system (3.9) it means that
its solution (for the properly chosen δq) tends to finite limits and its first derivatives tend to 0 as
ξ → ±∞. Hence its second derivatives tend to 0. Hence any C1 solution to (3.9) belongs to B20.
It is clear that C2(IR1, IRn) norm of the solution to system (3.9) is equivalent to the C1(IR1, IR2n)
norm of the corresponding solution to system (3.11) given by the above expressions. Given the
value of δq, the last norm can be estimated by C | h̃ |C0(IR1), where C is a constant. In fact, this
constant depends on uλ only by the value of Z. According to the definition of h̃, and using Lemmas
1 and 2 we conclude that
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| δu |B20≤ C∗(1 + N∗Nq) | h |B0 ,

where C∗, N∗ and Nq are independent of λ ∈ [0, λb]. Now, we use Theorem 4.2-H p.180 in [14].
Namely, according to Lemmas 1,2,3,4 and 6, for each each λ ∈ [0, λb] and for each h ∈ B0 there
exists a unique pair [δq, δu] ∈ IR1 ×B20 satisfying system (3.9). Thus, using Theorem 4.2-H p.180
in [14], we infer that DM−1 is continuous hence it is bounded. Due to the compactness of the set
[0, λb] the operator DM−1 is uniformly bounded for all λ ∈ [0, λb]. The lemma is proved. 2

4. Strict monotonicity of uλ and the existence proof

In this section we demonstrate that the interval of λ values, for which strictly monotone hete-
roclinic solutions exist can be extended to the whole of [0, 1]. Roughly speaking the proof consists
in showing that this interval is both relatively closed and open in [0, 1], so it must coincide with
[0, 1].

In the previous section we showed that the operator M linearized around a heteroclinic pair
(qλ, uλ), λ ∈ [0, 1] is boundedly invertible provided the function uλ is strictly monotone. For λ = 0
system (3.1) takes the form:

u′′i − qu′i + fi(u) = 0, (4.1)

i = 1, . . . , n. According to Theorem 1.1 p. 153 in [16] this system has a unique heteroclinic pair
(q0, u0) with u0 is strictly monotone. The question arises, whether the solution may become non
monotone for larger values of λ. First, we will show that if uλ is strictly monotone for λ ∈ [0, λ0)
then it exists and is monotonic also for λ = λ0.

LEMMA 7.Assume that (qλ, uλ), λ ∈ [0, λ∗), λ∗ > 0, is a continuous family of heteroclinic pairs
(obtained by means of the implicit function theorem) and that uλ(ξ) is strictly monotonic for all
λ ∈ [0, λ0), λ0 ∈ [0, λ∗]. Then for λ = λ0 the heteroclinic pair (qλ0 , uλ0(ξ)) also exists and uλ0(ξ)
is a strictly monotone function of ξ.

PROOF. Suppose contrary to the hypothesis of the lemma that there exists a sequence of
{λk}∞k=1 such that λk → λ0 and a sequence {ξk}∞k=1 such that ξk → ξ0 as k → ∞ such that
u′λkj(ξk) → u′λ0j(ξ0) = 0 for some index j and u′λ0i(ξ) ≥ 0 for all ξ and all i. We will show that
the sequence ξk cannot be convergent to any finite ξ0. Suppose to the contrary that | ξ0 |< ∞.
First, let us assume that λ0 < λ∗. As u′λ0j attains a global minimum at ξ0 then we have u′′λ0j(ξ0) =
0, fj(uλ0(ξ0)) = 0 and u′′′λ0j(ξ0) ≥ 0. Differentiating the j-th equation we obtain at the point ξ0:

aλ0j(uλ0j , u
′
λ0j)u

′′′
λ0j +

∑
i6=j

fj,iu
′
λ0i = 0.

There are two possibilities: u′λ0i(ξ0) > 0 for some i 6= j or u′λ0i(ξ0) = 0 for al i. In the first case
we arrive at contradiction due to the monotonicity conditions. In the second case we would have
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u′′λ0i(ξ0) = 0 for all i (by the same arguments as for the index j). In consequence f(u(ξ0)) = 0
and the point (uλ0(ξ0), u′λ0

(ξ0)) = (uλ0(ξ0),0) would be a singular point of the corresponding first
order system. However, as the right hand sides of the considered system are of C1 class, such a
point could not be attained for finite ξ0. So, let us assume that λ0 = λ∗. We will prove that for
λ = λ0 the heteroclinic pair to system (3.1) also exists. This can be done on the basis of Lemma 1
and Lemma 2. There exists a sequence {nk}∞k=1 such that {qλk

}∞k=1 converges to some q∗. Out of
this sequence we can in turn choose subsequences {nrk}∞k=1 having the property that the sequence
{uλnrk

