
Biol Cybern (2011) 104:161–174
DOI 10.1007/s00422-011-0425-y

ORIGINAL PAPER

Mutual information and redundancy in spontaneous
communication between cortical neurons

J. Szczepanski · M. Arnold · E. Wajnryb ·
J. M. Amigó · M. V. Sanchez-Vives

Received: 2 September 2010 / Accepted: 31 January 2011 / Published online: 22 February 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract An important question in neural information pro-
cessing is how neurons cooperate to transmit information.
To study this question, we resort to the concept of redun-
dancy in the information transmitted by a group of neurons
and, at the same time, we introduce a novel concept for mea-
suring cooperation between pairs of neurons called relative
mutual information (RMI). Specifically, we studied these two
parameters for spike trains generated by neighboring neurons
from the primary visual cortex in the awake, freely moving
rat. The spike trains studied here were spontaneously gener-
ated in the cortical network, in the absence of visual stim-
ulation. Under these conditions, our analysis revealed that
while the value of RMI oscillated slightly around an aver-
age value, the redundancy exhibited a behavior character-
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ized by a higher variability. We conjecture that this combi-
nation of approximately constant RMI and greater variable
redundancy makes information transmission more resistant
to noise disturbances. Furthermore, the redundancy values
suggest that neurons can cooperate in a flexible way dur-
ing information transmission. This mostly occurs via a lead-
ing neuron with higher transmission rate or, less frequently,
through the information rate of the whole group being higher
than the sum of the individual information rates—in other
words in a synergetic manner. The proposed method applies
not only to the stationary, but also to locally stationary neural
signals.

Keywords Neurons · Shannon information · Entropy ·
Mutual information · Redundancy · Visual cortex ·
Spikes train · Spontaneous activity

1 Introduction

Information in the nervous system is transmitted by spike
trains. Spikes from individual neurons in the cerebral cortex
can be induced by external stimulation or they can be inter-
nally generated by the recurrent connectivity within brain
circuits, what is known as spontaneous activity. In this study,
we will characterize information content in cortical spike
trains. Information content is an abstract concept that refers
to the richness of the interspike intervals, but it should not be
understood as information necessarily related to an stimulus.

In this article, we study the issue of how neurons coop-
erate during spontaneous activity. The following questions
arise in this context:

(i) How does the information carried by neighboring neu-
rons relate?
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(ii) Do neurons cooperate always in some specific way or,
rather, do they switch from one manner to another?

(iii) How do the above processes depend on the type of
stimuli or more generally on the kind of environment
in which the biological organism is currently placed
in?

(iv) How do neurons collaborate in the absence of external
stimulation?

To answer some of these questions, we analyze spike trains
from the primary visual cortex of the awake, freely moving
rat in the absence of visual stimulation. In other words, we
analyze spontaneous activity reflecting the way the network
processes information based on its internal, recurrent con-
nections only. These recordings were obtained with tetrodes,
allowing us to record simultaneously the activity from sev-
eral closely located neurons as well as the separation of their
spike waves.

We then analyze redundancy and relative mutual infor-
mation (RMI) within the group of neighboring, spike fir-
ing neurons from the primary visual cortex. The concept
of redundancy, as introduced in Reich et al. (2001), com-
pares the sum of the information rates transmitted separately
by the neurons of a group with the information rate trans-
mitted by the whole group. The second term is diminished
by the maximal information rate among the neurons in the
group. To measure the information conveyed by a given neu-
ron about another neuron from the same group, we intro-
duce the concept of RMI based on the commonly applied
concept of mutual information (Weaver and Shannon 1963;
Borst and Theunissen 1999). In general, the RMI between
two information sources is simply the ratio between their
mutual information and the average information transmitted
by them. In our case, the information sources are a pair of
neurons in stationary conditions. Note that in the standard
approach the ratios between mutual information and either
entropy of stimuli ensemble or entropy of spike trains are
considered. Both concepts, redundancy and RMI require that
entropy rates be estimated. We analyze RMI and redundancy
for every instant of time. In order to maintain the correspon-
dence of our results exactly the same experimental data was
used to calculate both redundancy and RMI.

Neurons communicate by means of trains of action poten-
tials or “spikes,” which are sharp voltage transitions (in the
mV range) that have similar amplitude and shape for each
of the neurons and, therefore, those parameters hardly carry
any information [but see De Polavieja et al. (2005)]. Informa-
tion is mostly conveyed therefore by the time of occurrence
of such events, the spike times. The usual measures of the
information content or entropy of spike trains requires first
of all the discretization of these analog signals, which can
be achieved in a variety of ways (Szczepanski et al. 2003).
The binary temporal coding method is a common method of

coding described in the literature (Rieke et al. 1997). Here,
the unit time interval is divided into small time bins (their size
depending on the desired observation precision) and then for
each time bin a 0 is assigned if no spike is occurred in the
corresponding time interval, and a 1 if at least one spike
occurred. Neurons generating spike trains under stationary
conditions can be considered as information sources, where
the source comprises everything involved in generating the
message (type of neuron, codification, collaboration between
neighbors, and stimuli of any kind). Note the importance of
noise in the channel, which is responsible for the variabil-
ity of responses to a given stimulus. Mathematically, such a
source corresponds to a stationary stochastic process and the
binned spike train to a particular realization of the process.
This approach can be extended to general (non-stationary)
conditions, provided that the stimuli and the neurons being
studied may be considered (locally) stationary in sufficiently
long intervals of time.

