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My book published in 1993 by Longman (U.K.) and 
Wiley&Sons (New York) encompasses all relevant
equations and a number of relevant solutions for free liquid 
jets moving in air



General quasi-one-dimensional equations of 
dynamics of free liquid jets moving in air
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1. Continuity-Mass Balance- Equation

2. Momentum Balance Equation

All terms in Eq. (1) are of the order of 
a2

All terms in Eq. (2) except the shearing 
force Q are of the order of a2 ;
Q is of the order of a4 



General quasi-one-dimensional equations of 
dynamics of free liquid jets moving in air
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3. The Moment-of-Momentum Balance- Equation

All terms in Eq. (3) are of the order of a4

Equations (1)-(3) are supplemented with the geometric, 
kinematic, and material relations. The material relations for P 
and M follow from the rheological constitutive equation 
projected on the quasi-1D kinematics



Main results for highly viscous and 
viscoelastic jets rapidly moving in air: flame 

throwers
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The linear stability analysis: small 3D 
perturbations grow with the rate: 

The bending instability sets in when: 
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Main results for highly viscous and 
viscoelastic jets rapidly moving in air: flame 

throwers
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The bending perturbations grow much faster than the 
capillary perturbations for highly viscous liquids when: 

Linear spectrum:



Nonlinear-numerical-results for 2D 
bending

Newtonian jet



Nonlinear-numerical-results for 2D 
bending

Newtonian jet

Viscoelastic jet



Experimental: threadline blowing setup
to probe turbulence

Meltblowing

S. Sinha-Ray, A.L. Yarin, B. Pourdeyhimi. 
J. Appl. Phys. 108, 034912 (2010)



Air velocity at the nozzle exit

Chocking at pressure ratio of 47.91



Experimental: threadline configurations at
different  time  moments

ARROWS DENOTE THE FLAPPING LENGTH



Threadline envelope: 2nd method to 
define flapping length



Measured threadline oscillations



FFT: Spectrum of the threadline 
oscillations



Fourier reconstruction of the threadline oscillations 
with high frequency truncation above 167 Hz



Autocorrelation function: chaotic nature 
of threadline oscillations



Turbulence, bending perturbations, 
their propagation and flapping
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Large eddy frequency : U / L 10 Hz
Taylor microscale : 1.23Re x

0.014 0.14 cm
Microscale frequency : U / 10 10 Hz
Threadline oscillation frequency :10 10 Hz
Multiple impacts of large eddies :
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Turbulence, bending perturbations, 
their propagation and flapping
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Therefore,
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In axisymmetric turbulent gas jets :
0.015U d const

Time t is restricted by bending perturbation
propagation over the threadline :

t L / P / (S )
Threadline tension : P q L,
which is imposed by a
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Turbulence, bending perturbations, 
their propagation and flapping
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For U 230 m / s, d 0.05 cm in air :
17.25 cm / s, t 0.0256 s

Therefore, t 39Hz a remarkable
agreement with the data!

A (2 t) 0.94 cm a reasonable
agreement with the data!
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Turbulence, bending perturbations, 
their propagation and flapping
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The shape of the threadline envelope in the case
of distributed impacts of turbulent pulsations
without distributed lift force is predicted as :
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Turbulence vs. distributed aerodynamic 
lift force



Distributed drag, lift and random forces



Straight unperturbed sewing threadline 
in high speed air flow
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The unperturbed momentum balance
dP q 0, P a
dx
The longitudinal aerodynamic drag force

2U aq 0.65 a U

Integrating the momentum balance, we obtain
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Perturbed threadline in high speed 
air flow
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The lateral bending force
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The linearized lateral momentum balance
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t

The lateral velocity and thread curvature read
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Perturbed  threadline in high speed 
air flow
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Then, the thread configuration is governed by

U (x)
0 (1)

t x
If q L /( a ) U , then Eq.(1) is
hyperbolic at 0 x x , and elliptic at x x L.
The transition cross section is found from
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Perturbed  threadline in high speed air flow
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Solution in the hyperbolic part is
(x, t) exp(i t)cos[ I(x)]

where
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Solution in the elliptic part is
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Flapping of solid flexible Flapping of solid flexible 
threadlinethreadline



Theory vs. experiments for 
threadline



Theory vs. experiments for 
threadline



Polymeric liquid jet in high speed air           
flow
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The quasi one dimensional continuity and
momentum balance equations for a straight jet
dfV 0, f a a V a V
dx
dfV d f q
dx dx

where

2(U V )a
q 0.65 a (U V )

and the stress is foun
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Polymeric liquid jet in high speed air           
flow

xx xx
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The upper convected Maxwell
model of viscoelasticity
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which are solved numerically simultaneously
with the transformed momentum balance.
The following dimen
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Polymeric liquid jet in high speed air           
flow
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The dimensionless equations for a straight
polymeric jet solved numerically
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Unperturbed polymer jet in melt blowing: velocity and Unperturbed polymer jet in melt blowing: velocity and 

radius distributionsradius distributions



Unperturbed polymer jet in melt blowing: longitudinal Unperturbed polymer jet in melt blowing: longitudinal 

deviatoric stress distributiondeviatoric stress distribution



Unperturbed polymer jet in melt blowing: lateral Unperturbed polymer jet in melt blowing: lateral 

deviatoric stress distributiondeviatoric stress distribution



Unperturbed polymer jet in melt blowing: K(x) Unperturbed polymer jet in melt blowing: K(x) 

distributiondistribution



Bending perturbations of polymeric 
liquid jet in high speed air flow
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Bending perturbations of polymeric 
liquid jet in high speed air flow
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Solution in the hyperbolic part :
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Bending perturbations of polymeric 
liquid jet in high speed air flow
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Solution in the elliptic part :
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Bending perturbations of polymeric liquid jet Bending perturbations of polymeric liquid jet 
in melt blowingin melt blowing



Meltblowing: Nonlinear theory
Nonlinear model for predicting large perturbations on
polymeric viscoelastic jets.