} converges to a function u0r(ξ) uniformly in ξ on the interval [−r, r], where r = 1, 2 . . . , and
{n(r+1)k}∞k=1 is a subsequence of {nrk}∞k=1. (The convergence is guaranteed by Arzeli lemma and
bootstrap argument.) Hence by choosing a diagonal subsequence we obtain a sequence {mk}∞k=1

such that {uλmk
}∞k=1 converges to a function u∗(ξ) uniformly in ξ on every interval [−r, r]. Now,

due to the strict monotonicity of uλk
(ξ) the function u∗(ξ) is monotone. Hence it must have fi-

nite limits and u′0(ξ) → 0 as ξ ± ∞. So, for all i, we have u′′∗i(ξ) → fi(u∗(±∞)) = const as
ξ → ±∞. It follows that u′′∗i(ξ) → 0 as ξ ±∞. So both u∗(−∞) and u∗(∞) must belong to the
set {0, E1

λ0
, . . . , EK

λ0
,1}. Due to the condition satisfied by uλk1(0) we conclude that u∗(ξ) → 0 as

ξ → −∞. Due to the monotonicity of u∗ we conclude that u∗(∞) = EJ , where J ∈ {1, . . . , n}
or u∗(∞) = 1. The first possibility cannot take place, because this would mean that the hete-
roclinic solution splits into two heteroclinics as λmk

→ λ0: one joining the points 0 and EJ and
the other joining the points EJ and 1. (Note that, according to Theorem 2.5 in [5] a monotone
heteroclinic solution cannot join the singular points (EJ1

λ0
,0) and (EJ2

λ0
,0) with J1 6= J2.) Let us

sketch the proof of this fact. Let sk > 0 be such that uλk1(sk) = 1
2(1 + eJ

1 ). Then out of the
sequence {uλmk

}∞k=1 we may create a sequence of functions Uλmk
(ξ) = uλmk

(ξ + smk
). As before,

due to Lemmas 1 and 2 we may find a subsequence of {mk}∞k=1 (denoted for simplicity in the same
way) such that qλmk

→ q∗ and Uλmk
(ξ) → U∗(ξ) on every bounded interval of the form [−r, r].

Obviously, smk
→ ∞. Moreover, if {ξmk

}∞k=1 is the sequence of points such that uλmk
(ξmk

) → EJ

as k → ∞, then we have sk − ξk → ∞. Suppose that it is not true. Then (by taking a subse-
quence if necessary) ξmk

− smk
would converge as k → ∞ to some finite number S < 0. It would

mean however that limk→∞ Uλmk
(ξmk

− smk
) = U∗(S) = limk→∞ uλmk

(ξmk
) = uλ0(∞) = EJ .

Thus (Uλ0(ξ), U
′
λ0

(ξ)) would attain the singular point (EJ ,0) in a finite time. This is impossi-
ble. Hence U∗(−∞) = limk→∞ Uλmk

(ξmk
− smk

) = limk→∞ uλmk
(ξmk

) = EJ . In the same way
U ′

0(−∞) = limk→∞ U ′
λmk

(ξmk
− smk

) = limk→∞ u′λmk
(ξmk

) = 0. Due to the condition imposed on
smk

we also have Uλmk
(ξ) → 1 as ξ → ∞. In consequence for the same value of q = q∗ we would

thus have two solutions u∗ and U∗ with positive first derivative attaining the point (EJ ,0) as ξ
tends to ∞ and −∞ respectively. This is however impossible due to a modification of the proof
Lemma 2.4 p.161 in [16] (see also Lemma 3.8 in [4]). Thus the second possibility takes place and
for λ = λ0 the heteroclinic pair (q∗, u∗)(ξ) exists. Hence repeating the arguments from the first
part we conclude that u0(ξ) is strictly monotone. 2

LEMMA 8. Assume that (qλ, uλ), λ ∈ [0, λ∗), λ∗ > 0, be a continuous family of heteroclinic
pairs (obtained by means of the implicit function theorem) and that uλ ∈ B20 is strictly monotonic
for all λ ∈ [0, λ0], λ0 ∈ [0, λ∗). Then uλ is also a strictly monotonic for all λ ≥ λ0 sufficiently close
to it.

PROOF. Suppose to the contrary that there exists a sequence {λk}∞k=1 such that λk > λ0 for
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all k, limk→∞ λk = λ0, (qλk
, uλk

) is a heteroclinic pair satisfying the system (3.1) for λ = λk and
uλk

are not strictly monotonic functions tending to uλ0 , i.e.

‖ uλk
− uλ0 ‖C2(IR1)→ 0, | qλk

− qλ0 |→ 0 (4.2)

as k → ∞. As uλk
are not strictly monotonic, then there exist sequences {ξk}∞k=1 and j(k) such

that u′λkj(ξk) ≤ 0. Due to (4.2) there must exist a subsequence of {ξk}∞k=1, which we will denote
also by {ξk}∞k=1, converging to some finite ξ0, such that u′λ0j(ξ0) = 0. If | ξ0 | is finite, then we
would arrive at contradiction as we would have u′λ0

(ξ0) ≤ 0 and u′λ0
(ξ0) is positive according to the

proof Lemma 7. Now, suppose that the subsequence of {ξk}∞k=1 converges to ξ0 = −∞ or ξ0 = ∞.
We will consider only the case ξ0 = ∞. Obviously, according to the definition of the space B20,
uλk

