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My book published in 1993 by Longman (U.K.) and
Wiley&Sons (New York) encompasses all relevant
equations and a number of relevant solutions for free liquid
jets moving in air

Interaction of Mechanics and Mathbemctics Series

Free liquid

jets and films:
hydrodynamics
and rheology

Alexander L Yarin

Technion - Israel Institute of Technology
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General quasi-one-dimensional equations of
dynamics of free liquid jets moving in air

1. Continuity-Mass Balance- Equation

All terms 1n Eq. (1) are of the order of
32

2. Momentum Balance Equation

OMV | OfWV _19(Pt+Q)
ot 0s p 0s

+ }“fg t ﬁqtotal
p

All terms 1n Eq. (2) except the shearing
force Q are of the order of a2 ;
Q is of the order of a*
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General quasi-one-dimensional equations of
dynamics of free liquid jets moving in air

3. The Moment-of-Momentum Balance- Equation

OAK

K[ijl +ox( Ui, +J, + W), ) —kUx(Qx]; +6J3):|

(WK, +j,xV
(WK, +],% )=16M+1me-xkj3xg+§m
0s pos p p

All terms in Eq. (3) are of the order of a*

Equations (1)-(3) are supplemented with the geometric,
kinematic, and material relations. The material relations for P
and M follow from the rheological constitutive equation
projected on the quasi-1D kinematics
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Main results for highly viscous and
viscoelastic jets rapidly moving in air: flame
throwers

The linear stability analysis: small 3D
perturbations grow with the rate:

3 uy” c
,Yz _l__llez v+ :
4 pa, pPa,  Pa

where the dimensionless wavenumber y = 2ma, / /

The bending instability sets in when:

U, > U; = /o /(p.a,)
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Main results for highly viscous and
viscoelastic jets rapidly moving in air: flame
throwers

The bending perturbations grow much faster than the

capillary perturbations for highly viscous liquids when:
2

u
payp, U,
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Linear spectrum:
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Nonlinear-numerical-results for 2D
bending

Newtonian jet

Mechanical & Industrial
Engineering




Nonlinear-numerical-results for 2D
bending

Newtonian jet
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Meltblowing

Experimental: threadline blowing setup
to probe turbulence

ruler
r high pressure
tubing ight

©

ar,
stage \—threadline

27

CCD

S. Sinha-Ray, A.L. Yarin, B. Pourdeyhimi.

J. Appl. Phys. 108, 034912 (2010)
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Air velocity at the nozzle exit
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Experimental: threadline configurations at
different time moments
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Threadline envelope: 2" method to
define flapping length
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Measured threadline oscillations
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FFT: Spectrum of the threadline

oscillations
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Fourier reconstruction of the threadline oscillations
with high frequency truncation above 167 Hz
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Autocorrelation function: chaotic nature
of threadline oscillations
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Turbulence, bending perturbations,
their propagation and flapping

Large eddy frequency: U, /L=10"Hz
Taylor microscale : L =1.23Re;"”* x =
A=0.014-0.14cm

Microscale frequency: U, /A =10"-10°Hz
Threadline oscillation frequency :10 —10°Hz
Multiple impacts of large eddies :
<A>=[2<Vv’>1t]”
VaU <V >=<uv >
1~ (0u/dy)" =

<v’>t=v, turbulent eddy viscosity!
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Turbulence, bending perturbations,
their propagation and flapping
Therefore,
<A>=(2vt)"”
In axisymmetric turbulent gas jets:
v, =0.015U d, = const
Time t is restricted by bending perturbation

propagation over the threadline :

t ~ L / \/P / (Spthreadline)
Threadline tension: P =q L,

which is imposed by air drag :

-0.81
2
q. =O.65ﬂ:a0ng§( anoj
A%

g
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Turbulence, bending perturbations,
their propagation and flapping

For U, =230m/s,d,=0.05cm1in air:
v, =17.25cm’ /s,t=10.0256s
Therefore, t™' = 39Hz — a remarkable
agreement with the data!

< A>=(2v t)"” =0.94 cm —a reasonable

agreement with the data!
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Turbulence, bending perturbations,
their propagation and flapping

The shape of the threadline envelope in the case
of distributed impacts of turbulent pulsations

without distributed lift force is predicted as :

1/4 0.2025
<A >=0.16| 2| | Yoo (d
P, v, L
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Turbulence vs. distributed acrodynamic
lift force
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Distributed drag, lift and random forces

force from
large eddies
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Straight unperturbed sewing threadline
in high speed air flow

The unperturbed momentum balance

dP
—+q.=0, P=o_na,
dx

The longitudinal aerodynamic drag force

-0.81
2Ua, J

g

q, = O.65na0ng§(

Integrating the momentum balance, we obtain

_9.(L=%)
XX 2

na,

0)




Perturbed threadline in high speed
air flow

The lateral bending force
0’H
qn = _p gUéna(z) 2
The linearized lateral momentum balance
oV,
pna; P kP+q.

The lateral velocity and thread curvature read

y o _oH
n at 6X2
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Perturbed threadline in high speed
air flow

Then, the thread configuration is governed by
o°H [p.U -0, ()] &H
61:2 p aXZ
If 6 ,=qL/(ma;)>p,U;, then Eq.(1) is

hyperbolic at 0 < x < x,, and elliptic at x, < x < L.

