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•   Synergy in scientific research has long been recognized and practiced

Introduction

•   Yet, scientist tend more and more to specialize!

•   “Experiments will become obsolete and wind tunnels will be turned
     into storages of computer outputs”

•   “Computer simulations? GiGo!” (“Garbage in, garbage out!”)

•   Rapid developments of computers created a particular gap between  
    experiments and computer simulations

•   Yet, tremendous advancements in both experimental and simulation/ 
    modelling techniques and mutual  feedback, synergic inspiration and 
    incentives! 
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Examples of synergy in three research problems:
1. Thermal convection over horizontal and sloped surfaces in a 
      broad range of conditions including the extreme ones

• Experiments for Ra=108-109

• DNS for Ra=105-108;  LES for Ra=106-109

• VLES/T-RANS for Ra=106-2x1016

2.    Impinging flows and heat transfer at higher Re numbers 
•    Single impinging round jets

•  Experiments, RANS and LES, Re=20.000 

•    Multiple impinging jets
•  Experiments and RANS  

1. Fluid magnetic dynamo: Hybrid DNS/RANS Computer simulations 
      and interaction with experiments in Riga (Latvia) and Dresden (G) 

•    Single impinging round jet on a cube in cross-flow
•  Experiments, RANS and LES  
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1. Thermal convection
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Thermal convection from horizontal surfaces 
(Rayleigh-Bénard (R-B) and related problems 

•   R-B convection = a paradigm of thermal convection; contains 
    most events, structures and features of real-large-scale situations
    in environmental, geo-, terrestrial and technological systems   

•   Despite long research, still burdened with controversies: 
•  “soft”, “hard”, “ultra-hard” turbulence;
•  NuRan , “n”  from 2/7 (1/3?) (107<Ra<1011) to 1/2 when Ra
•  scaling of flow properties in various regions and regimes;
•  existence and definition of “wind”, plumes, thermals,..
•  convective-cells and plume structure formation, ordering, .. 
•  long-term oscillations, flow reversal, causes-consequences
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Thermal convection: problems and solutions

105 107 109 1011 10151013 10191017

Ra

Experiments

DNS

LES

VLES/T-RANS

“soft” “hard” “ultra-hard” “ultimate”

Real-life systems 
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Formation and evolution of thermal plume, suspended Liquid Crystals, 
Ra=108, Pr=7.0, 4:4:1 domain,  (Verdoold, Tummers, Hanjalic et al. 2004)

Achievements and limitations in R-B experiments

•   Until recently, only point-measurements (especially at high Ra) 

•   PIV, PTF, LIF, LC brought much advancement, (almost all data) but
    still confined to one-plane, limited domains and single-fields 

•   3-D instantaneous field essential for capturing structure and 
    full dynamics: desirable simultaneous application of 3D PIV  of PTV
    (holographic) with suspended LC, thermography and/or spectrometry 

•   Problems become more challenging with an increase in Ra! 
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Synchronised snapshot of PIV in x-y and LCT in a near-wall x-z plane in R-B
convection at 10 sec intervals  (Ra=1.3x108, Pr=7.0) (Verdoold et al. 2004)
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DNS, Ra=108, Pr=1.0

DNS, Ra=108, Pr=7.0

Achievements and limitations in DNS of R-B convection

Recent: Ra=1.1x108, Pr=7, grid: 768x768x320 (~ 188 million!) on 
192 processor of TERAS, (~ 22 hours per processor for one turn- 
over time, ~55 sec real time) (Van Reeuwijk, Jonker, Hanjalic, 2005)

•   Computer simulations (DNS, LES): tremendous potential, make it 
    possible to collect all information needed, (some are still inaccessible
    to  experiments) , but only for low Ra’s!  
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Ra=1.1x108, Pr=7, grid: 768x768x320, Finite volume + spectral integration, grid 
clustered in near-wall regions, (Van Reeuwijk, Jonker, Hanjalic, 2005)

Recent achievements in DNS of R-B convection
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Ra=1.1x108, Pr=7, grid: 768x768x320, Finite volume + spectral integration, grid clustered in 
near-wall regions, (Van Reeuwijk, Jonker, Hanjalic, 2005)