(ξk) → 1, u′λk
(ξk) → 0 and u′′λk

(ξk) → 0 as k → ∞. Let l and ξ∗ be such that for all k ≥ l we
have ξk > ξ∗, u′λk

(ξ∗) > 0 and the matrices

Bij(λk, ξ) = {aλi,uj
(uλki(ξ), u′λki(ξ))u

′′
λki(ξ)− λkqci,uj (ui, u

′
i)u

′
i

+λkMi,uj (uλk
(ξ), u′λki(ξ))u

′
λki(ξ)}+ fi,uj (uλk

(ξ)).

satisfy for all ξ ≥ ξ∗ the following conditions:
1. DB(λk, ξ) has all of its off-diagonal terms positive,
2. DB(λk, ξ)P < 0 where P is a positive eigenvector corresponding to the principal eigenvalue

of the matrix Df(1).

Let us fix k > l. The vector function v(ξ) = u′λk
(ξ) satisfies the system:

aλi(uλki(ξ), u′λki(ξ))v
′′
i (ξ) + Ti(λk, q, ξ)v′i(ξ) +

∑
j Bij(λk, ξ)vj(ξ) = 0,

v(ξ∗) = u′λk
(ξ∗), v(∞) = 0,

(4.3)

i ∈ {1, . . . , n}, obtained by differentiation of system (3.1). Now, one may prove that the supposition
u′λkj(k)(ξk) ≤ 0 leads to a contradiction. The proof is carried out as the proof of Proposition 1.2
p.154 in [16] and we will not repeat it here. 2

LEMMA 9. The family (qλ, uλ) of strictly monotone heteroclinic pairs can be continued at least
till λ = 1.

PROOF. Suppose that there exists λcr ≤ 1 such that we cannot prolong the family of solutions
beyond λcr or just up to it. First, as in the proof of Lemma 7 we can prove that the heteroclinic pair
(qλcr , uλcr) exists and it is strictly monotonic. Using Lemma 6 and Lemma 5 we conclude that the
linearized operator DM(λcr, qλcr , uλcr) has a bounded inverse. Thus, the family of solutions pairs
(qλ, uλ) ∈ IR1 × B20 to system (3.1) could be prolonged beyond the value λcr, say to an interval
[0, λcr + δ] with δ > 0 sufficiently small. Due to the implicit function theorem

‖ uλ1 − uλ2 ‖B20→ 0 as λ2 → λ1

for all λ1, λ2 ∈ [λcr, λcr +δ]. Now, let us note, that the singular points 0 and 1 are isolated indepen-
dently of q and λ, so the limits at ±∞ of uλ1 and uλ2 must be the same, if only | λ2− λ1 | is taken
sufficiently small. Starting from λ = λcr we conclude that, for all λ ∈ [λcr, λcr + δ], (qλ, uλ(ξ)) are
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heteroclinic pairs in the sense of Definition 1. Using Lemma 8 we infer that uλ is strictly monotone
for all λ > λcr sufficiently close to it. But this is a contradiction to our supposition. 2

We are thus in a position to formulate the main theorem of our paper.

THEOREM 1. Let assumptions of Section 2 be satisfied. Then there exists a family of hetero-
clinic pairs (qλ, uλ) ∈ IR1×C2(IR1), λ ∈ [0, 1], such that each (qλ, uλ) is a unique (up to translation
in ξ) solution to system (3.1), uλ(−∞) = 0, uλ(∞) = 1 and u′λ(ξ) > 0 for x ∈ IR1. This family is
continuous, i.e. for all λ1, λ2 ∈ [0, 1]:

| qλ1 − qλ2 | + ‖ uλ1 − uλ2 ‖B20→ 0 as λ2 → λ1.

In particular (q, u) = (q1, u1) is a heteroclinic pair for system (1.3) joining the points 0 and 1.

PROOF. Existence of (qλ, uλ) follows from Lemma 9. Let us prove the uniqueness of the pair.
First, the pair (q0, u0) is unique. Suppose to the contrary that for some η ∈ [0, 1] we have at
least two heteroclinic pairs (qηi, uηi), i = 1, 2. These solutions can be continued back to the value
λ = 0, so there must exist η0 such that for λ = η0 these two solutions merge for the first time, i.e.
(qλ1, uλ1) 6= (qλ2, uλ2) for all λ ∈ (η0, η]. But, then due to the implicit function theorem we would
have also (qλ1, uλ1) = (qλ2, uλ2) for all λ in some vicinity of η0. This is a contradiction, from which
the uniqueness follows. 2

5. Generalization

Existence of waves can be proved for more general classes of systems. Instead of the condition
(2.2) we introduce the following assumption.

ASSUMPTION 1. For each i ∈ {1, . . . , n} one of the following conditions holds:
1. For all ui ∈ [0, 1] and all zi ∈ IR1

+ either ai,ui(ui, zi) ≤ 0 or ai,ui(ui, zi) ≥ 0. The function
Mi(u, zi) satisfies the estimation:

|Mi(u, zi)| ≤ k(|u|)(1 + βi(|zi|)), (5.1)

with k : IR1
+ → IR1

+ continuous, and βi : IR1
+ → IR1

+ continuous and such that βi(y)y(χi(y))−1 → 0
as y →∞.