=0 (D

0

The transition cross — section is found from

L—
ngz—LZX)=O @x =x,

na,

The threadline is clamped and perturbed at x =0
H| =H, exp(iot), 6H/6x| =0
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Perturbed threadline in high speed air flow

Solution in the hyperbolic part is
H(x,t)=H,, exp(iot)cos[ol(x)]

where
( L 1/2
2pma; < ma,

I(x)=

q (L ) 1/2 (
g - X
na,

Solution in the elliptic part is

cosh[ooJ (X)] cos[col(x*)]
+isinh[0J(x)]sin[wI(x,)]

H(x,t)=H,, exp(icot){
where

J(x)=

2pna§[ ¢.x  q.L/(ma))-p,U; ]
q. | pma, p
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Theory vs. experiments for
threadline
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Theory vs. experiments for
threadline

y = 24246x - 5.4943

= =
D RS E

—
=
=
L=1]
3
|
o
£
o
o
0
w

o
o B

150 170 180 210 230 250 270 290
Nozzle Exit Velocity(mls)

Mechanical & Industrial
Engineering




Mechanical & Industrial
Engineering

Polymeric liquid jet in high speed air
flow

The quasi — one — dimensional continuity and

momentum balance equations for a straight jet

atv. _ 0, f=mna’= na’V_ =na’V

dX 0 " 10

dfv’ _do f
dx dx
where

p +q.

—0.81
2(U, -V, )a]

g

q, =0.65map, (U, - VI_)Z[

and the stress 6, =1, — 1 1s found from



Polymeric liquid jet in high speed air
flow
The upper — convected Maxwell
model of viscoelasticity
2udvV. 1t
¥ eM ax

XX

dryy
' =——7 T
dx dx ”
which are solved numerically simultaneously
with the transformed momentum balance.

The following dimensonless groups are used

0
Re = EAA , De= OZ’O
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Polymeric liquid jet in high speed air
flow

The dimensionless equations for a straight
polymeric jet solved numerically
av, [-BE(r,—7,)((DeV)+q, ]

dx  [1-E(r, +21 +3)/V?]

— T
\ dx ” dx
The boundary conditions are

x=0: V. =1, t_=1_,
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deviatoric stress distribution
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deviatoric stress distribution
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Bending perturbations of polymeric
liquid jet in high speed air flow

The linearized lateral momentum balance

reads (dimensional) :
o'H OH [ p.(U,—V) -0,

p

V:+

T

+2V
ot * Oxot

and normalized :
2 2H ZH
g Ij+ 2V, 0 g -=0
ot oxot Ox
All coefficients depend only on the unperturbed

+[V’+R(U,-V,)’-Eo_ |

solution!!!
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Bending perturbations of polymeric
liquid jet in high speed air flow

Solution in the hyperbolic part :
—8exp[—iol, (X)]}

Ho(o 1
H(x,t)= _5 eXp(IO)t){ +exp[—iol, (x)]

where

1L(x)=] &
"~ 0V.(x)+/Eo, (x)-R[U,(x)- V.(x)T

X dx

L(x) =
N 0~ o0 —RIU. O —V.0T

5 _ dl/dx
~dL/dx|

0
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Bending perturbations of polymeric
liquid jet in high speed air flow
Solution in the elliptic part :

H(x,t) = IH_—O"éexp {io[t—1J (x)]}

-0 CXp [_i(DI1 (X* )] CxXp [_O)Jz (X)]
|+ expl—iol, (x.)explol, (x)]
where

I (x)= | V(%) dx
: VX (x)+R[U,(x)-V.(x)]' -Ec_ (x)

. JRIU,(x)-V.(x) —Eo_(x)
J,(x)=[— - X
x» V (x)+R[U,(x)- V. (x)] —Eo, (X)
The velocity distribution in turbulent gas jet is
2.4d,

Xx+2.4d,

U,(x)=U,0)
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Meltblowing: Nonlinear theory
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Nonlinear Model for

Isothermal Polymer and Gas
Jets




Basic equations: Momentless theory
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Relation of the coordinate system associated with the jet axis
and the laboratory coordinate system in 2D cases

Direction of

blowing
—_—
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Scalar projections of the momentum
balance equation in 2D
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The rheological constitutive viscoelastic model.
The mean flow field in the turbulent gas jet
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Dimensionless groups

MY .
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Dimensionless equations for numerical
Implementation
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Nature of the equations
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Boundary and initial conditions
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Numerical results for 2D: the i1sothermal
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Numerical results in 2D: the 1sothermal
case (continued)
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Self-entanglement: Can lead to “roping”
and “fly”

SEI 50kV  X11,000 Tum WD 15.0mm
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Nonlinear Model for

Non-isothermal Polymer and
Gas Jets




Thermal variation of the rheological
parameters
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The additional and changed dimensionless
equations; 2D, non-isothermal case
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Numerical results for the 2D non-
Isothermal case
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Numerical results for the 2D non-
Isothermal case
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Numerical results (continued)
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The initial section of the jet-no bending
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3D isothermal results: single jet
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9 jets meltblown onto a moving screen-the beginning
of deposition
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9 jets meltblown onto a moving screen-a later
moment
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62 jets meltblown onto a moving screen
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62 jets meltblown onto a moving screen
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62 jets meltblown onto a moving screen: a higher
screen velocity
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Mean value-4.74 micron
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62 jets meltblown onto a moving screen: comparison
with experiment
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62 jets meltblown onto a moving screen: comparison
with experiment
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62 jets meltblown onto a moving screen
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Experimental: solution blowing and co-
blowing setups

a syringe pump
syringe pump ( ) core solutio
shell solution
polymer solution ‘
_} s
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Close Relatives
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