Recent achievements in DNS of R-B convection
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Some outcome of DNS:
Identification of “Wind”
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Symmetry-accounting (‘conditional’) ensemble averaging 

Wind velocity 
profiles

Convective structures

Van Reeuwijk, Jonker, Hanjalic, Phys.Fluids, 2005 
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thermal boundary layer

Using DNS data
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Wind velocity (smoothed) and 
temperature recordings in the 
experiment with cryogenic helium in 
a cylindrical enclosure 5050 cm at 
Ra=1.51011 (Niemela et al. 2001) 

LDA long-term velocity recording at 33 mm 
from the bottom wall in the centre of a 60
6015,5 cm R-B experiment with water, Ra
109 (Verdoold et al. 2004/05)

Th

Tc 

Th

Tc 

Some controversies related to long-term oscillations 
and sudden reversal of Wind direction   

High aspect ratio, W:H>>1
Open sides

Low aspect ratio, 
W:H~1, Closed sides

2000 s

200 s



15IPPT-PAN, Warszawa, 24 January 2007

Velocity autocorrelation in R-B convection 
Measurements: Verdoold et al, 2005 
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Convective patterns in R-B convection
=/4=0

=/2 =3/4

Long-term average

Phase average
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Classic Possible long-term periodic scenario

Convective patterns in R-B convection
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   v /H  Ra-1/7 

 Nu Ra1/3   for  Ra<1012   (Pr O(1))

 Nu Ra1/2   for Ra

   /H  Ra-1/3 

High Ra challenges in R-B convection: Transient RANS
(Kenjeres & Hanjalic, Phys Rev. E, 2002)
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Wall normal heat flux in a heated-from-below 
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 Pr=0.71 (Symbols: DNS Woerner1994) 
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Planform structures and 
finger-like plumes

Comparison of DNS, LES and T-RANS for Ra=6x105 and T–RANS “extrapolation”

DNS LES

T-RANS

Capturing effects of Ra number Ra=6x105

Ra=109 Ra=2x1014

Meeting the high Ra challenges: Transient RANS

(Kenjeres & Hanjalic, Phys Rev. E, 2002)
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T-RANS of R-B: Temperature colored instantaneous trajectories

Ra=6.5x105 Ra=2x1014

central horizontal
 plane (z/D=0.5)

inside thermal 
boundary layer
 (z/D=0.05):
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Only large
scales

Only large
scales

Only large
scales

 (only 2D)

Phenomena,
Parameters

Field properties/
Scaling

Structure identification 
and eduction 

Regime changes
detection

Regime identification 
and characterization

Long- term instability 
and flow reversals

Full 4-D dynamics

Experiments

Computer Simulations
DNS/LES      Modelling
 Ra<108/109      Ra<1017  

Point,
Local 2D area

Complementarity 
& Synergy in R-B
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Synergy of experiments and simulations of R-B:
A summary 

• Experiments proved invaluable in detecting some new physics, e.g.:
•  long-term oscillation and the phenomenon of sudden or gradual 
   reversal of flow direction (t=200-2000 sec);
•  detecting a change of regimes, etc., but
•  limited to point- or (local) plane measurements, and usually only 
   a single field (velocity or temperature or..)!   

• Computer simulations are uncontested in providing 3-D time dynamics
   (4D field) and subtle flow and structural details, but

•  DNS and LES very demanding on computational resources 
   (only low Ra’s and short real times!)   
•  VLES/T-RANS (hybrid RANS/LES): the only viable tools for very
   high Ra’s, but burdened with modelling approximations!  