The most important characterization one can attach to an
information source is its entropy rate. This measures the
average information per symbol generated by the source
(Shannon 1948; Cover and Thomas 1991). The entropy rate
is well defined for stationary stochastic processes. Moreover,
if the source is ergodic (a typical property in nature, at least
locally in time), then its entropy rate can be estimated with
the information obtained from a single (infinitely long) out-
put, with probability 1 (Cover and Thomas 1991). This result
provides in turn methods to estimate the entropy rate in prac-
tice, i.e., when the output is finite (see, e.g., Sect. 3.1). In
other words, we can estimate the entropy rate of an ergodic
information source on the base of a single, sufficiently long
output.

Traditionally, mutual information is measured between
stimuli and the evoked neuronal outputs (Rieke et al. 1997)
or, in the case of redundancy, for a group of nearby neurons
that are tuned to similar stimuli (Reich et al. 2001). The intu-
itive core of these ideas is to measure how much information
is repeated from one neuron to other neurons for a given kind
of stimuli. Thus, these two concepts are strongly related to
a type of stimuli that corresponds in turn to the kind of host
environment, in which the biological organism is currently
located. Since in many cases there are no visual stimuli, it
makes sense to ask the question how the visual neurons col-
laborate in such situations.

Thus, even though there is neither visual stimulation nor
changes in the brain state (sleep–awake transitions) during
the recordings, we do not assume that this is a stationary
situation but rather we allow for a weak non-stationarity
resulting from both motor and (non-visual) sensory process-
ing. This being the case, we need to go beyond standard
Information Theory in one respect: we consider sources that
are not necessarily stationary, provided that they can be con-
sidered stationary in a smaller time scale. We call a source
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locally stationary if it can be considered stationary in suf-
ficiently long-time intervals. More generally, these periods
of “quasi-stationarity” may be interrupted by comparatively
short-transition phases between (quasi-)stationary states, as
would happen in alternate periods of sleep and awake states.
Locally stationary sources could be assigned, in general,
by means of sliding time windows of adequate length T
(see Sect. 3.4 for details) to phases in which time-depen-
dent entropy is slowly changing. As a result, one considers
rather a family of ergodic information sources, one for every
instant of time. The entropy rate of a locally stationary neu-
ral signal at time t is then estimated in the time window
[t, t + T ]. We will use for this purpose the normalized Lem-
pel–Ziv 76 complexity (Lempel and Ziv 1976), a technique
we applied and tested in Amigó et al. (2004). Precisely, the
explicit analysis of locally stationary neural signals (along
with the introduction of RMI) is perhaps the most important
aspect of this article.

Section 2 describes the experimental procedures. All
mathematical tools (entropy rate and its estimations, redun-
dancy, and RMI) have been gathered for the reader’s
convenience in Sect. 3. Our results (Sect. 4) show that neu-
rons collaborate in a flexible way: sometimes synergistically
and, most frequently, via a leading neuron. In both cases,
the mutual information between each pair of neurons is kept
at the same relatively high level in relation to the average
amount of information being transmitted by both neurons.
This hints at a reliable mechanism of information transmis-
sion.

2 Experimental procedures

Recordings were obtained from Lister Hooded rats weighing
300–400 g at the time of surgery. In short, rats were chron-
ically implanted with tetrodes in the primary visual cortex
(−6 mm posterior and −4 mm lateral from bregma, see Pax-
inos and Watson 1998). Each tetrode was made from four
twisted strands of HM-L-coated 90% platinum–10% irid-
ium wire of 17 or 25µm diameter (California Fine Wire,
Grover Beach, CA). Four tetrodes were held by a cannula
that was attached to a microdrive. Rats under deep anesthesia
were chronically implanted with microdrives, using a mix-
ture of isoflurane (0.5–1.2%), nitrous oxide (3.0 l/ min), and
oxygen (1.5 l/ min). After 1 week of postoperative recovery
recordings began. Electrophysiological recordings of neu-
ronal activity were obtained while the animal was awake
and freely moving in his home cage. These recordings were
obtained in the dark and in the absence of visual stimuli,
the recorded activity therefore being spontaneously gener-
ated in the visual cortex. The animal behavior was moni-
tored with an infrared video camera mounted directly above
the cage. Microelectrodes were advanced dorsoventrally by