2. ci ≡ 1 and for all p, r ∈ IR1
+, p ≤ r,

Mi(u, p) ≥ Mi(v, r)− M̂i(u, p, v, r)

for all 0 ≤ u ≤ v ≤ 1, M̂i(u, p, v, r) ≤ k(u, v)(1 + βi(| r |)), with k : IR2n
+ → IR1

+ continuous,
βi : IR1

+ → IR1
+ continuous and such that βi(y)y(χi(y))−1 → 0 as y →∞.
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3. ci ≡ 1 and for all p, r ∈ IRn
+, p ≤ r,

Mi(u, p) ≤ Mi(v, r) + M̂i(u, p, v, r)

for all 0 ≤ v ≤ u ≤ 1, M̂i(u, p, v, r) ≤ k(u, v)(1 + βi(| r |)), with k : IR2n
+ → IR1

+ continuous,
βi : IR1

+ → IR1
+ continuous and such that βi(y)y(χi(y))−1 → 0 as y →∞.

4. ai(ui, zi) = ai(ui) and Mi(u, zi) satisfies condition (5.1) with βi(y)y−1 → 0 as y →∞, or the
sum ai(ui)u′′i +Mi(u, u′i)u

′
i can be written in the form (ai(ui)u′i)

′+µi(u, u′i)u
′
i, where µi,uj (u, zi) > 0

for all j 6= i and u from some open neighbourhood of the set [0, 1]n, and µi(u, zi) satisfies (5.1) with
βi(y)y−1 → 0 as y →∞. 2

Points 2. and 3. of Assumption 1 are taken from paper [4]. Let us note that in this case we do
not assume any growth condition on the term Mi. Let us emphasize that for different i ∈ {1, . . . , n}
different conditions out of 1.,2.,3.,4. may be satisfied.

Lemma 1 and Lemma 2 may be proved also, when Assumption 1 is satisfied instead (2.2). The
proofs are given in [8]. Thus the following theorem holds.

THEOREM 2. Let Assumption 1 be satisfied. Then there exists a family of heteroclinic pairs
(qλ, uλ) ∈ IR1 × C2(IR1), λ ∈ [0, 1], such that each (qλ, uλ) is a unique (up to translation in ξ)
solution to system (3.1), uλ(−∞) = 0, uλ(∞) = 1 and u′λ(ξ) > 0 for x ∈ IR1. This family is
continuous, i.e. for all λ1, λ2 ∈ [0, 1]:

| qλ1 − qλ2 | + ‖ uλ1 − uλ2 ‖B20→ 0 as λ2 → λ1.

In particular (q, u) = (q1, u1) is a heteroclinic pair for system (1.3) joining the points 0 and 1.

Point 1. of Assumption 1 may be still generalized to points (a) and (b) of Assumption 4 in [8],
but for the sake of simplicity we will not consider it here.

6. Self contained proof of existence

In this section we will show that if there exists an appropriate homotopy between f and a
bistable symmetric vector function g, then we can prove the existence of monotone heteroclinic
solutions without referring to the results concerning the existence for the system with constant
coefficients.

DEFINITION 3. Let g(u) = (g1(u), . . . , gn(u)) denote a C1(IRn) function satisfying for all
i ∈ {2, . . . , n} the following conditions:
1. gi(u1, u2, . . . , ui−1, ui, ui+1, . . . , un) = g1(ui, u2, . . . , ui−1, u1, ui+1, . . . , un),
2. g1,1(u) ≤ −k, g1,i(u) ≥ k for all u ∈ IRn, i ∈ {2, . . . , n}, k > 0.
3.
∑n

i=1 g1,i(0) < 0,
∑n

i=1 g1,i(1) < 0.
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4. the only solutions to the equation g(u1, u1, . . . , u1) = 0 are 0, 1 and E0 = (e01, . . . , e0n). 2

The following lemma holds.

LEMMA 10. The solutions to the equation g(u) = 0 must lie on the diagonal of IRn.

ASSUMPTION 2. There exists a function

Gλ(u) : [0, 1]× IRn (6.1)

such that
G1(u) ≡ f(u), G0(u) ≡ g(u). (6.2)

Moreover for all λ ∈ [0, 1], Gλ(0) = Gλ(1) = 0. There is exactly one solution Eλ = (eλ1, . . . , eλn) ∈
(0, 1)n to the system Gλ(u) = 0 different from 0 and 1. The matrices DGλ(0) and DGλ(1) have all
eigenvalues in the left-half plane, and the principal eigenvalue of the matrix DGλ(Eλ) is positive. 2

An example of such a transformation will be given in Section 7.