• “Together, we win!”
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T-RANS of pollutant dispersion in a town valley

Residential Industrial



T, C

x,y

T=T(x,y,z,t

C=C(x,y,z,t



Diurnal cycles for a windless  period capped by an inversion layer, with imposed Diurnal cycles for a windless  period capped by an inversion layer, with imposed 
ground temperature and emission scenarios ground temperature and emission scenarios 
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Time evolution of the potential temperature 

Strong stratification

Weak stratification

Time
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CASE (I): weak stratification CASE (II): strong stratification

TIME

INDUSTRIAL RESIDENTIAL INDUSTRIAL RESIDENTIAL

Instantaneous trajectories in vertical plane over residential and industrial zones 

Q0<0

Q0>0
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INITIAL STRATIFICATION 
 CASE (I): weak CASE (II): strong

Instantaneous trajectories in vertical plane over hilly terrain  

Q0>0

Q0<0

TIME
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Velocity vectors and horizontal velocity component profiles 
2hrs after onset of heating/cooling, day (II), weak stratification 

z

y y

z

  up-slope  (anabatic) inertial flow down-slope inertial flow
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1. Impinging flows and heat transfer 
at higher Re numbers 
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Impinging flows and heat transfer

•  Impinging jets:  one of the most frequent  
    configuration for efficient heating and cooling
    of solid surfaces

•  Optimum performances depend on a number 
    of parameters and no unique criteria exist     

•  Challenges: identification of flow and turbulence structure, their
    interaction with heated surface (thermal imprints), heat transfer
    mechanism and its control        

•  Most studies confined to a single jet at relatively low Re numbers, but 
    extra effects in multiple jets (jet-jet interaction, wall-jets collision,  
    ejection fountains, embedded vortices, jets in cross-flows,…          

•  In addition to technological interest, Impinging 
    jets contain a number of interesting physical events and phenomena    
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Impinging jets: potential and limitations of experiments

PIV of multiple round jets 
impinging on a flat surface
(Geers, Tummers, Hanjalic, Exp. Fluids, 2004)

Original (left) and POD filtered (left) 
snapshots. 
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Computer simulations of Impinging Flows 

LES Niche: low Re’s, separated flows 
(electronics cooling, gas turbine blades,..)  
Heat transfer on a multi-layered wall-
mounted cube in a matrix (Re~104) 
(Ničeno and Hanjalić, 2001, 2002) 

Surface temperature Thermal plume (surface of T=const
coloured by fluid velocity)
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Computer simulations of Impinging Flows 

Real challenge: attached impinging flows
 A single round impinging jet 
Re=20.000, H/D=2 , unstructured grid

(Hadziabdic and Hanjalić, 2004/05) 
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Pressure field: top view 

Stagnation point meandering

Pressure field: side view

Temperature field

Computer simulations of Impinging Jets 
 Re=20.000, H/D=2 (Hadziabdic and Hanjalić, 2004/5) 
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Some RANS-detected anomalies in multiple-impinging jest 

RANS computations PIV measurements 

Inherent asymmetry,
bifurcation, embedded 
vortices 
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Averaged streamlines and velocity vectors for the square jet arrangement at 
y/D=0.54 above the plate  (Geers, Tummers , Hanjalic, Exp. Fluids, 2004; 
                                         Thielen, Jonker & Hanjalic, IJHFF, 2003)    

Computations (k-v2-f) PIV Experiments Computations (EBM)
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Experiments (Geers et al. 2003)

Computed Nusselt number for square jet arrangement 
(Thielen, Hanjalic, Jonker, Manceau, IJHMT’03)

k-e+WF

k-v2-f-eEBM
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Impinged cube in a cross-flow 
(Flikweert et al., 2005)
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Impinged cube in a cross-flow: Surface temperature
Infrared Thermography  (Flikweert et al., 2005)

Original snapshot Restored image

Challenges: 
• optical accessibility
• image deformation and degradation
• low time resolution (only time average)
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S=0, y/H=0.067

S=0, y/H=1.067

S=-8, y/H=0.067

Impinged cube in a cross-flow 
PIV measurements

S=-8, y/H=1.067
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Impingement cooling of a wall-mounted cube in a cross-flow
 (Conjugate LES+heat conduction in surface coating, 4.6x106 grid cells 

                                                                          

Popovac and Hanjalic 2006Popovac and Hanjalic 2006 Niceno and Hanjalic, 2001,2002Niceno and Hanjalic, 2001,2002

No jet

No jet
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Impinged cube in a cross-flow
Challenges for modelling and simulations 

RANS
(-f)

RANS
(-f)