50–75µm/day in steps of 25–50µm. The electrode wires
were AC-coupled to unity-gain buffer amplifiers.
Lightweight hearing aid wires (2–3 m) connected these to
a preamplifier (1,000×) and then to the filters and amplifiers
of the recording system (Axona, St. Albans, UK). Signals
were amplified further up to 10,000–35,000 and highpass
filtered (360 Hz cutoff) and acquired using software from
Axona Ltd. Each channel was continuously monitored at a
sampling rate of 48 kHz, and action potentials were stored
as 1 ms threshold-triggered “window” of samples for each
spike (200µs pre-threshold; 800µs post-threshold) when-
ever the signal from any of the pre-specified recording chan-
nels exceeded a given threshold set by the experimenter for
subsequent off-line spike sorting analysis. Cluster cutting
(isolating single units from the multiunit recording data)
was performed using an Off-Line Spike Sorter (Plexon Inc.).
Waveforms were considered as being generated by a sin-
gle neuron only if they occurred simultaneously in the four
electrodes (Fig. 1a) and if they defined a discrete cluster in
3D principal component space that was distinct from clus-
ters either from other units or multiunit activity (Fig. 1c, in
2D representation). The waveforms were sorted into units by
an automatic method: the valley-seeking algorithm (Fuku-
naga 1972) that uses the inter-point distances in space to
assign the waveforms to an optimal number of clusters. The
degree to which the selected unit clusters are separated in
the 2D and 3D cluster views is determined by a Multivari-
ate Analysis of Variance (MANOVA) test. Single units had to
exhibit a clearly recognizable refractory period (1 ms) in their
ISI histograms (Fig. 1b). Once spikes originated in individ-
ual neurons and recorded in proximity were identified, the
times of occurrence were used for subsequent analysis. At
the end of the experimental recordings, the rat was given an
overdose of sodium pentobarbital and perfused transcardial-
ly with saline, followed by 4% paraformaldehyde. The brain
was sliced coronally into 100-µm thick sections, which were
mounted and Nissl stained to aid visualization of the elec-
trode track and tip. Recordings from 102 neurons have been
included in this study.

3 Quantitative tools and methods

3.1 The entropy rate and the Lempel–Ziv estimator

Entropy rate estimators constitute a mathematically rigorous
tool to approximate information transmission rates. This is
an alternative to the analysis based on firing rate methods. It
was shown that Lempel–Ziv complexity as defined in Lempel
and Ziv (1976) can be used successfully as such an estimator
(Amigó et al. 2004).

We recall the basics of Shannon entropy and Lempel–Ziv
complexity. Consider blocks or “words” xl

1 := x1x2 . . . xl of
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Fig. 1 Spike recording from the auditory cortex in a chronically
implanted rat. a Spikes from two neurons recorded simultaneously with
one tetrode. The vertical black lines determine the time windows cor-
respondent to the four electrodes in the tetrode. Tetrodes are used to
improve the capability of separating spikes originating in different neu-
rons. Notice that the spike of “unit a” is of larger amplitude in the first

electrode, while the one of “unit b” is of larger amplitude in the sec-
ond electrode. b Interspike interval histogram of each isolated spike.
The refractory period following each spike further confirms that only
spikes from one neuron are being included in each cluster. c 2D view of
the principal component analysis of two units. Notice that the clusters
corresponding to each unit do not overlap

length l output by an information source (or, equivalently,
stationary stochastic process) X , with symbols or “letters”
xi taken from an “alphabet” A = {a1, . . . , aα}. With p(xl

1)

denoting the probability of the word xl
1 of the length l, the

block entropy of order l in units of bits is

H(l) = −
∑

xl
1

p(xl
1) log2 p(xl

1), (1)

where the sum is over all possible such words xl
1. The entropy

rate of X , h(X), is then defined as

h(X) = lim
l→∞

1

l
H(l). (2)

This theoretical definition is quite problematic when used
as a statistical estimator of h in a finite-sized data set. Cur-
rent entropy rate estimation methods (e.g., Strong et al. 1998)
proceed by substituting the observed relative frequencies p̂i

for pi in Eq. 2, and subsequently extrapolating the finite l
behavior of H(l)/ l when l goes to infinite (i.e., when 1/ l
goes to 0). Other approaches to entropy rate estimators are
also discussed in the literature (London et al. 2002; Kennel
et al. 2005; Kontoyiannis et al. 1998).

Intuitively speaking, the complexity of a sequence counts
the number of different patterns appearing during its gen-
eration. Precise definition of the Lempel–Ziv 76 (LZ 76)
complexity CLZ(xl

1) of a length l word xl
1 := x1x2 . . . xl ,

with xi ∈ A = {a1, . . . , aα}, is given in Lempel and Ziv
(1976). We recall in short this definition. Consider the fol-
lowing sequence: x4

1 := x1x2x3x4. Take the first letter x1 and
set CLZ = 1. Take the second letter x2. If x2 �= x1, increase
CLZ by one; otherwise, consider the substring x3

2 := x2x3.
If x3

2 �= x2
1 = x1x2, then a new pattern occurs and CLZ

is increased by one; otherwise, consider x4
2 := x2x3x4 and

check whether this substring occurs in x3
1 = x1x2x3. The

procedure continues along these lines for longer sequences,
the counter CLZ being increased as soon as a new pattern
occurs in the segment comprised x1, x2, . . . , up to the last-
but-one letter appended. In this way, xl

1 gets decomposed into
(minimal) patterns and CLZ(xl

1) is the number of them.
Furthermore, the generation rate of new patterns along a

word xl
1 is measured by the (LZ 76) normalized complexity,

c(xl
1) = CLZ(xl

1)

l/ log2 l
. (3)

Sequences generated by random sources have normalized
complexity of about 1 with very high probability, whereas
quasiperiodic sequences have very small values. It can be
proved (Ziv and Lempel 1978) that, if the source X is ergodic
i.e., the time average over trajectory is equal to the ensemble
average, then

lim sup
l→∞

c(xl
1) = h(X) (4)

with probability 1. For precise definition of ergodicity, see
Durrett (1996).