We should take into account that the nonlinear source function also changes with λ. Thus
instead of (3.1) we consider the system of the same form but with different Mi. Namely

Mi(λ, q, u) = aλi(ui, u
′
i)u

′′
i − (1− λ)qu′i + λ[−qci(ui, u

′
i)u

′
i + Mi(u, u′i)u

′
i] + Gλi(u). (6.3)

For λ = 0 system (3.1) takes the form

u′′i − qu′i + gi(u) = 0, (6.4)

i = 1, . . . , n. According to (Lemma 3.2 p.173 in [16]) to each bounded C2 solution of the equation

v′′ − qv′ + g(v, . . . , v) = 0, (6.5)

such that v(−∞) = 0 and v(∞) = 1 there corresponds a solution

u(ξ) = (v(ξ), . . . , v(ξ)) (6.6)

to problem (6.4) and each solution to this problem has the form (6.4), where v(ξ) satisfies (6.5).
Thus there exists a unique strictly monotone heteroclinic pair (q0, u0) satisfying system (6.4).

The whole proof of existence may be repeated almost verbatim, though now we must write
everywhere Gλi instead of fi. Also the definition of the space B20 must be adjusted. Namely we
take

e1∗ = min
λ∈[0,1]

eλ1.

The details are left to the reader. We have thus proved
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THEOREM 3. Let Assumptions 1 and 2 be satisfied. Then there exists a family of heteroclinic
pairs (qλ, uλ) ∈ IR1 × C2(IR1), λ ∈ [0, 1], such that each (qλ, uλ) is a unique (up to translation in
ξ) solution to system (3.1) (with Mi given by (6.3)), uλ(−∞) = 0, uλ(∞) = 1 and u′λ(ξ) > 0 for
x ∈ IR1. This family is continuous, i.e. for all λ1, λ2 ∈ [0, 1]:

| qλ1 − qλ2 | + ‖ uλ1 − uλ2 ‖B20→ 0 as λ2 → λ1.

In particular (q, u) = (q1, u1) is a heteroclinic pair for system (1.3) joining the points 0 and 1.

It is also obvious that the same continuity result holds, when we can make a homotopy between
f and a function g satisfying Assumption 2, in such a way that the number and the properties of
its unstable zeros do not change.

7. Application to multicomponent plasma

Let us consider a system of equations describing multicomponent plasma sustained by a laser
beam of a given intensity I. By this we mean plasma created in gas consisting of (n − 1) ≥ 1
different components. Under a constant pressure p the temperatures T1 of the light (electron)
component and the temperatures of Ti, i ∈ {2, . . . , n} of heavy particles (atoms and ions) of i-th
kind are described by the following equations (see [6],[7],[13],[9],[10]):(

∂
∂t + ~v1 · ∇

)
{3

2kBN1T1 + Ẽ(T1)} = ∇(k1∇T1) + f1(T )(
∂
∂t + ~vi · ∇

)
{3

2kBNiTi} = ∇(ki∇Ti) + fi(T ),
(7.1)

where i ∈ {2, . . . , n}, T = (T1, . . . , Tn), kj = kj(Tj), j ∈ {1, . . . , n}, is the heat conductivity
coefficient, N1(T1) is the number density of electrons, Ni(Ti), i ∈ {2, . . . , n} is the number density
of the heavy component of i-th kind and ~vj(T ), j ∈ {1, . . . , n}, denotes the convectional velocity
of the j-th component, kB is the Boltzmann constant, Ẽ(T1) is the average ionization energy for
the given temperature T1. (The energy necessary to the first ionization of an atom depends on the
kind of the atom. If we have to deal with a one-component plasma, then Ẽ would be equal simply
to N1(T1)E, where E is the first ionization energy for the given kind of atoms.) The functions fi

have the following form:

f1 = F1(T1) +
∑

j∈{2,...,n} c1j(T )(Tj − T1)

fi =
∑

j∈{1,...,n},j 6=i cij(T )(Tj − Ti) + Ki(T ),
(7.2)

for i = 2, . . . , n. The term F1 = κ(T1)I − Erad(T1) is responsible for the absorption of energy from
the laser beam (κI) and its losses by radiation (Erad). The terms Ki(T ) describe the losses of
energy in the process of heat conduction and convection. The terms cij(T )(Tj − Ti) describe the
transfer of energy from the i-th to the j-th component of the plasma.

Let us look for solutions in the form of travelling waves:

Ti(x, t) = ui(x · ~n + qt), i = 1, . . . , n, (7.3)
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where ~n ∈ IR3 is a chosen unit vector (a direction of propagation) and χ ∈ IR1 is the speed of the
wave. If we denote ξ := x · ~n + χt, then we arrive at a system of ordinary differential equations:

(kiu
′
i)
′ − qCi(ui)u′i − ~vi · ~nCi(ui)u′i + fi(u) = 0, (7.4)

i = 1, . . . , n, where u := (u1, . . . , un) and

Ci(ui) =
∂

∂ui
{3
2
kBNi(ui)ui + δi1Ẽ(ui)},

with δi1 being the Kronecker’s delta.

ASSUMPTION 3. Assume that the function F1(u1) has exactly three zeros: 0, 1 and U0 ∈ (0, 1)
such that F ′

1(0) < 0, F ′
1(U0) > 0 and F ′

1(1) < 0.

ASSUMPTION 4. supi∈{2,...,n} supu∈[−1,2]n(| Ki(u) | + | DKi(u) |) < τ with τ sufficiently
small, Ki(0) = 0 for all i ∈ {2, . . . , n}.

