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Review of Darcy’s Law



Darcy’s Experiment, 1855

• 2.5m column; 35cm diameter

• 35 experiments with uniform sand

• water inflow from top

• mercury manometers

• length between 0.58 and 1.71m
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Darcy’s Law
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Algebraic Form
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Observations on Darcy’s 
Experiment

• Equation does not depend on sand 
uniformity

•    is a property of the column, not 
the porous material

•    is a measure of the distance 
between sampling points

•     and     are indicators of pressure 
in the reservoirs exterior to the 
medium

•    does not provide an indication of 
the actual fluid velocity within the 
medium



Alternative Darcy Experiment

• shell houses some arbitrary 
packed, saturated-flow system

• head is measured using 
manometers in reservoirs external 
to the shell region

• Darcian correlation is

•

• or divide by some selected cross-
sectional area to obtain

• no suggestion of a differential form

Q = Keff (h2 − h1)

q = K∗

eff (h2 − h1)



Nevertheless... “Darcy’s Law”

• differential vector equation in terms of “macroscale” variables 

•
•             is the Darcy velocity

•
•          is the macroscale pressure

q = −
K

ρavgg
(∇pavg − ρavgg)

pavg

q = εv



Observations on Darcy 
Experiments

• Darcian experiments provide infomation at the ends of the domain but 
do not identify the scaling or variation within the domain.

• The suggestion of a differential form of Darcy’s Law written in terms of 
variables within the porous medium is an unjustifiable artifact of the 
serendipitous selection of a straight tube with constant cross-sectional 
area and of the placement of manometers for the classic experiments.  

• The pervasive use of differential forms of Darcy’s Law to describe single-
phase, unsaturated, and multiphase flow cannot be justified on the basis 
of the classic experiments.

• Because variables that appear in the differential forms of Darcy’s Law are 
undefined and are not related to measured quantities in a rigorous 
fashion, information transfer among scales is precluded.



Pressure



Average Pressure

pvol = psurf pvol < psurf pvol > psurf



• What should be measured?

• What scale?

• Pressure needed for Darcy’s Law?

• Pressure used in Darcy’s Law?

• Capillary pressure?

• Thermodynamic description?

• Definitions of other variables?

Porous Medium

How should the macroscale pressure be defined?

Berea sandstone at resolution of 9m

q = −
K

ρavgg
(∇pavg − ρavgg)



Elements of
Thermodynamically 

Constrained Averaging Theory



TCAT Approach to Modeling at Macroscale

• Formulate conservation equations and thermodynamic 
relations at microscale

• Develop microscale equilibrium conditions using a variational 
analysis

• Employ theorems that allow for a rigorous change in scale of 
universal relations

• Constrain entropy inequality with conservation equations 
and averaged thermodynamic relations

• Close equations by requiring that irreversible processes 
occurring within the system produce entropy and through 
application of additional constraints (e.g., geometric 
evolution)



Distinguishing Attributes of TCAT Approach

• Conservation equations are employed for phases, interfaces, 
common lines, and common points

• Rigorous change of scale ensures that relations between 
microscale and macroscale variables is preserved

• Averaging of thermodynamic expressions ensures that 
macroscale pressure, temperature, and chemical potentials 
are defined in terms of microscale counterparts.

• Averaging of microscale equilibrium conditions to 
macroscale ensures proper exploitation of the constrained 
entropy inequality

• Geometric evolution relations are employed for saturations, 
interfacial areas, and common line lengths



Microscale Conservation Equations
and Thermodynamic Relations

• Species Conservation:

• Momentum Conservation:

• Energy Conservation:

• Entropy Equation:

• Thermodynamic Dependence:

Miα = 0

Piα = 0

Eiα = 0
∑

i

Siα = Λα ! 0

Eiα = Eiα(Xiα)



Approaches to Thermodynamics

Formulation Functional Form

Equilibrium Thermo E = E(S, V, M), for Ω

Classical Irreversible Thermo E(x, t) = E[η(x, t), ρ(x, t)]

Rational Thermo E(x, t) = E[η(x, t), ρ(x, t), . . .]

Extended Irreversible Thermo E(x, t) = E[η(x, t), ρ(x, t),J]

Rational Extended Thermo E(x, t) = E[η(x, t), ρ(x, t),J, . . .]

Theory of Internal Variables E(x, t) = E[η(x, t), ρ(x, t), I]



Employ Theorems for Scale Change

• Entities now occupy portion of same space

• Constrain Entropy Equation with additional relations

• Lagrange multipliers are selected to reflect system
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Close Equations

• Require that irreversible processes produce entropy

• Examine “near” equilibrium situation

• Linearized constitutive theory

• Make use of approximations relating to geometric changes



Porous Media Flow Equations:
Darcy’s Law

TCAT
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Summary

• Darcy’s Law applies for the measurements and systems 
that led to this correlation.

• Extension of Darcy’s Law to differential form and for 
general systems ignores both processes and scale.

• Despite the widespread, essentially universal, application 
of the differential form of Darcy’s Law, the quantities 
appearing in the equation are poorly defined.

• Definitions of other quantities at the macroscale are 
also ill-defined (e.g., temperature).



Unsaturated Flow
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Standard Form for Air-Water Flow:
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Capillary Pressure vs. Saturation

wetting drying



Microscale Surface Momentum Equation

Surface Stress Tensor

Phase Stress Tensors
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Microscale Example: Expanding Bubble

Normal Stress Balance

wn

Consider
µw ! µn

∇ · vw = 0

pc = −γwn∇
s
· n

w

γwn∇
s
· n

w
− pw + pn = −n

w
· τw · n

w
− n

n
· τn · n

n

−pc − pw + pn =
2

r
µwvr

n
w
· τw · n

w
= −

2

r
µwvr



Observations from Microscale

Interfacial curvature is defined by J
w

= ∇
s
· n

w

Capillary pressure is a unique function of curvature:

pc = −γwnJw

Capillary dynamics involves quantities at the interface

For the case of the bubble with constant properties
at the interface, we can integrate over the interface
to obtain:

−pc − pw + pn =
µw

2πr3

dV

dt
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TCAT Form for Air-Water Flow:

Water Phase

Capillary Pressure

Interface Evolution
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Formulation of 
Capillary Pressure



Microscale Experiments: 7mm Column
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Imbibition

sw = 0.13 sw = 0.59

sw = 0.61sw = 0.15

Drainage



Capillary Pressure - Saturation

Cheng, Pyrak-Nolte, Giordano (2002)



Capillary Pressure - Area - Saturation

Cheng, Pyrak-Nolte, Giordano (2002)



Derived Form for Solid Stress

Solid Phase Stress Tensor

In Terms of Biot Coefficient

Normal Surface Stress
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Conclusion



For Study of Multiphase Flow

• Application of “laws” beyond the conditions for which 
they were developed must be approached with caution.

• Theory requires ability to transfer experimental 
information between scales.

• Identification of symbols in a theory as “pressure” or 
“temperature” does not necessarily indicate consistency.

• “Hysteresis” at the larger scale is due, probably in large 
part, to loss of information.

• Careful manipulation of equations can provide scientific 
studies that faithfully reproduce reality.