Equation 4 provides a simple way to estimate the entropy
rate of an ergodic source via the normalized complexity of a
sequence x L

1 of finite length L � 1 produced by it, namely,

c(x L
1 ) � h(X). (5)

However, while the performance of the standard entropy rate
estimators (based on maximum likelihood) depends critically
on l as compared to L because of undersampling, the appli-
cability of the normalized complexity rate relies rather on
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Fig. 2 Illustration of the
convergence rate of the
Lempel–Ziv 76 entropy
estimator as a function of the
incremental length (window
size) of a sequence. A typical
Markov processes with
relatively small entropy
characteristic for spike trains
have been considered. In each
case 1,000 trajectories have
been generated. a and b show
the short-length behavior, while
c and d show the long-length
estimation. The true value
(straight horizontal line), the
average value (solid thick line)
of estimated entropy and two
SD bounds are depicted (dashed
lines). In the top panels, we see
that a few hundred bit long
window provides a satisfactory
estimation of entropy
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the convergence speed of c(xl
1) as l → L , i.e., as the pattern

count goes on. Therefore, fast convergence of the normal-
ized complexity entails not only reliable entropy rate esti-
mations, but also the possibility to assess the entropy rate of
the neuron with short data series. In particular, one expects
this to be the case when the source entropy is small (i.e.,
when the source is far from random), because then the pat-
tern count is low. This is important because periods of sta-
tionarity can be comparatively short. For more details, see
Amigó et al. (2004).

In order to assess the choice of the window length and
to justify the quality of the Lempel–Ziv estimator applied
(especially for parameters typical of spike trains), we com-
puted its convergence rate for a few Markov processes, see
Fig. 2. For these processes the entropy rate is known also
analytically. This figure shows that the convergence rate is
quite satisfactory, especially when we take into account bio-
logical applications. Moreover, it is worth to stress that an
estimator for the variance of Lempel–Ziv complexity was
proposed recently (Amigó and Kennel 2006). It was shown
that for three-state Markov processes and for 400 symbols
long sequences the standard deviation is no larger than 0.08.
Thus, for the two-state process (this is the case of the redun-
dancy) the accuracy should be even better. In order to esti-
mate the joint entropy for the case of RMI the four-state
process was used, which leads to slightly worse accuracy.
Moreover, numerical simulations show that LZ 76 overes-
timates the entropy rate, which in the case of estimation
of indicators that are constructed as a ratio (like RMI and
redundancy) of entropy rates of some quantities leads to a
lower bias. This is the advantage of the RMI index over MI
one.

3.2 Redundancy

Redundancy is defined in the literature in several ways; see,
e.g., Barlow (2001), Gawne and Richmond (1993), Panzeri
et al. (1999), Brenner et al. (2000), Machens et al. (2001),
Simoncelli and Olshausen (2001), Schneidman et al. (2003),
Rolls et al. (2004), Latham and Nirenberg (2005), and
Puchalla et al. (2005). In general, the main idea is based
on comparison of the entropy rate of the given memoryless,
uniformly distributed (that is with maximal possible entropy
rate to be reached) input information source with the output
entropy rate. In this article, we apply the definition adapted
in neuroscience and proposed in Reich et al. (2001). This
definition is based on the comparison between the amount
of information conveyed by the whole neuronal ensemble
and the information carried by the individual cells. We start
by recalling the basic concepts that we need. This idea is
illustrated in Fig. 3.

Let us recall that if X is a discrete random variable with
probability function p(xi ), then the information (in the
Shannon sense) conveyed by the event X = xi is equal (in
units of bits) to

I (xi ) = − log2 p(xi ). (6)

Observe that an event conveys the more information, the less
likely it is. The entropy of X , H(X), is the average informa-
tion conveyed by the observation of an event.

