
  

Simple lattice models of complex systems

●What kind of complex systems?
●What kind of lattice models?
●Models and results for:
Water
Particles at interfaces
“protein rafts”
Alcohol (methanol)



  

Complex fluids posses

●strongly nonspherical shapes of molecules,
and/or

●interactions strongly depending on orientations
and/or

●many components with significantly different sizes and/or interactions

As a result

● distribution of particles is inhomogeneous on a microscopic or a 
mesoscopic length scale  

●local positional or orientational ordering leads to aggregates, 
clusters, micelles etc. 

●ordering of such objects may lead to lyotropic liquid-crystalline phases
 or soft colloidal crystals



  

molecule and H-bonds

Examples of complex systems

I. Water:
Well known anomalies

Phase diagram
 for p<2000 bar, dp/dT<0 

at the solid-liquid coexistence

Metastable liquid-liquid transition with a critical point



  

Atomic force microscopy reveals sphingomyelin 
rafts (orange) protruding from a 
dioleoylphosphatidylcholine background (black) 
in a mica-supported lipid bilayer. Placental 
alkaline phosphatase (PLAP; yellow peaks) 
protein, is shown to be almost exclusively raft-
associated.  A diagrammatic representation is 
shown at the bottom. Saslowsky  at. al. 
J. Biol. Chem.277, 26966-26970(2002)

Epifluorescence microscopy 
images of lateral phase separation
in a vesicle adhering to a 
supported lipid bilayer. An aligned 
stripe pattern is transformed into 
a hexagonal array of circular 
domains. Rozovsky at. al. 
JACS 127, 36 (2004)

II. particles at solid or liquid interfaces, or in membranes

http://intl.jbc.org/content/vol277/issue30/cover.shtml


  

Lipid rafts are small microdomains ranging from 10–200 nm in size, present in 
cellular membranes. They are enriched in cholesterol and sphingolipids  and do not 
remain intact for very long. Many scientists think they serve as communication hubs 
by recruiting proteins that need to come together in order to transmit a signal.

WIKIBOOKS



  

III.  H-bond forming polar molecules (alcohols)

Clusters of methanol (left) 
and thert-butanol (right). 
Simulation snapshots 
(A. Perera et. al. 
PRE  75, 060502 (2007))

Phase diagram for methanol Local orientational ordering
in liquid

 

Anomalies 

 structure of the crystal



  

Lattice models

●Space is divided into cells labeled by integer numbers, 

●Cells can be in one from a small number of states 
 associated with microscopic degrees of freedom 
 or mesoscopic (coarse-grained) structure

●Probability of a particular distribution of states in all cells 
 is given by the Boltzmann factor 

Advantages: 

●Reduction of degrees of freedom compared to full microscopic modeling

●Ground state gives information about possible ordered structures

●Analytical calculations possible within mean-field (MF) approximation
●And beyond 
 
●Generic models reveal the key factors responsible for particular properties 



  

oi x =0,

oi x=1,

For i=1,...,n labeling states the microscopic occupancy operators 
are defined as                        

                        if the cell x is in the state i 

and                  if the cell x is not in the state i.

Each cell is in one state,

The “Hamiltonian” takes the form

Where     and           are the chemical potential and the external field resp.

Minimum of the Hamiltonian for  given form of interactions  determines 
the structure at the ground state as a function of        and            . Easy!

∑i=1

n
oix =1

H [{ oi }]=
1
2
∑x∑x '

oix V ij x−x '  o jx ' −∑x
ihx  oix

i hix

i hix

Statistical-mechanics of lattice models.



  

In the mean-field (MF) approximation equilibrium states 

                                               where

are determined by the minimum of the grand potential 

Entropy on the lattice usually has a form of ideal-mixing entropy.
Sometimes Bethe approximation is assumed. Boundary of stability 
of the homogeneous state is determined by

where

Easy!  Important information about ordering can be easily obtained 
analytically. 


MF
[{oi }]=H [{oi }]−TS [{oi }]

{oi }=o1x  , ... , onx oi x=〈 oi x 〉MF

det C ijk=0

C ij k=


2


MF
[{oi}]

 oik  o jk 

∂ detC ijk 

∂k
=0

oi k=∑x
oixe

ik⋅x



  

 Lattice gas model for simple fluids

States:
Empty cell

Occupied cell

Nearest-neighbor interaction

Typical configuration for T>T
c Phase diagram

p=
e−E−N 


Probability of a configuration Grand potential =−kTln



  

molecule and H-bonds

I. Water:
Lattice gas model is oversimplified for description 

of the well known anomalies.
What is the necessary and sufficient modification of it to model water?