This assumption is reasonable, as both the absorption of energy (in the process of so called Inverse
BremsStrahlung) and the energetic losses are almost entirely carried out in the electron component.

ASSUMPTION 5. cij(u) > 0, cij(u) = cji(u) for all i, j ∈ {1, . . . , n}, u ∈ IRn. For all
i, k ∈ {1, . . . , n}, k 6= i and al ui, uj ∈ [0, 1], we have

∑
j 6=i cij,k(u)(uj − ui) + cik(u) > 0.

This assumption may be justified by the fact that the derivatives cij,k(u) are relatively large only
for small values of u thus they are, in a way, damped by the factors (ui − uj).

ASSUMPTION 6. Ci(ui) > C0i > 0 for all ui ∈ [0, 1]n .

ASSUMPTION 7. For all u ∈ [−1, 2]n and i ∈ {1, . . . , n}, {~v(u) · ~n}i,uj ≤ 0 for all j 6= i.

This is a simplifying technical condition. It can be fulfilled e.g., if we assume that ~vi(u) = ~vi(ui).
In view of Assumption 6 system (7.4) satisfies condition (2.1) of Section 2. It also satisfies point 4.
of Assumption 1.

Now, we will show that Assumptions 3, 4, 5 imply Assumption 2. We have for i 6= 1, k 6= i,

fi,k(u) =
∑
j 6=i

cij,k(uj − ui) + cik(u) + Ki,k(u),

whereas for i = 1, k 6= 1

f1,k(u) =
∑
j 6=i

c1j,k(uj − ui) + c1k(u).

From Assumption 5 it follows that for τ > 0 sufficiently small fi,k(u) > 0. Thus the monotonicity
condition is satisfied. Also the other conditions of Assumption 2 are satisfied. To prove this we must
examine the roots of the function f(u) and the structure of eigenvalues of Df at these roots. First,
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using the fact that the terms Ki(u) are assumed sufficiently small, we will analyze the solutions to
the simplified system of the form:

F1(u1) +
∑

j 6=1 c1j(u)(uj − u1) = 0∑
j 6=i cij(u)(uj − ui) = 0,

(7.5)

where i = 2, . . . , n.

LEMMA 11. The only solutions to system (7.5) are (0, . . . , 0), (1, . . . , 1) and (U0, . . . , U0).

PROOF. Adding the equations and using the symmetry cij = cji, we obtain:

F1(u1) = 0. (7.6)

Hence the first component of the solution to system (7.5) is equal to one of the solutions to Eq.(7.6).
The set of n− 1 equations for i = 2, . . . , n can be written in the form:

Nn−1(u2, . . . , un)T = −u1(c21(u), . . . , cn1(u))T , (7.7)

where

Nn−1 =


−
∑

j 6=2 c2j(u) c23(u) . . . c2n(u)
c32(u) −

∑
j 6=3 c3j(u) . . . c3n(u)

. . . . . . . . . . . .
cn2(u) cn3(u) . . . −

∑
j 6=n cnj(u)

 .

Consider an auxiliary matrix arising from Nn−1 by rejecting from the diagonal sums the terms ci1,
i.e. 

−
∑

j 6=1,2 c2j(u) c23(u) . . . c2n(u)
c32(u) −

∑
j 6=1,3 c3j(u) . . . c3n(u)

. . . . . . . . . . . .
cn2(u) cn3(u) . . . −

∑
j 6=1,n cnj(u)

 .

The principal eigenvalue of this matrix is equal to 0, whereas the eigenvector corresponding to
this eigenvalue is equal to (1, . . . , 1). By using Lemma 3 in [8] we infer that all the eigenvalues of
Nn−1 will be negative, hence detNn−1 6= 0. Thus system (7.7), for a given u1 has exactly one so-
lution. It is equal to (u1, . . . , u1), where u1 satisfies the equation F1(y) = 0. The lemma is proved. 2

Now, let us find the structure of eigenvalues of Df(ũ) for τ = 0 and ũ equal to (0, . . . , 0), (1, . . . , 1)
and (U0, . . . , U0). Df(ũ) has the form:

Df(ũ) =


F ′

1(ũ1)−
∑

j 6=1 c1j(ũ) c12(ũ) . . . c1n(ũ)
c21(ũ) −

∑
j 6=2 c2j(ũ) . . . c2n(ũ)

. . . . . . . . . . . . . . .
cn1(ũ) cn2(ũ) . . . −

∑
j 6=1,n cnj(ũ)

 .

(Note that the terms proportional to ci,k(u)(ũi − ũj) vanish.) Let us consider the matrix:
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−
∑

j 6=1 c1j(ũ) c12(ũ) . . . c1n(ũ)
c21(ũ) −

∑
j 6=2 c2j(ũ) . . . c2n(ũ)

. . . . . . . . . . . . . . .
cn1(ũ) cn2(ũ) . . . −

∑
j 6=1,n cnj(ũ)

 .