In the more general case of a sequence of random variables
(stochastic processes) X∞

1 := X1 . . . Xn . . ., the information
I (x1, . . . , xn) conveyed by the event X1 = x1, . . . , Xn =
xn , is given by
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Fig. 3 The concept of
redundancy is illustrated. The
sum of information for each
neuron separately is compared
to information transmitted by
the combined spike train

Combined spike train

Redundancy

Spike timing

time Information rates

Leading neuron

are „compared”

→  

→  

l1

l2

→  l3

→  lc

ls= l1+ l2+l3

I (x1, . . . , xn) = − log2 p(x1, . . . , xn), (7)

with p(x1, . . . , xn) being the probability distribution of the
vector random variable Xn

1 := X1 . . . Xn . The information
rate of Xn

1 is then defined as

l(x1, . . . , xn) = −1

n
log2 p(x1, . . . , xn). (8)

According to the Shannon–McMillan theorem [also
called the Asymptotic Equipartition Property, see Cover and
Thomas (1991)],

lim
n→∞ l(x1, . . . , xn) = h(X∞

1 ) (9)

with probability 1, if the finite-valued stationary process (or
information source) X∞

1 is ergodic. This result will allow
us below to estimate information rates of ergodic sources
by means of entropy rate estimators (such as Lempel–Ziv
complexity) applied to single, sufficiently long outputs.

The concept of redundancy we consider henceforth was
introduced in Reich et al. (2001) in order to measure the
cooperation of a group of neurons: do they work synergisti-
cally or rather in an uncoordinated way? Its definition is as
follows:

Consider a group of neighboring neurons G = {N1, N2,

. . . , Nk} and denote by:

• lc the information rate of the combined spike train, i.e.,
the signal obtained by aggregating the spikes emitted indi-
vidually by the neurons of G.

• ls the sum of information rates for each cell separately.
• li the information rate of neuron Ni .

Then, the redundancy R of G is defined by

R = ls − lc
ls − max1≤i≤k{li } . (10)

Furthermore, to estimate lc we apply the so-called “summed-
population code” (Reich et al. 2001), so that the information
rate lc is estimated with the same accuracy as the informa-
tion rates li for single neurons because only two letters are
used in summed-population code too. Thus, the essence of
this concept is just to compare the amount of information
transmitted by each single neuron coming from a group with
information transmitted when the group is treated as a single
source of information. In the article, by Reich, Mechler and
Victor stimuli are treated as a parameter.

Observe that the denominator is always positive, while
the numerator can have both signs. In particular, (i) R > 1 if
stimulus-related information in jointly analyzed responses is
contradictory or confusing, and (ii) R < 0 if the neurons fire
synergistically. Indeed, case (i) means that max1≤i≤k{li } >

lc, i.e., there is a single neuron for which the information
rate is greater than the information rate of the spike train
of the whole ensemble; this is possible if, e.g., one neuron
fires evenly, while the firing patterns of the rest is biased in
the same way. Case (ii) means that ls < lc, i.e., the sum of
the information rates coming from all neurons separately is
smaller than the information rate of the spike train of the
whole ensemble. Needless to say, all these quantities can be
evaluated with any entropy estimator, say, with the normal-
ized complexity.
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Relative Mutual Information

time

Neuron 1

Neuron 2

Information     exchange

→ Info_N1

→ Info_N2

Fig. 4 The idea of relative mutual information concept is introduced.
The neurons communicate via the synapses, which constitutes synaptic
activity, which is the basis for mutual information. This mutual informa-
tion is compared to the average information transmitted by both neurons

3.3 Relative mutual information

The amount of information that a random variable Y car-
ries about another random variable X is a central question
in Information Theory. The answer is given by the mutual
information I (X, Y ) between X and Y (Cover and Thomas
1991; Paninski 2003; London et al. 2008),

I (X, Y ) := H(X) − H (X | Y )

= H(X) + H(Y ) − H(X, Y )

= I (Y, X), (11)

where H(X) is the entropy of X , H (X | Y ) is the conditional
entropy measuring our uncertainty about X knowing the real-
ization of Y , and H(X, Y ) is the joint entropy of X and Y .

The relative mutual information RM I (X, Y ) between the
random variables X and Y is just the ratio between their
mutual information I (X, Y ) and the average of information
transmitted by X and Y :

RM I (X, Y ) = H(X) + H(Y ) − H(X, Y )

[H(X) + H(Y )]/2
. (12)

In other words, RM I (X, Y ) measures the reduction of uncer-
tainty concerning realization of X having knowledge about
the realization of Y and compares with the average uncertainty
of realization of both X and Y . This concept is essentially
different and can be treated as complementary to cross-cor-
relations analysis. The basic idea of the RM I concept is
illustrated in Fig. 4. In contrast to the standard approach that
compares I (X, Y ) with H(X) or H(Y ), a more natural idea
is to compare I (X, Y ) with information transmitted just by
both neurons, since we are interested in cooperation between
neurons during information transmission.

Note that RM I (X, Y ) is non-dimensional. In the appen-
dix, it is proven that 0 ≤ RM I (X, Y ) ≤ 1. If the random
variables X , Y are independent, then I (X, Y ) = 0 and, hence,
RM I (X, Y ) = 0 too. (Intuitively, this means that the knowl-
edge of the realizations of Y does not reduce on average

the uncertainty about the realizations of X .) On the contrary,
if the dependence between random variables X , Y is deter-
ministic (i.e., knowing the realization of X implies certainty
about the realization of Y ), then RM I (X, Y ) = 1.