Experiments

LES• Proper imitation of experimental 
   inflow and boundary conditions

• Grid resolution and distribution

• Solution domain

• Appropriate RANS and sgs model



44IPPT-PAN, Warszawa, 24 January 2007

1. Fluid magnetic dynamo
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Sketch of the Convective Motions in the Earth:
Magma Chambers and Magma Eruption

Upper unstable boundary layer

Convective plumes
Lateral
currents

Magma chamber

(Brandeis & Jaupart, 1986)

Fluid-Magnetic Dynamo (FMD)
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Fluid-Magnetic Dynamo (FMD)

•  FMD is believed to be the origin of all magnetic fields in Earth
   and most celestial bodies

•   Thermal convection + Earth rotation drive liquid metallic core from
     its interior out to the mantle
•   This motion through the already existing magnetic field induces electric
     current, which amplifies the original field, preventing its decay with time. 

•  This “model”, established in twenties, 
   was not proved until first successful 
   experiment in 1999 in Riga (Latvia)
   and afterwards in Karlsruhe (Germany) 
  

•  The basic mechanism of the field self-excitation and sustenance:
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Fluid-Magnetic Dynamo (FMD)
Riga Experiments (sodium)
(Gailitis et al. 1999)

Computer Simulations 
of Riga FMD

(Kenjeres & Hanjalic, 2005)
Major challenge for experiments:
Achieving critical Rem=UL/=10-103,
where =1/m (m=magnetic permeability,
=electric conductivity)  

Note: 
    0.1 m2/s hence  UL~1-10
    (difficult for liquid metals)

In Riga experiment:
Rem~20, Re ~106   

Computer simulations: DNS of 
magnetic field + URANS of velocity 
field (mutually coupled)! 
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T-RANS model for hydrodynamic field T-RANS model for hydrodynamic field 
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T-RANS-”DNS” of the Riga Fluid-Magnetic Dynamo (FMD)
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saturation

Kinematic
 regime

True 
(saturation)

regime

Riga Experiments
(Gailitis et al. 1999)

Computer Simulations
(Kenjeres & Hanjalic, 2005)

RIGA FMD: Numerical confirmation
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Kenjeres & Hanjalic, 2006
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Concluding Remarks

•  Three sets of examples illustrate potentials and limitations of Experiments 
   and Computer Simulations/Modelling, but also their complementarity 
   and synergy potential; 

•  The robustness and repeatability will keep experiments irreplaceable 
    in detecting new physics, gathering new information and databases   

•  Computer simulations (DNS, LES): indispensable tool for collecting 
    high-resolution 4D information (a true research tool for explaining 
    new physics), but limited to small Re and Ra Nos   

•  Semi-empirical models and mixed approaches  (URANS, VLES, hybrid 
    RANS/LES) complement and extrapolate DNS, LES and Experiments, 
    though will hardly ever be accepted as a trustworthy research instrument!   

•  Judiciously combined, they can generate invaluable synergy!    
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“Having  terabytes of data at your disposal greatly increases the 
chances that you can find the answers to even the toughest questions 
– if you do not mind searching for a needle in a giant haystack” 

(G. Ehrenman, Mechanical Engineering  
(ASME), February 2005).

Concluding Remarks, cont.

• Computer visualization and animations, pioneered by experimentalist, 
   but reached full blossom with computer simulations, is growing into 
   its own branch of science:

• they can reveal events, phenomena, structures etc., which may be
  just too complex for abstract imaging in ones mind.

• This all has been made possible primarily by Computer Simulation, 
   but the abundance of information is creating new problems:
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 Isotropic eddy-diffusivity model (EDM) for heat flux (“Simple Gradient Diffusion 
Hypothesis”, SSGD) :

 Consider two generic situations:

        1. A fluid layer heated from below, gi || ÑT 

            Outside the thin layers, ÑT  0 (or = 0!),

            yet, the vertical heat transport  

        2. Vertical heated walls, gi   ÑT 

            Buoyancy source of  k (and e) 

            yet, the vertical ÑT  0 !

Deficiency of the Basic EDM for Buoyant FlowsDeficiency of the Basic EDM for Buoyant Flows
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