A.L. Yarin, S. Sinha-Ray, B. Pourdeyhimi. J. Appl. Phys. 108, 034913 
(2010).

Isothermal polymer and gas jets-2D bending of 1 jet

Non-isothermal polymer and gas jets-2D bending of 1 jet

Basic vectorial equations
Scalar projections of the momentum balance equation in 2D
Numerical results

Basic vectorial equations
Scalar projections of the momentum balance equation in 2D
Numerical results

 3D results: single and multiple jets



Nonlinear Model for 

Isothermal Polymer and Gas 
Jets 



Basic equations: Momentless theory
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Taking s to be a Lagrangian parameter of liquid elements in the jet, 
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Continuity Equation

- The integral of the continuity equation



Relation of the coordinate system associated with the jet axis 
and the laboratory coordinate system in 2D cases
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Scalar projections of the momentum 
balance equation in 2D
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The rheological constitutive viscoelastic model. 
The mean flow field in the turbulent gas jet
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Rheological Constitutive Equation :Upper Convected Maxwell 
Model
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L/a0, where a0 is the nozzle radius and L is the 
distance between the nozzle and deposition screen
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The mean flow field in the turbulent gas jet



Dimensionless groups
Time, co-
ordinates 

and 
functions

Rendered 
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Dimensionless equations for numerical 
implementation
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Nature of the equations

Both the equations are basically wave equations. While (1) is –for 
the elastic sound (compression/stretching) wave propagation, (2)
is nothing but bending wave propagation.
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Boundary and initial conditions
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Boundary Conditions:

The initial condition for the longitudinal stress in the polymer
jet:



Numerical results for 2D: the isothermal 
case

Velocity flow field in gas jet
Snapshots of configurations
of polymer jet axis



Numerical results in 2D: the isothermal 
case (continued)



Self-entanglement: Can lead to “roping”
and “fly”

The evolution points at 
possible self-intersection in 

meltblowing, even in the case 
of a single jet considered here

SEM image of solution blown 
PAN fiber mat obtained from 
single jet showing existence of 

“roping”



Nonlinear Model for 

Non-isothermal Polymer and 
Gas Jets 



Thermal variation of the rheological 
parameters
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where T0 is the melt and gas jet temperature at the origin, µ0 and θ0
are the corresponding values of the viscosity and relaxation time, U 
is the activation energy of viscous flow and R is the absolute gas 
constant. 



The additional and changed dimensionless 
equations; 2D, non-isothermal case
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Numerical results for the 2D non-
isothermal case

Snapshots of the axis configurations 
of polymer jet for the nonisothermal caseThe mean temperature field in the gas 

jet



Numerical results for the 2D non-
isothermal case

Snapshots of the axis configurations 
of the polymer jet for the nonisothermal 

case

Snapshots of the axis configurations 
of the polymer jet in the isothermal case



Numerical results (continued)

Following material elements
in the polymer jet in the 

isothermal case
Following material elements
in the polymer jet in the non-

isothermal case



The initial section of the jet-no bending



3D isothermal results: single jet

Three snapshots of the polymer jet axis in the isothermal three-dimensional blowing at the 
dimensional time moments t=15, 30 and 45 



9 jets meltblown onto a moving screen-the beginning
of deposition 



9 jets meltblown onto a moving screen-a later 
moment 



62 jets meltblown onto a moving screen



62 jets meltblown onto a moving screen



62 jets meltblown onto a moving screen: a higher 
screen velocity



62 jets meltblown onto a moving screen: a higher 
screen velocity



62 jets meltblown onto a moving screen: comparison 
with experiment



62 jets meltblown onto a moving screen: comparison 
with experiment



62 jets meltblown onto a moving screen



62 jets meltblown onto a moving screen



Experimental: solution blowing and co-
blowing setups



SolutionSolution--blown polymer jet: Vigorous bending and flappingblown polymer jet: Vigorous bending and flapping



SolutionSolution--blown and coblown and co--blown nanofibersblown nanofibers
and nanotubesand nanotubes

Monolithic PAN nanofibers



SolutionSolution--blown and coblown and co--blown nanofibersblown nanofibers
and nanotubesand nanotubes

PMMA-PAN carbonized:
Hollow carbon nanotubes

Optical image of PMMA-PAN
core-shell co-blown fibers



SolutionSolution--blown monolithic nanofibersblown monolithic nanofibers



SolutionSolution--blown coreblown core--shell nanofibersshell nanofibers



Close Relatives

Sea snakes, electrospun and meltblown jets, and flame thrower napalm jets extract energy 
from the surrounding medium via bending