This definition can be generalized without formal changes
to sequences of random variables (stochastic processes)
X∞

1 := X1 . . . Xn . . . and Y ∞
1 := Y1 . . . Yn . . ., just by first

considering finite length blocks Xl
1, Y l

1 with RMI

RM I (Xn
1 , Y n

1 )

= H(Xn
1 ) + H(Y n

1 ) − H(Xn
1 , Y n

1 )

[H(Xn
1 ) + H(Y n

1 )]/2
(13)

(since, for each n fixed, Xn
1 and Y n

1 can be treated as random
variables) and then taking the limit

RM I (X∞
1 , Y ∞

1 ) = lim
n→∞ RM I (Xn

1 , Y n
1 ). (14)

In real time series analysis, RM I (X∞
1 , Y ∞

1 ) has to be esti-
mated by RM I (Xn

1 , Y n
1 ), for n sufficiently long.

We would like to stress that we estimate H(X, Y ) in a
natural way: after encoding (see Sect. 3.4) spike trains X and
Y , we assign one of the four letters a, b, c, d to each bin:

a—when in this bin there is a spike coming from X and no
spike coming from Y ,
b—when in this bin there is no spike coming from X and
there is a spike coming from Y ,
c—when in this bin there is a spike coming from X and
there is a spike coming from Y ,
d—when there is no spike in the bin.

Thus, for the pair of spike trains (X, Y ) we obtain corre-
sponding sequence of symbols (based on a four-letter alpha-
bet) representing its joint distribution and, next, we calculate
the normalized complexity with four letters formula (Amigó
et al. 2004), so the dimensionality of letters does not increase
significantly.

3.4 Coding and sliding windows

As already mentioned in the Sect.1, spike trains can be
encoded in many ways. We have used in our analysis the
binary temporal coding (Rieke et al. 1997). If the time inter-
val T is divided into q bins, the resulting time resolution is
�τ = T/q. Thus, within each time window [t, t + T ], a
spike train is encoded as a sequence of q bits; the resulting
message translates the information being generated by the
neuron (up to a resolution time �τ ) to a format amenable to
the methods of Information Theory. The window length T
has to be long enough to guarantee a good entropy estimation
(this depends on the estimation method used). Moreover, if
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Fig. 5 a RMI for the same pair of neurons with restrictive and
non-restrictive spike cutting. The long-time scale result is presented.
b Redundancy for the same group of neurons with restrictive and non-

restrictive spike cutting. c, d The later stage of experiment is presented.
For better illustration, a shorter time period has been plotted

the neuron is not considered stationary but rather only locally
stationary, as we do in the case of a rat moving freely in the
dark, T must be also short enough to guarantee (approximate)
stable conditions within the window. Numerical calculations
show that T = 5 s is a good trade-off between these two
conditions.

The quantity q is the other encoding parameter in this
scheme. In our analyses, we set the encoding frequency f =
1/�τ equal to 80 Hz. This choice is based on the so-called
saturation levels studied in Szczepanski et al. (2003): from
f = 80 Hz on, the increase of encoding frequency does
not affect the values of the normalized complexity obtained.
In other words, above f = 80 Hz we cannot extract more
information from the signal. Thus, the length of the words
inside each window is l = f T = 400 symbols. These binary
sequences can be now treated as stochastic trajectories for
calculations of the redundancy and as realizations of random
variables for the calculation of the RMI.

4 Results

Multiunit recordings were obtained by means of chronically
implanted tetrodes in the visual cortex of freely moving rats.
During the experiment, a voltage threshold was set through
visual inspection of the recording. All events that crossed the
threshold were recorded and sorted off-line (see Sect. 2). In
order to explore to what extent being more or less restrictive
in the spike cluster cutting would affect the estimations of
both redundancy and RMI, we compared two different forms
of cluster cutting: “restrictive” and “non-restrictive.” The
clusters were represented in the 3D PC space using off-line
sorter (Plexon Inc.) and the centroids of the clusters (Fig. 1c)
calculated, as well as the Mahalanobis distance (Mahalanobis
1936) between each point in the cluster and the centroid. We
considered “restrictive” cutting the one when all points far-
ther than ≥ 2SD from the centroid were removed as outliers,
and “non-restrictive” when no outliers were removed.
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Fig. 6 a Evolution for the redundancy in a spike train during a 1,200 s
recording. Large fluctuations in redundancy can be observed, but close
to the leading neuron regime (above 0.5). The conjecture is that neu-
rons can exchange the leading role during transmission. b Neurons can
also work in one regime for an extended period of time. This figure
corresponds to a leading neuron regime of transmission. Probably neu-
rons did not exchange the leading role in this experiment. c Transitions
between different regimes of information transmission (0.1–0.75) can

be observed in this figure. Note how these transitions are brisker than
the ones presented above, e.g., b. d In this experiment, the redundancy
of a group of neurons changes between 0.5 and 0.9. The degree of coop-
eration within a group of neurons depends on the regime of information
transmission (uncoordinated or driven by a leading neuron). Here, the
transitions to different regimes take place in a mild way. This figure
presents the early stage of experiment