Phase diagram
 for p<2000 bar, dp/dT<0 

at the solid-liquid coexistence

Metastable liquid-liquid transition with a critical point



  

I. Lattice gas model for water
A.Ciach, W.T. Gozdz and A. Perera, PRE 78 021203 (2008) 

Typical configurations

Interaction energies

liquid gas

States:
Low density

High density

Empty cell

   a ­ van der Waals

h - H-bond 

 – relative density
difference  

p=
e−E−N LN H 12



Probability of  a configuration Density in  a configuration

=L

N L12N H

V

volume of the lattice 
cell  v = volume per 
molecule in ice



  

Hamiltonian – Blume-Emery-Griffith model for a binary mixture

H [{s}]=
−1
2 ∑nn

[J l l sx s x ' 4Jgl s
2
x s2

x ' 2Q s x  s2
x ' ]

−∑x
[ sx 1 s2x]

s=−1,0,1

J l l=a2


h
4

J gl=a12
h
4

Q=a1
h
4

Probability of the  configuration      :

p [{s}]= e−H [{s}]



=−pvV=−kT lngrand potential

=∑{s}
e−H [ {s}]

{s }

s
s2

- concentration

- density= s1 s2

- cell occupancy



  

Ground state (T=0K) dependence on the model parameters

Simple fluid

Water-like 

By assuming the coexistence between the high-density and 
the low-density phases at p=2000 bar we obtain a
  relation between the model parameters a,h,v,

Further relations follow from the values of critical temperatures 
in the model and experiment

h /a2



  

The model parameters: 
v=35 A3

a=3.6 kJ/mol
h=1.1 kJ/mol
=0.12

In water:
v~33 A3

a~5.5 kJ/mol
 h=

2
3∗4

∗EH=0.05∗23kJ /mol=1.2kJ /mol

0.1

Mean-field (MF) approximation:
each molecule is in the external field resulting from interactions with 

the remaining molecules in their equilibrium positions.
Average values are approximated by the most probable values.

In MF the critical point temperature T
c
   is overestimated.

 Exact result for T
c
 in the Ising model is T

c
~4.5/6T

c

MF =0.75 T
c

MF



  

Spinodal surface:

MF [ sx ,x]=H [ s x  ,x ]−TS [ s x  ,x ]

Mean-Field (MF) approximation: Functional of two fields,

On the lattice the entropy S has the ideal-mixing entropy form

The fields 

∂
MF

∂ s
=0=

∂
MF

∂

The density: =[1 s]ice

det [∂2


MF
]=0

s=〈s 〉MF ,=〈 s
2
〉MF

satisfy the minimum condition

 s

T



  

Spinodal (dashed) and binodal lines in MF

Gas-liquid coexistence in the model and in experiment 

Anomalous density increase



  

EOS isobars

p=2500barp=1000barP=100 bar

p=10bar

Critical pressure in the model  is p=653 bar



  

Isothermal compressibility

0.1 kbar

1 kbar

We observe minimum of the compressibility, but only for high pressures 

Constant-pressure specific heat



  

Thermal expansivity

1 kbar

0.1 kbar

Correlation length at the 
critical density of the mestastable 
liquid-liquid critical point 



  

For p<2000 bar low density at low T. T increases – 
mixing of the two forms of water – density increases.

Further increase of T – mixing of the occupied and empty cells -density decreases.

For p>2000bar compact structure at low T. T increases 
-mixing of the two forms of water – density decreases. 



  

II. Particles at interfaces or membranes

Short range attraction long range repulsion (SALR) potential

Example: experimentally determined effective potential for lysozyme in water
Shukla et.al. PNAS 105, 5075 (2008)   

r

V(r)/kT

Short-range strong attraction often results from van der Waals,
hydrophobic or depletion interactions

Long-range repulsion often results from the presence of charges.
It may also result from deformations of the membrane 

due to the presence of particles



  
V 3=0V 1=−J1 V 2=J 2

(6.38)

e1

e2

r

Triangular lattice with the interaction potential

V r 

−J 1

J2

e3

V x =−J1∑i=1

3


Kr
xe i

Kr
 x−e i

J2∑i=1

3
Kr x2e i

Kr  x−2ei



  

Ground state of the model
A.C., N. Almarza,  unpublished

Three-phase lines

J=



  
Lamellar (l)

Rhombus clasters (rc)

Hexagonal clasters (hc)



  

 rb and hb are “negatives” of the rc and hc phases respectively.
At the three-phase lines fluids consisting of clusters with any 
separations larger than in a respective crystal are stable.