As before one notes that the principal eigenvalue of this matrix is equal to 0, whereas the eigen-
vector corresponding to this eigenvalue is equal to (1, . . . , 1). Thus by means of Lemma 3 in [8] we
have proved the following lemma.

LEMMA 12. For τ = 0 all the eigenvalues of Df(ũ) have their real parts smaller than zero, if
F ′

1(ũ1) < 0 and larger than zero, if F ′
1(ũ1) > 0.

Lemma 11 and the implicit function theorem imply the following lemma.

LEMMA 13. Assume that the function F1(u1) has exactly three zeros: 0, 1 and u0 ∈ (0, 1).
Then for all τ > 0 sufficiently small the only solutions to systems f(u) with f given by equations
(7.2) are (0, . . . , 0), (u1, . . . , un) = (1, . . . , 1) + O(τ) and (û1, . . . , û1) = (u0, . . . , u0) + O(τ).

By means of this lemma and the fact that the eigenvalues of a matrix depend continuously on
parameters we may prove the lemma corresponding to Lemma 12.

LEMMA 14. For τ sufficiently small all the eigenvalues of Df(ũ), for ũ equal to one of the
solutions of the equation f(u) = 0, have their real parts smaller than zero, if F ′

1(ũ1) < 0 and larger
than zero, if F ′

1(ũ1) > 0.

By the linear change of variables ui → (ui)−1ui the largest root of system (7.2) becomes equal
to (1, . . . , 1) and the intermediate one changes to (u01, . . . , u0n).

We will construct a homotopy satisfying Assumption 2. We will divide this homotopy into three
stages.

1. λ ∈ [23 , 1]: Let c̃ij = minu∈[−1,2] cij(u), i, j ∈ {1, . . . , n} and let

cij(u) = c̃ij + c∗ij(u).

Let

fi = Fi(u) + 3(λ− 2
3
)Kλi(u) +

∑
j 6=i

hλij(u)(uj − ui), (7.8)

where Fi(u) ≡ 0 for i ∈ {2, . . . , n} and

hλij(u) = c̃ij + 3(λ− 2
3
)c∗ij(u).

2. λ ∈ [13 , 2
3 ]:
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fi =
∑
j 6=i

[3(
2
3
− λ)H + 3(λ− 1

3
)c̃ij ](uj − ui) (7.9)

where H > 0 is sufficiently large.
3. λ ∈ [0, 1

3 ]:

fi =
∑
j 6=i

H(uj − ui) + 3[(
1
3
− λ) + λδi1]F1(ui). (7.10)

It is obvious that for λ ∈ [13 , 1] Assumption 2 is satisfied. We will show that it is satisfied for
λ ∈ [0, 1

3 ]. It is sufficient to verify that the principal eigenvalue of the matrix Df at u± is negative.
As before we can replace the equation f(u) = 0 by

F1(u1) + 3(
1
3
− λ) (F1(u2) + . . . + F1(un)) = 0, (7.11)

N ∗
n−1(u2, . . . , un)T = −u1(1, . . . , 1)T −H−13(

1
3
− λ)(F1(u2), . . . , F1(un))T , (7.12)

where N ∗
n−1 is an (n− 1)× (n− 1) matrix:

N ∗
n−1 =


−(n− 1) 1 . . . 1

1 −(n− 1) . . . 1
. . . . . . . . . . . .
1 1 . . . −(n− 1)

 .

Let us note that | detN ∗
n−1 |= nn−2. Hence due to the implicit function theorem for H > 0

sufficiently large and given the right hand sides there exists a unique solution (u2, . . . , un) of system
(7.12). This solution is equal to (u1, . . . , u1) + 3(1

3 − λ)O(H−1). Putting this relation into (7.11)
we obtain F1(u1) + (1

3 − λ)
∑

i6=1 F1(ui) = F1(u1)(1 + (n − 1)(1
3 − λ)) + (n − 1)(1

3 − λ)O(H−1) =
(n − 1)(1

3 − λ)O(H−1). By the use of the implicit function theorem we conclude that for every
solution (u1, . . . , un) to (7.11) u1 is equal to one of the states 0, u0, 1, plus O(H−1) terms. Hence in
system (7.12) (F1(u2), . . . , F1(un))T = (0, . . . , 0)T + O(H−1). This implies that ui = u1 + O(H−2),
i ∈ {2, . . . , n}. Now, we may succesively repeat the procedure, to conclude that ui = u1 + O(H−k)
for any natural k. This implies that ui = u1, i ∈ {2, . . . , n} for all λ ∈ [0, 1

3 ]. Thus Assumption 2
is satisfied for all λ ∈ [0, 1].

Consequently using Theorem 1 we can state the following result.