In Fig. 5, we display four examples of the results obtained
with a restrictive and non-restrictive sorting for both redun-
dancy and RMI. As can be observed, there is no signifi-
cant difference between the two parameters independently
of how restrictive the spike sorting was. This analysis was
performed for the recordings of 11 neurons and no significant
differences were detected. Indeed, the mean and the standard
deviation for restrictive and non-restrictive sorting differed
by <5% in all cases, both for redundancy and RMI. The fact
that these curves almost coincide for liberal and restrictive
types of sorting suggests that these sortings practically do
not affect neither the RMI nor the redundancy. To be more
specific these results show that most of the information is car-
ried by the spikes with “a typical profile,” i.e., those which

are close to the center of “mass” in the sense of the Maha-
lanobis distance. The removed outliers (those being farther
than two standard deviations from the centroid) do not sig-
nificantly affect the amount of transmitted information. In
this sense, the precise spike-timing codes are also not very
much affected. We conclude therefore that the type of the
sorting mode does not affect in an essential way neither the
redundancy nor the RMI within a group of neurons. Thus, in
the rest of the study non-restrictive spike sorting is used.

Next, we summarize the main results of our calculations.
(i) We analyzed the redundancy of 19 groups of neu-

rons. The number of neurons was 3–13, depending on the
group. Figures 6 and 7 show four different behaviors of the
redundancy. In general, the redundancy of the information
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Fig. 7 Same as Fig. 6, but the later stage of experiment is presented showing the unchanged temporal behavior of the redundancy index

transmitted by a group of neurons is characterized by a large
variability (the standard deviation is 0.08); the mean value
can be essentially different depending on the group of neu-
rons (mean value varies from 0.45 to 0.90 depending on the
group).

We have found different types of group collaboration
between neurons which we describe next.

The first type of collaboration that we observed (Figs. 6a,
7a) was characterized by a sharp oscillation in relatively short
periods of time during the whole recording (1,200 s). The
regime of this collaboration was somewhere between syner-
getic and “leading neuron” [called “contradictory” in Reich
et al. (2001)] methods.

For another group of neurons, the redundancy was char-
acterized by small fluctuations (Figs. 6b, 7b) showing an sta-
ble redundancy curve. This kind of collaboration takes place
when the leading neuron plays the crucial role in a transmis-
sion process. The value of redundancy in these cases is close
to one.

In the third case, we have observed that during transmis-
sion the regime of collaboration changes from one type to
another (Figs. 6c, 7c). In Fig. 6c for the initial 200 s one
can see the periods of synergetic collaboration (redundancy
drops as low as to 0.1), while in the time interval 300±40 s
the redundancy jumps up to the values as high as 0.8 which
corresponds to a “leading neuron” regime. Then, during the
final 500 s neurons collaborated in a mid-regime (the redun-
dancy value oscillated about 0.5). Similar behavior one can
be seen in Fig. 6c.

The fourth type of neuron collaboration we have observed
was a slow transition (Figs. 6d, 7d) from “the leading neu-
ron regime” (redundancy about 0.9) to “mid-regime” (redun-
dancy about 0.5), followed by a slow increase up to the
value of 0.8 (Fig. 7d). Similar behavior was observed in
an earlier stage of this experiment (Fig. 7d). The fluctu-
ations of this redundancy curve are relatively large espe-
cially in comparison with the curve presented in Figs. 6b
and 7b.
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Fig. 8 Relative Mutual Information plots for four groups of neigh-
boring neurons. Within each group RMI for each pair of neurons was
calculated. At each moment of time the average RMI and one standard

deviation (1 SD) departure from the average value are depicted. In a (13
neurons) and b (six neurons) RMI curves for longer time scale, while
in c (three neurons), d (five neurons) for short-time scale are presented

(ii) RMI was studied for four groups of neurons. Within
each group, RMI between each pair of neurons was calcu-
lated. Our results show that the information carried by one
neuron about the spike activity of another neuron (for nearby
cortical neurons) is almost the same for long-time spans (the
mean value of the RMI being around 0.5–0.6) and the vari-
ability of this relation is very small (the standard deviation is
0.015).

The typical time behavior of RMI is presented in Figs. 8
and 9. In Figs. 8a, b and 9a, b, we show results for longer
time scale. On Figs. 8a and 9a, a group consisting of 13
neighboring neurons was considered. For each pair of neu-
rons (78 pairs) the RMI was calculated. At each moment of
time the average RMI and ± one standard deviation (1 SD)
departure from the average value were depicted. We included

also the RMI calculated for the single pair consisting of the
most and the least firing neurons within the group. In Figs. 8b
and 9b, longer time scale RMI runs for a smaller group con-
sisting of six neurons are presented. Finally, Figs. 8c and 9c
(three neuron group) and Figs. 8d and 9d (five neuron group)
present the plots of RMI time runs for relatively short-time
scales.

In all cases, the RMI curves exhibit a relatively high mean
value and small relative fluctuations measured by ratio stan-
dard deviation and average value.