At low T the above patterns can represent thermodynamically stable 
phases in various systems,  with ordering on different length 
scales, if there is a competition between attractive and repulsive
interactions. At curved vesicles more complex effects may play a role.



  

Boundary of stability of the disordered phase
For high T

kBT

J1

=
12J2

2J
1−

k BT

J 1

=61−J 1−

J1/4

J1/4

cos k b=
1
4J

cos k b=1

Gas-liquid separation for weak repulsion

Spinodal  line

Periodic ordering of clusters or stripes for strong repulsion

 line                      

Period of density modulations in the inhomogeneous phase =
2
kb



  

Instabilities of the disordered phase with respect to periodic ordering
(microseparation) and with respect to gas-liquid separation

Gas-liquid spinodal for J=1/2

 line for J=1/2

 line for J=2

For J=1/4 the  spinodal and   lines merge together, and
For J>1 no gas-liquid spinodal (even metastable) 

=
2
kb

=∞

kBT

J1

rc  hc        l         hb rb



  

Clusters of methanol (left) and thert-butanol (right). 
Simulation snapshots (A. Perera et. al. PRE  75, 060502 (2007))

Local orientational ordering in liquid

  III. H-bond forming polar molecules (alcohols)



  

●The cell can be empty or occupied. 
●In the occupied cell the vector connecting the tail with the head of the molecule 
 can have 2d orientations in d dimensions. 2d+1 states
● Nearest-neighbor occupancy excluded (bulky tails). 
●Van der Waals interactions -a assumed between next-nearest neighbors. 
●H-bonds -h for the configurations shown above for methanol (left) 
 and thert-butanol (right) in addition to vdW interactions.

 

Lattice gas model for methanol
A.C. and A. Perera JCP 131 044505 (2009)  

Typical microstate with 
arrows representing 

orientations of 
molecules and H-bonds 

Indicated by dashed lines.

-a-a-h

Configurations for which
 H-bonds are formed

Interaction energies
 for methanol



  

Ground state

 Nagayoshi et.al. Chem. Phys. Lett. 369  597(2003)

 structure of the crystal at low T



  

Mean-field (MF) phase diagram for optimized interaction parameters
with the Bethe approximation for the entropy. 

Gas-liquid separation

Continuous transition
to orientationally ordered 
phase in MF



  

Phase diagram for methanol 

 

Anomalies 

 Gromnitskaya, et. al. JETP 
Letters, 80, 597( 2004)  



  

G x =〈 n x⋅n xx〉=∑i=1

3
Gi x

Description of orientational ordering

Gik =∑ x
G i xe

i x⋅kGi x =〈 nix  nix x 〉

We define functions based on average values of the scalar product of the 
unit vectors       representing orientations of the molecules separated by

We should know what is the orientation of the second particle when:

1.

2.   

 xn

 x∥nx 

 x⊥ n x
 x

 x



  

G1k1 , k2 , k2

n

Results in Fourier representation

k3

k2

k1

G10,k2 ,G1k1 ,0 ,0 G10 , k2 , k2



  

In real-space representation

Oscillatory orientational ordering in both, parallel and perpendicular directions
with respect to the orientation of the first molecule.

The model reproduces the orientational ordering and suggests a new
method of investigating orientational order of polar molecules

G1x1=∫−/2

/2 dk1e
−ik1 x1 G1k1 ,0 ,0

2



  

G'∥' x '∥'=∑x '⊥ '
G x'∥' , x'⊥ '

=∑x2
∑x3

G1x1 , x2 , x3

G'⊥ ' x'⊥ '=∑x'∥'

Gx '∥' , x'⊥ '

=∑x1

G1 x1 , x2 , x3

Geomertical interpretation

Our functions represent
the sum of scalar products between a chosen molecule and all molecules

at the surface perpendicular to it                      or at a surface of a cylinder 
with the axis parallel to it



  

Very simple models 
can describe very complex phase behavior and/or structure 

Complexity often results from simple interactions 
if there are competing tendencies in them

In the lattice models it is easier 
to detect the origin of complex behavior

Collaborators

A. Perera
W. T. Gozdz
N. Almarza
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