THEOREM 4. Suppose that all the functions in system (7.4) are sufficiently smooth and that
Assumptions 3 - 7 are fulfilled. Then there exists q∗ ∈ IR1 such that for q = q∗ system (7.4) has a
strictly monotone unique (up to translation in ξ) heteroclinic solution joining the states 0 and 1.
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8. Equations with delay

In this section we study existence of solutions of the problem (1.3), (1.4) with a small pertur-
bation by terms with delay. Consider the system

ai(ui, u
′
i)u

′′
i − qci(ui, u

′
i)u

′
i + Mi(u, u′i)u

′
i + fi(u) + Pi(τ, q, u) = 0, (8.1)

i = 1, . . . , n, where the operator Pi : IRl× IR1×B20 → B0, l ≥ 1 and Pi(0, q, u) ≡ 0. Let us assume
that for τ = 0 there exists a strictly monotone heteroclinic pair (S, U) joining the states 0 and 1
satisfying system (8.1) and that P is continuously Fréchet differentiable with respect to (q, u) in
some open neighbourhood of the solution triple (0, S, U).

Using the results of Sections 3, 4 we can state the following theorem of existence.

THEOREM 5. Let conditions of Section 2 be satisfied. Then for all τ with | τ | sufficiently
small there exists a solution pair (qτ , uτ ) ∈ IR1 ×B20 satisfying system (8.1) such that

| qτ − S | + ‖ uτ − U ‖B20→ 0 as | τ |→ 0.

We do not use in this theorem all conditions of Section 2. It remains valid if we assume that
the monotonicity conditions (1.5) are satisfied and that there exists a solution for τ = 0.

As an example, let us consider a system of equations with delays:

G(τ, q, u) := ai(ui(ξ), u′i(ξ))u
′′
i (ξ)− qci(ui(ξ), u′i(ξ))u

′
i(ξ)+

Mi(u(ξ), u′i(ξ))u
′
i(ξ) + fi(u1(ξ − φi1(q)τ), . . . , un(ξ − φin(q)τ)) = 0,

(8.2)

i = 1, . . . , n, where φij are smooth functions of q and τ ∈ IR1. We may rewrite the system as

ai(u′i(ξ))u
′′
i (ξ)− qci(ui(ξ), u′i(ξ))u

′
i(ξ) + Mi(u(ξ), u′i(ξ))u

′
i(ξ)+

fi(u(ξ)) + Pi(τ, q, u(ξ)) = 0,
(8.3)

where
Pi(τ, q, u(ξ)) = fi(u1(ξ − φi1(q)τ), . . . , un(ξ − φinτ))− fi(u(ξ)).

Let us note that G := (G1, . . . , Gn) acts from the Banach space IR1 × IR1 × B20 to the space
B0. Moreover, it is Fréchet differentiable. The i-th component of the Fréchet derivative of the
perturbation term P at the point (τ0, q0, u0) is equal to the following operator:

(DP )i(τ0, q0, u0)(δτ, δq, δu(ξ)) = −
∑n

j=1 fi,j(u0(ξ))δuj(ξ)+∑n
j=1 fi,j(u01(ξ − φi1(q0)τ0), . . . , u0n(ξ − φin(q0)τ0))δuj(ξ − φij(q0)τ0)−∑n

j=1 fi,j(u01(ξ − φi1(q0)τ0), . . . , u0n(ξ − φin(q0)τ0))φ′ij(q0)u′0j(ξ − φij(q0)τ0)τ0δq−∑n
j=1 fi,j(u01(ξ − φi1(q0)τ0), . . . , u0n(ξ − φin(q0)τ0))φij(q0)u′0j(ξ − φij(q0)τ0)δτ.

22



To prove it let us note that we have

| P (τ0 + δτ, q0 + δq, u0 + δu)−DP (τ0, q0, u0)(δτ, δq, δu(ξ)) |= o(| δu(ξ) |)+

o(
∑n

ij=1 | δui(ξ − φij(q0)τ0) |) + o(| δq |) + o(| δτ |).

Now, supξ∈IR1 | δui(ξ − φij(q0)τ0) |= supξ∈IR1 | δui(ξ) |, so the right hand side of the last equality
behaves like o(| δτ | + ‖ δu(ξ) ‖C0(IR1 + | δq |).

The same considerations are valid, when Pi are of the form:

Pi(τ, q, u(ξ)) = −qc̃i(ui(ξ), u′i(ξ), ui(ξ − χi(q)τ), u′i(ξ − χi(q)τ))u′i(ξ − µi(q)τ)+

qci(ui(ξ), u′i(ξ))u
′
i(ξ) + M̃i(u1(ξ), . . . , un(ξ), u1(ξ − κi1(q)τ), . . . ,

un(ξ), un(ξ − κin(q)τ), u′i(ξ), u
′
i(ξ − ki(q)τ))u′i(ξ − k∗i (q)τ)−

Mi(u(ξ), u′i(ξ))u
′
i(ξ) + f̃i(u1(ξ), . . . , un(ξ), u1(ξ − φi1(q)τ), . . . , un(ξ − φinτ))− fi(u(ξ)),

where
f̃i(u1(ξ), . . . , un(ξ), u1(ξ), . . . , un(ξ)) ≡ fi(u(ξ)),

c̃i(ui(ξ), u′i(ξ), ui(ξ), u′i(ξ)) ≡ ci(ui(ξ), u′i(ξ))

and
M̃i(u1(ξ), . . . , un(ξ), u1(ξ), . . . , un(ξ), u′i(ξ), u

′
i(ξ)) ≡ Mi(u(ξ), u′i(ξ)).
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