By definition of RMI this relatively large mean value
proves that each neuron conveys a large amount of informa-
tion about the activity of its neighbor. Moreover, our results
show that the RMI fluctuations are significantly smaller than
the redundancy fluctuations. The above results show that each
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Fig. 9 Same as Fig. 8, but the later stage of experiment is presented showing the unchanged temporal behavior of the RMI index

pair of neighboring neurons exchange information in a very
regular way, while the cluster of neurons collaborate in a
variable way although usually within leading neuron regime
(redundancy above 0.5).

(iii) Information transmission via a leading neuron (a role
of which is often passed from one neuron to another of the
same group) combined with the property (ii), is efficient and
robust.

5 Discussion

We have studied the redundancy and RMI in groups of neigh-
boring neurons from the primary visual cortex in the awake,
freely moving rat. Given that no specific visual stimuli were
presented, we may assume that the spike trains are locally sta-
tionary, allowing us to estimate those parameters by means
of 5-s long, sliding windows. The estimation of the necessary

information and entropy rates was obtained by means of
the normalized Lempel–Ziv complexity, a technique that the
authors have studied in previous works; see, e.g., Szczepanski
et al. (2003), Amigó et al. (2004). The encoding parameters
and window length were chosen precisely on the grounds of
our experience with this estimator.

A large variability of the redundancy for groups of neu-
rons (as in Figs. 6a, c, d and 7a, c, d) suggests that during
the process of information transmission, a group of neurons
can collaborate in a flexible way. Specifically, neurons can
collaborate in both ways: with a leading neuron with higher
transmission rate (more frequently) or closer to a synergetic
way, i.e., with the information rate of the whole group higher
than the sum of the information rates of each individual neu-
ron. The values obtained by Reich et al. (2001) correspond
to the first case. This flexibility in the collaboration corrob-
orates that the transmission of information by the brain is
characterized by high reliability.
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To the best of our knowledge, the concept of RMI has
been introduced by the present article. Being the mutual
information of two random variables (modeling two neu-
rons) normalized by the average of their entropies, RMI is
a dimensionless parameter ranging from 0 to 1 that is very
well suited for our purposes. The values of the RMI mea-
sured in our experiments were quite constant over time, in
spite of the different activities being carried out by the rat in
that time span. These values are above 0.5, the value 1.0 cor-
responding to a deterministic relation. This means that dur-
ing information transmission, neurons convey information
about the patterns, transmitted by each neighboring neuron
at a similar relatively high level (with relatively small vari-
ance) in relation to the total information being transmitted.
More explicitly, the results of our calculations (RMI close to
0.55), show that the “uncertainty” of spiking of one neuron
reduces by half (in comparison to the average “uncertainty”
of spiking of both neurons) provided we have information
about spiking of the other neuron. We conjecture that this is
to make the transmission resistant against noise that naturally
occurs in biological systems.

Finally, we highlight the fact, supported by our results,
that neurons can cooperate in different ways (as indicated by
the redundancy) while keeping the RMI between neighbor-
ing neurons at the same level.
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Appendix

Lemma Let X and Y be two random variables. The follow-
ing properties of

RM I (X, Y ) ≡ H(X) + H(Y ) − H(X, Y )

[H(X) + H(Y )]/2
(15)

hold true:

1. 0 ≤ RM I (X, Y ) ≤ 1;
2. RM I (X, Y ) = 0 if and only if X and Y are independent;
3. RM I (X, Y ) = 1 if and only if there exists a deterministic

relation between X and Y .

Proof 1. First of all (Ash 1965; Theorem 1.4.4),

H(X, Y ) = H(X) + H (Y | X),

H(X, Y ) = H(Y ) + H (X | Y ),
(16)

where H (X | Y ) ≥ 0 and H (Y | X) ≥ 0 are conditional
entropies. It follows

H(X) ≤ H(X, Y ), H(Y ) ≤ H(X, Y ), (17)

Adding both inequalities, we get

H(X) + H(Y )

2
− H(X, Y ) ≤ 0 (18)

and, adding now H(X)+(Y )
2 to both sides, we end up with

H(X) + H(Y ) − H(X, Y ) ≤ H(X) + H(Y )

2
. (19)

If H(X) �= 0 or H(Y ) �= 0, then it follows

H(X) + H(Y ) − H(X, Y )

[H(X) + H(Y )]/2
≤ 1. (20)

Furthermore, RM I (X, Y ) ≥ 0 follows trivially from
I (X, Y ) = H(X) + H(Y ) − H(X, Y ) ≥ 0 and H(X) ≥ 0,
H(Y ) ≥ 0.

The case H(X) = H(Y ) = 0 we put aside before (20) cor-
responds to random variable with δ-distributions (i.e., X = x
and Y = y with probability 1), so that X and Y are constant
(and deterministic) for all practical purposes. Since this is a
limiting case in the probability distribution, we pass to the
limit and define RM I (X, Y ) = 1.

2. X and Y are independent if and only if I (X, Y ) = 0
(Cover and Thomas 1991), and I (X, Y ) = 0 if and only if
RM I (X, Y ) = 0.

3. In (17) equalities hold if and only if H (X | Y ) =
H (Y | X) = 0 (see (16)), which means that the relation
between X and Y is deterministic (Ash 1965; p. 51). ��
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